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Introduction

Photosynthetic Reaction Centers (RC’s)

The photosynthetic reaction centers is a special pigment-protein complex, that functions
as a photochemical trap. The precise details of the charge separations reactions and sub-
sequent dark electron transport (ET) form the central question of the conversion of solar
energy into the usable chemical energy of photosynthetic organism. The function of the
reaction center is to convert solar energy into biochemical amenable energy.

The concept and physical reality of reaction centers

The capture of solar radiation and the conversion of its free energy into chemical energy
involves a sequence of reactions that occur within a physical structure called the photo-
synthetic RC. Following the initial capture of a photon by antenna pigments, the photon
is transferred to the RC pigments, where it gives rise to a separation and stabilization of
charge across the photosynthetic membrane. Figure 1 depicts this process and illustrates
the time scales typically involved. One feature of the photochemistry is that all photo-
synthetic RC’s undergo charge separation with a quantum yield approaching unity, which
makes them marvellous molecular machines.

Figure 1: Scheme of the primary processes in the photosynthetic RC. Here, P represents the charge-
separating (bacterio) chlorophyll pigments (the primary electron donor) and A represents the first stable

acceptor. Energy transfer from the antenna pigments leads to photoexcitation of P on the fs-ps time scale
(left). Charge separation produces oxidized P+ and A− on the ps-ns scale (center). The recombination of
P+A− to produce PA, heat and potentially damaging chemical species is efficiently prevented by further
forward electron transfer that is now proton coupled. These more complex chemical processes ultimately
produce stable photosynthetic products and occur, initially, on the ns and µs time scales (right).

A photosynthetic unit contains numerous pigments but the photochemically active
chromophores are present in much lower concentration. This pioneering concept led to the
distinction of two types of pigments: the light-harvesting, but photochemically inactive, an-
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Introduction

tenna chromophores; and the photochemically active RC pigments. The antenna pigments
physiologically increase the absorption cross section of the RC dramatically. Moreover,
they ensure that the potentially reactive intermediates containing unpaired electron spins
(e.g. semiquinones) generated by single photon photochemistry are efficiently converted by
a second photochemical event to products (e.g. hydroquinones) that contain only paired
spins. For efficient energy transfer between the antenna and the RC, the RC absorbs at
longer wavelengths, effectively forming a trap for excitation energy. Despite these concep-
tual advances, more than 35 years passed before the first physical isolation of a pigment
protein RC complex was reported [1]. Since that time, many other RC’s have been isolated
and characterized biophysically and biochemically.

Light-Harvesting complex in bacterial photosynthesis

Purple photosynthetic bacteria live in polluted water in North America. Under anaerobic
conditions they produce photosynthetic apparatus, which is incorporated into an intra-
cytoplasmic membrane. Photochemistry begins at the (bacterial) reaction center where
charge is separated across the membrane. The reaction center (RC) molecule requires en-
ergy to perform this task, either from direct absorption of a photon, or energy transferred
from a light-harvesting complex.

All purple bacteria produce a primary light-harvesting complex (LH1), which is inti-
mately associated with the RC - this composite is termed the Core complex. Most purple
bacteria produce a peripheral light-harvesting complex (LH2), and some produce an addi-
tional peripheral complex (sometimes called LH3)(Fig. 2). Each light-harvesting complex is

Figure 2: Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria
(http://www.chem.gla.ac.uk/protein/LH2/core.html).
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Introduction

an oligomer formed from a subunit consisting of two or more polypeptide chains with asso-
ciated pigment molecules [2]. The pigments used in LH complexes are bacteriochlorophyll
a and carotenoid. BChlA is the primary pigment, carotenoid molecules are primarily used
for photoprotection, although they do function as additional light-harvesting pigments.
The protein matrix which supports these molecules in each of the distinct LH complexes
modulates the absorption of the chromophores. This modulation results in a downward
gradient of energy levels from LH3 - LH2 - LH1 (Fig. 3). Energy absorbed by any molecule
in this antenna array is funnelled down into LH1 which feeds the RC. In the photosynthetic
apparatus, the RC complex is surrounded by the LHI-ring. Transfer from the LH1 ring to
the RC is accelerated by bridge BChls. The bacteria synthesize enough LH2 to satisfy the
RC, this is directly dependent on the ambient light intensity, the number of BChlA per RC
rises to 250 or more in low light cases. Purple bacteria have been extensively studied as a

Figure 3: Light harvesting complex and light capturing pathway from LH2 to reaction center
(Branden&Tooze, Introduction to Protein Structure, 2nd ed, Garland publishing, 1999).

means to understanding the processes involved in photosynthesis. Their light-harvesting
systems possess, relatively, many residues per pigment, and the spectra of these bacterial
systems are relatively straightforward: they posses only one major chlorin type pigment
and the resonant absorption bands arising from this chromophore are generally well re-
solved. This makes this bacterial system ideal as a model for studying photosynthesis in
general.

