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Abstract

Contribution to the specific heat of crystals due to pinned twist disclinations is studied within the vibrating string model.
For this purpose, a line tension and an effective mass of a sliding twist disclination is calculated. Both the line tension and the
effective mass are found to vary along the disclination line asz2. On this basis, the model ofheterogeneous string is formulated
for the description of the vibrating pinned twist disclination. A solution to the equation of motion for heterogeneous string is
obtained. The specific heat due to twist disclinations is found to be the linear function of the temperature and the defect density.
 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The thermal properties of mobile dislocations have
been considered in 1958 by Granato [1]. In partic-
ular, he found a contribution of mobile dislocations
to the specific heat of crystals by using the Granato–
Lücke vibrating string model [2] for a pinned disloca-
tion. The basis for this model is an analogy between
the vibration of a pinned dislocation line segment and
the forced damped vibration of a string. This simpli-
fied model was successful in the description of vari-
ous aspects of dislocation dynamics. In particular, the
vibrating string model offered a clearer view of me-
chanical damping [2], phonon scattering [3], and low-
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temperature thermal conductivity in dislocated crys-
tals [4]. It should be noted that the basic characteristics
of the string model are the line tension and the effec-
tive mass of the defect. For dislocations they have been
calculated by Laub and Eshelby [5], and within a more
general approach by Ninomia and Ishioka [6].

The dynamics of rotational defects in crystals,
disclinations, is poorly understood. One of the most
known papers is Ref. [7] where the movement of
disclinations and disclination loops has been studied
(see also Refs. [8,9]). In particular, a general equation
for the force on a disclination loop and its axis
as well as the condition for conservative movement
were derived. And yet, the question about the real
dynamics of disclinations and its influence on physical
characteristics of crystals still remains to be answered.
Meanwhile, the recent progress in a study of various
topologically disordered materials shows clearly an
importance of both disclinations and disclination loops
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(see, e.g., [10] and references therein). It is clear
that a study of the thermal properties due to mobile
disclinations is gaining in importance. In this Letter,
we suggest the concept of vibrating string to study the
dynamics of pinned twist disclinations and calculate
the disclination-induced contribution to the specific
heat of a crystal.

2. The general scheme

In dislocation theory, the line tension is determined
by a conventional line-tension formula of the form
(see, e.g., Refs. [5,11])F = T/�, whereT is the static
line tension,� is the curvature radius, andF is an
appropriate component of the Peach–Koehler force,
fi . The Peach–Koehler force can be generally written
as (per unit length of the disclination line)

(1)fr = εrakτau
P
i σik,

whereσik is the stress tensor,εrak is the fully anti-
symmetric tensor,�τ is the unit tangent vector to the
defect line, and�uP = �u+ − �u− = �b + [ �Ω �R] describes
the jump in displacement at pointP due to a linear
defect. Here�b is the Burgers vector,�Ω is the Frank
vector, and�R = �r − �r0 is a vector from any point on
the axis of rotation to pointP . The stress tensor is de-
termined via the static displacement fields in an elas-
tic body caused by plastic deformation due to defect
motion. As is well known, the displacement fields are
obtained by using the Green’s function (see, e.g., [12])

(2)un

(�r, t) = −
∫

cijklGjn,iδe
pl
kl dV

′
,

wherecijkl are the elastic modulus,Gjn is the Green’s

tensor function,δepl
kl is the variation of plastic part

of the strain tensor. Hereafter, the summation over
repeated indices is assumed andGjn,i = ∂Gjn/∂xi .
Taken together these formulas give us a distinct way
to find the static line tension of the linear defect.

To illustrate this scheme, let us consider the known
case of the straight edge dislocation in an isotropic
elastic body. For sliding dislocation one has [12]

(3)δe
pl
kl = 1

2

(
bk

[ �δx �τ ]
l
+ bl

[ �δx �τ]
k

)
δ
(�ξ)

,

where �δx describes the displacement of the dislocation
line andδ(�ξ) is the two-dimensional delta-function.