Structural biology and in particular protein crystallography has been extremely suc-
cessful in revealing the structures of photosynthetic proteins from purple bacteria [3]. The
RC from Rps. viridis was the first integral membrane protein to be solved to high resolution
by X-ray crystallography. There are also structures of the RC from Rb. sphaeroides and the
LH2 from Rs. moliscianum. Electron microscopy has provided a low resolution projection
of the LH1 complex from Rs. rubrum, and the LH2 complex from Rv. sulfidophilum.

It is through photosynthesis that earth’s biosphere derives its energy from sunlight.
Photosynthetic organisms, i.e., plants, algae and photosynthetic bacteria, have developed
efficient systems to harvest the light of the sun and to use the light energy to drive their
metabolic reactions, such as the reduction of carbon dioxide to sugar. The ubiquitous
green color of plants is testimony to the key molecular participant in the light harvesting
of plants, chlorophylls. More hidden in this respect, but no less widespread, is a second
participating molecule, carotenoid. In green leaves the color of the carotenoids is masked by
the much more abundant chlorophylls while in red ripe tomatoes or petals of yellow flowers,
the carotenoids predominate. Chlorophyll molecules exist in slightly different chemical
structures in various photosynthetic organisms, as chlorophyll a or b in plants or algae,
and as bacteriochlorophyll a (BChlA) or b in photosynthetic bacteria. Molecules such as
chlorophyll and carotenoid that absorb light and impart color to living matter and other
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materials are called pigments. In general, biological pigments are non-covalently bound to

Figure 4: Antenna or light harvesting complex distribution of RC’s and LH complex promoting multiple
photon absorption (Voet&Voet, Biochemistry, 2nd ed, John Wiley&Sons, 1995).

proteins, forming the so-called pigment-protein complexes. The pigment-protein complexes
are organized as the photosynthetic unit (PSU). The bacterial PSU consists of two types
of pigment-protein complexes: the photosynthetic reaction centers (RCs) and the light-
harvesting complexes. The main function of the light-harvesting complexes is to gather
light energy and to transfer this energy to the reaction centers for the photo-induced
redox processes (Fig. 4). Purple bacteria are great masters of harvesting light. Nearly all
the energy gained by the absorption of a photon is transferred on to the reaction center.
The purple bacteria exploit elegant quantum physics, the working of which were only fully
understood recently after the discovery of the structures of light-harvesting complexes and
investigations into their electronic excitations [4].

Photosynthesis in bacteria

Photosynthesis is a reaction in which light energy is converted into chemical energy. The
primary process of photosynthesis is carried out by a pigment-protein complex embedded
in the membrane, that is, RC. In photosynthetic purple bacteria, the cyclic electron transfer
reaction is performed by RC and two other components: the cytochrome (Cyt) bc1 complex,
and the soluble electron carrier protein (Fig. 5 and 6). First, RC accepts light energy from
antenna proteins, and promotes a light-induced charge separation across the membrane,
which results in the oxidation of the special pair and the reduction of quinone to quinol. The
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Figure 5: In purple bacteria, the primary reactions of photosynthesis are performed on the inner mem-
brane, referred to as the photosynthetic membrane. First, RC accepts light energy from light harvesting
antenna complexes, LH-I and LH-II. The RC complex contains various prosthetic groups that serve as
the photosynthetic pigments, such as the bacteriochlrophyll dimer (special-pair), bacteriopheophytin, and
quinone; charge separation occurs in this RC complex. As a result of the charge separation, quinone is
reduced to quinol. Second, quinol moves to the Cyt bc1 complex through the membrane. The Cyt bc1
complex re-oxidizes quinol to quinone, and transfers electrons to the soluble electron carrier proteins. The
soluble electron carrier proteins are classified into two groups, Cyt c2 and the high-potential iron-sulfur
protein (HiPIP), depending on the species used physiologically. In each case, the soluble electron carrier
protein contains a redox center, such as a heme c group or an Fe-S cluster. Finally, the soluble electron
carrier proteins move through the periplasmic space, and transfer electrons to RC. The photo-oxidized
special-pair is reduced, and RC returns to the initial state. In the course of this cyclic electron transfer, the
oxidation and reduction of quinone bring about a trans-membrane electrochemical gradient of protons, and
the resulting energy is utilized for ATP synthesis by ATP synthase. The electron flow, proton transfer, the
absorption of light energy and ATP synthesis are represented by arrows (Messerschmidt&Huber, Handbook

of Metalloproteins, John Wiley&Sons, Ltd, Chichester, 2001).

Figure 6: The scheme of primary process of photosynthesis which takes place in a pigment-protein complex
embedded in the membrane (Voet&Voet, Biochemistry, 2nd ed, John Wiley&Sons, 1995).

quinol molecule then leaves RC and moves to the Cyt bc1 complex through the quinone-
pool in the membrane. Second, the Cyt bc1 complex re-oxidizes quinol to quinone, and the
released electrons are transferred to soluble electron carriers. Third, the soluble electron
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carriers transport the electrons to RC through the periplasmic space. Finally, the photo-
oxidized special-pair is reduced by the soluble electron carriers, and RC returns to the
initial state. In the course of the oxidation and reduction of quinone, a trans-membrane
electrochemical gradient of protons is formed, and the energy is utilized for ATP synthesis
by ATP synthase [5].

The purple bacterial RC possesses bacteriopheophytin and quinone as the electron ac-
ceptor from the exited special-pair, and is, therefore, classified the same as photosystem
(PS) II in plants and cyanobacteria. Significant differences are known to exist between
purple bacterial RC and PSII in peripheral reactions, such as the light-harvesting mecha-
nism and the presence of the oxygen-evolving system. However, the fundamental reactions
are quite similar, for example, the charge separation initiated at the special-pair and the
reduction of quinone. To date, many structural studies have been performed on purple
bacterial RC complexes in order to elucidate the spatial arrangement of the prosthetic
groups and the high quantum yield of the charge separation. Such studies are a help in
understanding the structural features of PSII in plants and cyanobacteria [6, 7].

Structural and operational insight

Insight into the molecular organization of the RC has been derived, initially, from spec-
troscopic studies and, subsequently, from the development and analysis of high-resolution
crystal structures of several photosynthetic organisms. The first RC structurally resolved
(3 Å) was of the purple bacterial RC from Rhodopseudomonas viridis [8], for which the
1988 Nobel Prize was awarded. This was soon followed by the elucidation of several other
purple bacterial structures. Good progress is also being made toward achieving two- and
three-dimensional structures of photosystem II (PSII) crystals. It is surprising that the
structures of all of the different RC’s show a dimeric core with a pseudo-C2 axis of sym-
metry. This feature is illustrated in Figure 7 in the example of a purple bacterial RC. The
holoprotein is shown on the left. The charge-separating RC pigments contained within the
structure (Fig. 7, right) are aligned along the C2 symmetry axis with the two photochemi-
cally active (bacterio) chlorophyll pigments positioned in close proximity. Exciton coupling
between these two pigments provides a red shift in the optical spectrum that contributes
substantially to forming the low-energy trap discussed above. The conversion of photons
to chemical potential involves photoexcitation and initial charge separation to produce an
oxidized (bacterio) chlorophyll and reduction of one of the other chlorin pigments in the
RC. From this chlorin, the electron migrates to reduce a quinone in less than a nanosecond
(Fig. 7). It is interesting that the strength of the dimer exciton coupling has changed sub-
stantially during the course of oxygenic RC evolution from photosynthetic bacteria. The
bacteria usually have strong couplings, approximately 2000 cm−1, whereas the plant and
algal RC’s have a much weaker coupling, typically approximately 300 cm−1. The weaker
coupling in the oxygenic RC’s increases the thermodynamic efficiency of photon capture
so that a significant improvement in useful free energy capture from the photon is realized.
Subsequent proton-coupled electron transfer steps (Fig. 1) stabilize the charge separation
effectively and ensure the near-unity quantum efficiency of photosynthesis.

A remarkable aspect of the RC structures is the occurrence of two almost identical
electron acceptor pathways arranged along the C2 axis relative to the primary charge-
separating dimer (bacterio) chlorophyll (Fig. 7). This finding posed a key question: Does
electron transfer involve both branches? In the purple bacterial RC, only one branch
is active although the inactive branch can be forced into operation with modification of
amino acid side chains on the active branch [9]. The strong asymmetry imposed on primary
charge separation photo-chemistry in the purple bacterial RC results from two homologous
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Figure 7: Structure of the purple bacterial RC (Rhodobacter sphaeroides). The heterodimeric RC (left)
is comprised of a C2-symmetrical heterodimer of the L, M and subunit H polypeptides. The pseudo-C2
symmetric cofactor arrangement and the active pathway of electron transfer are indicated on the right.
Charge separation from the RC Chl dimer (P ) to the BChl monomer to BPh occurs in approximately 3 ps
down the active L branch. This is followed by charge stabilization with electron transfer to the quinones.

polypeptides that function as a heterodimer. A heterodimer is also involved in the core
of the RC’s of PSI and PSII. However, some RC’s, such as heliobacteria [10] and green
sulfur bacteria [11], contain two identical homodimeric polypeptides, and electron transfer
is potentially bifurcated.