We consider a dislocation directed along thez-axis and
take thexz plane as the slip plane, i.e., the Burgers
vector is chosen to be�b = (b,0,0). In this case,
�δx = (ε,0,0), �τ = (0,0,1), [ �δx �τ ] = (0,−ε,0), and
�ξ = (x ′, y ′,0), and Eq. (2) takes the form

(4)ud
n

(�r) =
∫

cijk2Gjn,i(x, y, z − z′)bkε(z′) dz′.

For isotropic case,

Gkm

(�r) = 1

8πµ

[
2

r
δkm − 1

2(1− ν)
r,km

]

andcijkl = λδij δkl + µ(δikδjl + δilδjk) with λ andµ

being the Lamé constants.
We suggest that the displacement of the disloca-

tion line in thex direction is ε(z) = ε(k)exp(ikz).
Performing in Eq. (4) straightforward calculations and
substituting the displacement fields in Eq. (1) one ob-
tains

f d
1 = −2ε(k)eikzµ2b2k2

×
[
2A

(
1− 8x2y2

a4

)
K2(ka)

(5)− 4Akx2y2

a3 K1(ka)+ (2A+ B)K0(ka)

]
,

whereA = −B/4(1− ν), B = 1/4πµ, a2 = x2 + y2,
andKν are the McDonalds functions.

At our choice ofε(z) the curvature radius� can
readily be obtained as

(6)�−1 = −k2ε(k)eikz.

Thus, in the first order onka one finally gets

T d(k) = µb2

4π

[
−(1− 2ν)

(1− ν)

(
C + ln

ka

2

)

+ 1

2(1− ν)

]
, (7)

where C is the Euler’s constant. Notice that this
result agrees with [5]. In practice, Eq. (7) is usually
approximated by introducing the Debye cut-offkD ∼
1/a, so that the value in brackets in Eq. (7) can
be roughly estimated as 2π . Thus we arrive at the
often-used expressionT = µb2/2. To complete the
string picture one has to determine the effective
mass of a dislocation. It can generally be obtained
from the kinetic energy of the body containing the
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dislocation,Ek = (ρ/2)
∫
u̇2
i dV . The calculations are

rather simple and can be found, for example, in [6,14].
The well-known approximate result ism = ρb2/2.
Having in hand two main string parameters one
can formulate the equation of motion of a pinned
dislocation. This program has been performed in [2].

3. String model of twist disclination

The problem of motion of disclinations and discli-
nation loops was examined in [7–9]. It was shown
in [7] that straight wedge disclinations have no slip
surfaces and cannot move conservatively. On the con-
trary, the straight twist disclination has its slip plane
and can move conservatively. We will study the case
of the rectilinear twist disclination with a fixed axis
of rotation. Let the disclination line be oriented along
the z-axis and the axis of rotation along they-axis,
i.e., �Ω = (0,Ω,0), �τ = (0,0,1). In accordance with
Eq. (1) the force on a disclination line can be written
as

f1 = Ω(X1σ32 − X3σ12),

f2 = Ω(X3σ11 − X1σ31),

(8)f3 = 0.

The condition for conservative motion of a linear
defect is generally written asdV = 0 (no vacancies are
created or absorbed). It was shown for disclinations
in [7] that the motion must be normal to[[ �Ω �R]�τ ]. This
enables one to define a disclination glide surface as
the surface of revolution around the axis�Ω containing
the disclination line. In our case, this is thexz plane.
Therefore the only componentf1 is of our interest
for sliding twist disclination. By analogy with the
case of edge dislocation we suggest that the motion
of disclination line is oscillatory and�δx = (ε,0,0).
Then the displacement fields are written as [13] (see
also [9])

(9)un

(�r) = µΩ

∞∫
−∞

(Gyn,x + Gxn,y)ε(z
′)z′ dz′.