Genetic sequence information has greatly improved the understanding of the origin
of the RC proteins. From the sequence analysis, it became clear that the purple bacteria
RC is remarkably similar to that of PSII, and PSI was also discovered to have similarity
with that of the green sulfur bacteria [12]. Recent structural comparisons between PSI and
PSII, for example, show a distinct structural homology, which suggests that even these
two RC’s likely share a common ancestor [13].

Types of RC’s

The general details of RC structure and function described above persist among photo-
synthetic organisms, but differences in detail have become apparent. Today, we recognize
six different classes of photosynthetic RC’s. The principal variations lie in the RC pig-
ments (chlorophyll versus bacteriochloropyll), the size and nature of the antenna pigment
array, the associated longest wavelength maximum and strength of the pigment exciton
coupling, and the thermodynamic coupling of the primary donor chlorophyll dimer (P) to
its acceptor system (i.e. its midpoint reduction potential). Figure 8 presents a summary
of the various RC’s, cofactors, and electron transport chains. The six classes of RC divide
into two forms: the type I and type II RC’s [12, 14]. The type I RC’s comprise PSI, the
gram-positive heliobacteria, and the green sulfur bacteria, all of which share iron-sulfur
clusters as electron acceptors. The type II RC’s from PSII, purple bacteria and the green
filamentous bacteria, share quinone acceptors that serve as two-electron reductants. Two
of these RC’s, from heliobacteria and the green filamentous bacteria, have only been rec-
ognized quite recently and there may be others that await discovery - the field continues
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to progress rapidly.

Figure 8: Electron-transfer pathways for the two different types and six classes of RC’s shown according to
the midpoint potentials of key redox components. In Type I RC’s (left), iron-sulfur clusters are used as the
electron acceptors. Type I is subdivided into three classes: PSI, green sulfur bacteria, and heliobacteria. In
Type II RC’s, quinones are used as the first “stable” electron acceptors (left). Type II is also subdivided
into three classes: PSII, purple bacteria, and green filamentous bacteria. Intermediates in the scheme have
the following designations: the RC primary donor, P; transient initial (bacterio) pheophytin acceptor, (B)
Ph; “stable” quinone acceptors, QA and QB ; transient initial chlorophyll (A0) and quinone (A1) acceptors;
“stable” iron-sulfur cluster acceptors, FX , FA, and FB ; and final NADP acceptor (NADP). The electron
donors are a Tyr residue, TyrZ , and a cluster of 4 manganese ions for PSII, a plastocyanin molecule (PC)
for PSI, and cytochrome c for the bacterial RC’s. The intermediate electron transfer complexes, cytochrome
bc1 and b6f , are boxed (Allen&Williams, Minireview: Photosynthetic reaction centers, FEBS Letters 438
(1998) 5).

Further differentiation in photosynthetic organisms is found in the structure and ar-
rangement of the antenna pigments associated with each RC. The RC from heliobacteria
features a very simple organization with a core containing approximately 40 chlorophyll
g and no additional auxiliary peripheral antenna proteins [10]. Building on this organi-
zational theme are RC’s from PSI and green sulfur bacteria, which contain large num-
bers (∼100) of pigments attached directly to the polypeptides that bind the RC compo-
nents [13], as well as an extensive external antenna array with which the RC’s communicate
in a controlled way. At the other extreme are the RC’s from purple bacteria and PSII,
which contain only six to eight pigments arranged along the C2 symmetry axis and are
fundamental to the charge separation process. These RC’s rely on a substantial antenna
system as conduits of excitation energy. This antenna system is bound to polypeptides
distinct from the RC polypeptides.

Structural basis of bacterial photosynthetic reaction centers

The photosynthetic reaction center (RC) is the first membrane protein whose three-
dimensional structure was revealed at the atomic level by X-ray crystallograph more
than fifteen years ago. Structural information about RC made a great contribution to
the understanding of the reaction mechanism of the complicated membrane protein com-
plex [15, 16]. High-resolution structures of RC’s from three photosynthetic bacteria are
now available, namely, those from two mesophilic purple non-sulfur bacteria, Blastochloris
viridis and Rhodobacter sphaeroides, and that from a thermophilic purple sulfur bacterium,
Thermochromatium tepidum. In addition, a variety of structural studies, mainly by X-ray
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Figure 9: Three-dimensional structure of tetrameric complex of RC penetrate through the membrane. Note
that the water and Cytochrome molecules (dark color) do not penetrates the membrane spanning domain
(dotted lines) of the reaction center complex. The chains of grey color described M , L and H subunits of
RC. (Cox&Lehninger, Principles of Biochemistry, Worth Publishing, 3rd ed, 2000).

crystallography, are still being performed to give more detailed insight into the reaction
mechanism of this membrane protein. The structural data from three RC’s and their
electron donors provided reliable models for molecular recognition in the primary step of
bacterial photosynthesis. Electron transfer coupled with the uptake of protons across the
membrane is a fundamental feature of bioenergetic processes such as oxidative phosphory-
lation and photosynthesis, and the resulting electrochemical gradient of protons is finally
utilized for ATP synthesis. Key players in bioenergetics are integral membrane proteins and
co-factors embedded in the membrane protein complexes, where polypeptide chains span-
ning across the membrane provide a scaffold for the specific arrangement of co-factors in
membrane protein complexes. Hence, structural data about membrane protein complexes
contribute greatly to obtaining a profound understanding of reaction mechanisms [17].

In fact, a great deal of effort has been made to elucidate the three-dimensional struc-
tures of membrane proteins involved in bioenergetics for the sake of functional analyses
(Figs. 9 and 10). Of such structural studies, crystallographic studies of the photosynthetic
reaction center (RC) provided the first successful description of the three-dimensional
structure at an atomic resolution, and the methodology established in this structural work
has had a strong influence on subsequent structural studies of membrane proteins. In addi-
tion, structure analyses of RC complexes remain one of the most active fields in membrane
protein structural biology. This is because it is not yet clear how the RC complex regu-
lates the electrochemical properties of co-factors, especially that of the bacteriochlorophyll
dimer (the special pair) that acts as the initiator of photosynthetic electron transfer, how
the RC complex takes up protons to reduce quinone, which acts as the final electron
acceptor in the complex, and how the RC complex accepts electrons from the electron
carrier protein to reduce the photo-oxidized special-pair. Consequently, structure analyses
of some modified RC complexes, such as mutants or complexes with substrate analogues,
have been carried out extensively so as to relate structural information to physical and
chemical properties, in spite of the fact that the three-dimensional structure of the native
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Figure 10: X-ray structure arrangement of co-factors of RC embedded in the membrane protein complex
(Cox&Lehninger, Principles of Biochemistry, Worth Publishing, 3rd ed, 2000).

RC complex has already been determined precisely.
As a result, abundant structural data have been accumulated, which can explain the

functional properties of RC to some extent. Since membrane proteins involved in bioener-
getics share some functional features as mentioned above, knowledge deduced from struc-
tural studies of RC complexes can provide useful information for analyses of the other
membrane proteins, for example, with respect to intra- and inter-molecular electron trans-
fer and proton uptake through the membrane.

Crystal structures of bacterial photosynthetic reaction cen-
ters

First, the crystal structure of RC from Rhodopseudomonas(Rp.) viridis and Rhodobac-
ter(Rb.) sphaeroides was done. Based on their subunit compositions, bacterial RC com-
plexes are classified into two groups [18, 19]: Group I is composed of three major subunits
(L M, and H), and Group II possesses an additional peripheral subunit, referred to as
the Cyt subunit, on the cytoplasmic side. Hence, Rb. sphaeroides RC and Rp. viridis RC
belong to Group I and Group II, respectively (Fig. 11).

In addition to these two RC’s, the crystal structure of RC from Thermochromatium
(Tch.) tepidum has recently been determined is classified into Group II. Since the three-
dimensional structure of Tch. tepidum RC was the first from a thermophilic organism to
be determined, it is of peculiar interest to understand not only the original function of the
photosynthetic apparatus, but also the thermostability of its RC molecule.

The RC complex maintains a number of prosthetic groups in the protein subunit scaf-
fold. The prosthetic groups in the trans-membrane region apparently form two branches
(A and B) that are related by a pseudo twofold axis perpendicular to the membrane plane
(Fig. 11). These two branches run from the special-pair of bacteriochlorophyll (DA and
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Figure 11: X-ray structural analysis of the reaction center with electron pathway from outer to inner surface
of membrane (Cox&Lehninger, Principles of Biochemistry, Worth Publishing, 3rd ed, 2000).

DB) to the non-heme iron. Each branch consists of a bacteriochlorophyll monomer (BChlA
or BChlB), bacteriopheophytin (BPhA or BPhB), and quinone (QA or QB). A carotenoid
molecule is present in the trans-membrane region near BChlB. For more details on struc-
tural arrangement, see [20]. Branch A, mainly associated with the L subunit, is selectively
utilized as the pathway of electron transfer, which is induced by charge-separation, in this
process, an electron is emitted from the excited special-pair and transferred through BPhA

and QA [21, 22]. The involvement of BChlA, which is located between the special-pair and
BPhA, in the electron transfer remains a matter of debate. Branch B, is associated with
the M subunit and is inactive in electron transfer. QB is the final electron acceptor at
this stage, and the reduced QB molecule serves as the electron carrier to the Cyt bc1
complex. The RC structures from photosynthetic bacteria are described schematically in
Figs. 10-12.