We obtain

ux

(�r) = 2µΩε(k)eikzyk

×
[

2Ax2k

a2

(
zK2(ka)+ iaK1(ka)

)
− (B + 2A)

a

(
zK1(ka)+ iaK0(ka)

)]
,

(10)

uy

(�r) = 2µΩε(k)eikzxk

×
[

2Ay2k

a2

(
zK2(ka)+ iaK1(ka)

)
− (B + 2A)

a

(
zK1(ka)+ iaK0(ka)

)]
,

(11)

uz

(�r) = 4AµΩε(k)eikzxyk

×
[
kK2(ka)− i

zk

a
K1(ka)− 3

a
K1(ka)

]
.

(12)

Notice that the first term inf1 is of the second order
in ε and can be omitted. Thus, in the linear inε ap-
proximation one gets

f1 = −2µ2Ω2ε(k)eikzz

×
[

2Azk2
(

1− 8x2y2

a4

)
K2(ka)

+
(
i(B + 4A)k2a

− 4Ax2y2k2

a3 (zk + 2i)

)
K1(ka)

−
(
k(B + 2A)(2i − kz)

+ i
4Ax2y2k3

a2

)
K0(ka)

]
.

(13)

Forka 
 1 the line tension takes the form

T (k, z) = µΩ2z2

4π

[
−(1− 2ν)

(1− ν)

(
C + ln

ka

2

)

+ 1

2(1− ν)

]
. (14)

It is interesting to note that Eq. (14) agrees with Eq. (7)
except for the factorΩz instead ofb. An appear-
ance of such space-dependent factor is well-known in
disclination theory. In particular, a twist disclination
has specific property of a linear divergence of strain
fields along its line. This leads to the corresponding
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quadratic divergence in the energy of twist disclina-
tions that can be directly seen from Eq. (14). By mak-
ing use of the approximation made in the previous sec-
tion we finally obtain

(15)T (z) = µΩ2z2

2
.

The last step is to determine the mass of twist disclina-
tion. The calculations are similar to those for the case
of a dislocation (see, e.g., Refs. [6,14]) and the result
is

m(z) = ρΩ2z2

16π(1− ν)2

[
2(1− 2ν)2 + (3− 4ν)

]
ln

R

a0
,

(16)

wherem(z) is the mass per unit length of the discli-
nation,R anda0 are the cut-off parameters. It should
be noted that analogously to Eq. (14) this result agrees
with that for a dislocation (cf., e.g., [14]) with the ex-
ception of the factorΩz instead ofb. As for a disloca-
tion one can approximate Eq. (16) as

(17)m(z) = ρΩ2z2

2
.

Thus, both the linear tension and the mass of the discli-
nation depend onz. This means that twist disclination
can be represented as a string with the understanding
that this is aheterogeneous string. Therein lies the es-
sential difference from the case of a dislocation where
the string is considered to be homogeneous.

4. Equation of motion

The equation of motion for heterogeneous string is
written as

(18)m(z)
∂2ε(z, t)

∂t2
= ∂

∂z

(
T (z)

∂ε(z, t)

∂z

)
.

When m and T are constants, which is the case of
a dislocation, one obtains the familiar equation for
harmonic vibrations. Notice that the linear tension and
the effective mass of a dislocation are found to be
related byT = mv2 with v = √

µ/ρ. In accordance
with Eqs. (15) and (17), a similar relation becomes
also valid for twist disclination where, however, it
holds locally,T (z) = m(z)v2.

We seek the solution to Eq. (18) in the form

(19)ε(z, t) = ε(z)cosωt.

In this case, Eq. (18) reads

(20)z2∂
2ε(z)

∂z2 + 2z
∂ε(z)

∂z
+ z2ω2

v2 ε(z) = 0,

with Eqs. (15) and (17) taken into account. The
solution is found to be

(21)ε(z) = v

ωz

(
C1 sin

ωz

v
+ C2 cos

ωz

v

)
,

whereC1 andC2 are arbitrary constants. By using of
the boundary conditions in the formε(−L) = ε(L)

= 0 one finally obtains

(22)ε(z, t) = ε0v

ωz
sin

ωz

v
cosωt,

with ε0 being the maximal amplitude (atz = 0) and
the spectrum

ωn = v|kn|, kn = πn/L,

(23)n = 0,±1,±2, . . . .