Topics on RC structure

In addition to the structures of the three native RC complexes, the crystal structures of
mutants and complexes with QB analogues have also been determined, and the refined
models of native RC structures have been re-assessed so as to examine the biophysical and
biochemical functions of RC in more detail. Since prosthetic groups play a central role
in photosynthetic energy conversion, it is necessary to describe the three-dimensional ar-
rangement of these prosthetic groups and their interactions with protein subunits precisely,
this will lead to a better understanding of the functional aspects of RC and probably give
answer to the questions why electron transfer through the RC prefers only one branch(L).

Electron transfer through the RC’s

A critical aspect of the photochemistry of reaction centers is their ability to perform elec-
tron transfer (ET) with a quantum yield of almost unity. This high quantum yield is
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achieved by the utilization of a number of intermediate electron acceptors (Fig. 8). Within
30 ps after excitation a stable charge separated state is formed in all photosystems. Al-
though the nature of the spectral changes with time is complex, the role of many factors
driving the initial electron transfer process has been established in purple bacteria. For

Figure 12: Schematic representation of the X-ray structure of Rp. viridis RC showing two symmetrical
subunits of the RC (http://www.mpibp-frankfurt.mpg.de/∼michael.hutter/rcenter.html).

other types of reaction centers, the larger number of tetrapyrroles and the highly overlap-
ping nature of the optical bands have hindered interpretation of the optical changes, and
research continues to delineate the electron transfer processes. In purple bacteria, the elec-
tron rate is sensitive to the free energy difference between the excited state and the charge-
separated state but not to the relative distribution of electrons over the two macrocycles of
the donor. After extensive studies, the rate is now established to be critically coupled to the
properties of the bacteriochlorophyll monomer that lies between the donor and bacterio-
pheophytin acceptor (Fig. 12). The involvement of the bacteriochlorophyll monomer may
give rise to multiple pathways for electron transfer [23] and can partially determine the
asymmetry of the electron transfer along one branch [24]. Electron transfer in the reaction
center culminates at either quinone acceptors or iron-sulfur centers depending upon the
type of reaction center. Although a metal atom, usually iron, is coupled to the quinones in
the pheophytin-quinone reaction centers, it is not required for electron transfer. The two
quinone acceptors in this type of reaction center have different functional properties, with
the primary quinone being a transient one electron acceptor and the secondary quinone
being a two electron acceptor coupled to the exogenous quinone pool of the cell membrane.
Electron transfer in the iron-sulfur type of reaction center proceeds from the chlorophyll
acceptor A0 to the iron-sulfur center FX (Fig. 8). A quinone is thought to serve as an
intermediate acceptor in photosystem I, but the role of quinones in reaction centers from
heliobacteria or green sulfur bacteria is not settled. The electron is then transferred to
an external protein, ferredoxin, by way of the two iron-sulfur clusters FA and FB that
are located in the protein subunit. Despite the striking symmetry of the cofactors into 2
branches (Fig. 12), electron transfer in the pheophytin-quinone reaction centers proceeds
only along one branch with at least a 10:1 ratio. Typical distance and electron transfer
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Figure 13: Distances (in Å) between the cofactors in the RC’s of Rb. sphaeroides and of Rp. viridis (in
brackets) using only the porphyrin and the quinone rings for the centre of mass calculations.

Figure 14: Charge-separated intermediates and their lifetimes in the bacterial photosynthetic reaction
center.

rate between cofactors in the RC of Purple Bacteria are shown in Figs. 13, 14.
The functional asymmetry is served by the significantly different properties of the

two quinones, which arise from protein-quinone interactions. For example, the primary
quinone environment is much more hydrophobic than that of the secondary quinone and
the hydrogen bonding is more asymmetric. The protonation states of nearby amino acid
residues, in particular carboxylate groups, has been clearly established to be crucial to the
function of the secondary quinone, which becomes fully protonated and leaves the reaction
center. The quinones of photosystem II are thought to bind in homologous sites although
the possible involvement of protonatable residues in the electron transfer process requires
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more detailed studies. Open areas of investigation are delineation of the mechanism of
electron transfer from the primary to the secondary quinone and the role of quinone
movement during electron transfer [25, 26]. Unlike the quinone type of reaction centers,
the iron-sulfur reaction centers could ideally be well served by having two functional
branches of cofactors. The iron-sulfur clusters are more functionally symmetric than the
quinone electron acceptors reflective of their role of single electron carriers to an external
protein. Whether electron transfer in the iron-sulfur type of reaction centers is symmetric
or asymmetric remains a subject of new investigation.

Our understanding of the primary processes in photosynthesis is not complete without
explanation of the strong asymmetry in ET. We believe that the reason for asymmetric
ET between prosthetic groups located on different polypeptides is a different molecular
dynamics. Dynamics of atoms causes the change of the electrical potential fields and the
conformational variations influence the mutual orientations between cofactors. Then the
energy gap and overlap of electronic wave functions fluctuates as a result in the system.
The net result is a different fluctuation of electronic energy levels on prosthetic groups
and also a different fluctuations of the overlaps of the electronic wave functions on L and
M branches. On the other hand the chain located on subunit M is inactive in ET and the
highly asymmetric functionality, however, can be decreased by amino acid mutations or
cofactor modification. This approach can be used to explain the effect of individual amino
acid mutation or cofactor modifications on the observed balance between the forward ET
reaction on the L-side of the RC, the charge recombination processes, and ET to the
M -side chromophores [27, 28, 29, 30].

Structural and functional relevance to the photosystem

All of the above-mentioned bacterial RC’s are derived from purple bacteria, and are
thought to be the ancestors of PSII in the thylakoid membrane of higher organisms; purple
bacterial RC and PSII are classified into the pheophytin-quinone type. On the other hand,
RC’s belonging to the iron-sulfur type are present in green sulfur bacteria and heliobacte-
ria, and are thought to be the ancestors of PSI. The subunit composition of bacterial RC
complexes is simpler than that of PSI and PSII in higher organisms. However, the basic
function and assembly of bacterial RC are significantly similar to those of PSI and PSII
(Fig. 15).

Three-dimensional structures of PSI and PSII have already been determined by X-ray
crystallography, and the spatial arrangement of co-factors and trans-membrane helices
have also been described to some extent [31]. These three-dimensional structures have
shown, together with those of bacterial RC’s, that RC’s of any type possess common
structural features. For example, a heterodimer of protein subunits forms the central part
of the complex. Each monomer possesses five trans-membrane helices and maintains co-
factors including the special-pair. These dimeric assemblies, including co-factors as well as
protein subunits, are arranged with a pseudo twofold symmetry axis perpendicular to the
membrane plane.

In the future, continuous efforts will be made to elucidate the structure-function re-
lationship of PSI and PSII. Until the final goal is reached, however, the high-resolution
structures of bacterial RC’s will continue to provide important information for under-
standing the structural features of PSI and PSII. Remarkable progress in the techniques
of crystallization and structure determination has made it possible to reveal the three-
dimensional structures of super-molecular complexes, including membrane proteins. In
particular, progress in the crystallization method of membrane proteins should be empha-
sized. Further studies in this field will make it possible to determine the structure of the
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Figure 15: The schematic model of the main photosynthetic complexes situated within the higher plant

thylakoid membrane, where photosystem II is shown as the second major complex in the electron transport
chain, after the light harvesting components. Photosystem II (PSII) is the membrane protein complex found
in oxygenic photosynthetic organisms (cyanobacteria and higher plants), which harnesses light energy
to split H2O into O2, protons and electrons. It drives the most oxidising reaction known to occur in
nature and is responsible for the production of atmospheric oxygen, essential for aerobic life on this planet
(http://www.life.uiuc.edu/govindjee/photoweb).

super-complex of the photosynthetic apparatus more accurately, which, in turn, will lead
to a profound understanding of its molecular mechanisms.

Although the evolutionary pathways cannot be established uniquely, the process giv-
ing rise to the two core subunits that are related by an approximate two-fold symmetry
axis can be traced by alterations in the structural genes. Comparison of the biosynthetic
pathways of the various cofactors found in the reaction centers can also be used to track
the evolutionary path. Consideration of both the energetic requirements and the pigment
composition needed for photosynthetic capability has led to specific scenarios for the stages
in the evolution of photosynthesis. Additional clues should be provided by characterization
of newly discovered photosynthetic organisms that contain novel cofactors [32, 33].

Kinetics of reaction centers

In plants and bacteria the energy of light is stored in the energy of the electric potential
later used to form chemical bonds. The reaction center complex from the anoxygenic
purple photosynthetic bacteria are the best understood of all photosynthetic organisms,
from both a structural and a functional point of view. Photosynthesis begins when light
is absorbed by an antenna pigment (Fig. 16). Antennas permit an organism to increase

Figure 16: Scheme of the energy transfer from the light-harvesting antenna to the reaction center.

greatly the absorption cross section for light without having to build an entire reaction
center and associated electron transfer system for each pigment, which would be very
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costly in terms of cellular resources. The excited (bacterio)chlorophyll molecule transfers
an electron to a nearby acceptor molecule, thereby creating an ion pair state consisting of
the oxidized chlorophyll and reduced acceptor. After the initial electron transfer event, a
series of electron transfer reactions takes place that eventually stabilizes the stored energy
in forms that can be used by the cell (Fig. 17). Before we start with explanation of our
approaches to solve the problem of unidirectionality of ET in reaction center we want
to show shortly some historical fundamental steps to understanding of rate of electron
transfer in biological systems.