Thus the vibrations have a rather complex form which
is characterized by a decreasing withz amplitude. At
the same time nodes are distributed regularly. This
makes a study of the contribution to the thermal
characteristics due to vibrating twist disclinations
similar to that for dislocations.

5. Contribution to the specific heat

We are interested in the contribution to the specific
heat. The following calculations are similar to those
in the case of dislocations [1]. Namely, the internal
energy is written as

(24)U =
∑
n

h̄ωn

exp(h̄ωn/kBT ) − 1
,

where the sum is over all the normal modes of the vi-
brating disclination, andkB is the Boltzmann constant.
Approximating the sum by an integral in the usual way
one finally obtains

(25)U = 2L

πv

∞∫
0

h̄ω

exp(h̄ω/kBT ) − 1
dω = πLk2

BT 2

3vh̄
.
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Therefore the contribution to the specific heat is

(26)cv = 2πLk2
BT

3vh̄
,

and the specific heat per mole is finally written as

(27)Cv = p
π2

3

Λa2
0

Z
NkB

T

Θ
,

wherea0 is the lattice constant,Λ is the disclination
density,N is the number of atoms per mole,Z is the
number of atoms per unit cell,Θ is the Debye temper-
ature, andp = v0/v with v0 being the sound velocity
in the perfect lattice. Notice that a similar result has
been obtained in [1] for dislocations. The most inter-
esting feature of Eq. (27) is the linear variation with
temperature. As is known, this behavior is familiar to
glassy materials. This fact has stimulated a study of the
dislocation contribution to the specific heat of glassy
Pd78Si16Cu6 in [15] where a good quantitative agree-
ment with the experimentally measured value of the
specific heat was found.

It has recently been shown in [16] that the ex-
perimental data for the thermal conductivity in vitre-
ous silica (a-SiO2) can be explained within the dis-
clination-based model. It is interesting therefore to es-
timate the contribution to the specific heat due to vi-
brating disclinations. We will use the parameter set
from [16]. Namely,Λ = 2 × 1015 m−2, a0 = 2.88×
10−10 m, Θ = 342 K, ρ = 2200 kg/m3, µ = 3.2 ×
1010 N/m2. Additionally, we use in Eq. (27)p =
1.075 andZ = 3. In this case one obtainsCv/T =
4.7× 10−6 J/K2 mol. It is interesting to note that this
value is in a reasonable agreement with the experimen-
tal data [17]. Actually, this good agreement is scarcely
surprising. Indeed, as has been observed by Zeller and
Pohl in [17], the linear specific heat anomaly could
suggest linear chains. Moreover, they have indicated
that about 1015 chains per square meter are needed in
order to explain the magnitude of the observed anom-
aly. This is exactly the density of linear defects that we
have used in [16] and, accordingly, in this Letter.

6. Summary

In this Letter we have introduced the concept of vi-
brating string to study the dynamics of pinned twist
disclinations. We have considered the case of the con-
servatively moving twist disclination. The most impor-
tant conclusion is that the concept of vibrating string
becomes valid for twist disclination, however, an im-
portant distinction from the case of the dislocation
is established. Namely, we have found that the basic
characteristics of a string arez-dependent. This find-
ing allowed us to formulate the model ofheteroge-
neous string for twist disclination. Although the vibra-
tion dynamics is affected in comparison with the case
of a dislocation, the spectrum of the vibrating discli-
nation is proved to be precisely the same. The contri-
bution to the specific heat is found to depend linearly
on the temperature and the disclination density. The
numerical estimation of the specific heat for vitreous
silica shows a good agreement with the experiment.
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