Figure 17: Scheme of the light-induced cyclic electron flow and the generation and utilization of a trans-
membrane electrochemical potential in the purple bacterium.

Marcus theory

Marcus theory (1992 Nobel Prize in Chemistry) assumes that the energy supplied to the
electron by the solvent can be represented by a spring with the spring length representing
the reaction coordinate [34]. The variation in energetic state of a biatomic molecule can
be described in a simple model in which the bond joining the two atoms vibrates, so that
the energy of the bond varies as the length of the bond varies. The change in energy with
bond length is given by Hooke’s Law.

In Hooke’s Law, the relation between energy and bond length gives a parabolic curve,
and provides the framework for discussion of the dependence of energy on vibrational state,
and hence on temperature. As the temperature increased, the increased vibrational energy
allows the molecule to swing along the parabola, so that it visits the higher energy levels
more frequently. This Hooke’s Law description is useful in discussion of the energy levels
in more complicated molecules. The distance is replaced by a nuclear coordinate, which
lumps together all the distances in all the bonds, and a single representative parabola is
used to represent the parabolas of all the bonds. This is obviously a gross simplification,
the real picture would require a multidimensional representation, but it provides a handy
frame of reference. In the Fig. 18, two different electron transfer reactions are represented,
one diabatic, and the other adiabatic. In both cases, the system is represented in two
states, that before electron transfer (R the reactant state), and that after electron transfer
(P the product state). It is important to realize that these represent two different states
of the same system.

(1) Parabolas, because nuclear vibrations are harmonic oscillators, and obey Hooke’s
Law.

(2) Electron jumping from R to P has to occur at cross-over point (C) because of :
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Figure 18: The role of nuclear motion in electron transfer. The ordinates represent potential energy of the
nuclei of the whole system: donor + acceptor + surroundings. The curves should be hypersurfaces in a
space of as many dimensions as nuclear coordinates (+ 1 for energy). The abscissa represents a combination
of the positions of all the nuclei disturbed by the electronic transition and runs along an axis from the
initial equilibrium configuration, labelled A, to final equilibrium configuration labelled B. Curve R is the
potential energy of the nuclei when the electron donor is reduced and acceptor oxidized. P is the nuclear
potential energy when the donor is oxidized and the acceptor reduced. Passage from R to P represents
electron transfer and occurs in the vicinity of the crossover, nuclear configuration C. In the non-adiabatic
case (diabatic), passage through C does not usually cause transition from R to P . In the adiabatic case it
usually does, and interaction between R and P is so strong that appreciable splitting into curves 1 and 2
is seen at C. R rides over to P on the surface, 1 [34].

(a) Frank-Condon principle. Electron transfer occurs so rapidly (in a vibrational
frequency) that no change in nuclear configuration can occur during the trans-
fer. This requires that the transfer is a vertical transition in the diagram.

(b) Conservation of energy requires that the transition is a horizontal line on the
diagram. The only place where both conditions are fulfilled is where the nuclear
energy profiles cross (C). The crossing point represents the energy level to which
the reactant state must be raised before progressing to the product state.

(3) Diabatic and adiabatic processes :

(a) Diabatic (the term more often used is non-adiabatic), electron transfer is a
quantum jump from one curve to the other (curves cross).

(b) Adiabatic, in thermodynamics, an adiabatic process is one in which no ex-
change of heat with the environment occurs. In the electron transfer context,
an adiabatic process is one in which no quantum jump occurs. Since nuclear
motion is generally much slower than electronic motion, one can approximate
the electronic part of the wave-function of a molecular system by solving for
it with nuclei fixed in position. The electronic energy eigenvalues obtained this
way, when plotted as a function of the nuclear positions, form adiabatic surfaces
which become potential-energy surfaces for nuclear motion.

(4) Coupling the process to the environment. (See Fig. 19 for terms) λ is the coupling,
or the reorganizational energy. It is the energy required to displace the system an
amount Q = XB − XA without electron transfer. This is the energy required to
transfer the electron from the bottom of the energy profile of the acceptor (product)
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Figure 19: Nuclear motion accompanying electron transfer [34].

state up to the energy profile of the acceptor state in the same nuclear configuration
as the energy minimum of the donor state.

Value for λ comes from Hooke’s Law

λ =
kHQ

2

2
, (1)

where kH is the Hook’s law force constant. Marcus separated λ into two parts, λi+λ0,
where λi is the reorganizational energy of the inner shell of atoms and λ0 is that
of the surrounding solvent molecules. λi is calculated from the parameters of the
innershell vibrational modes:

λi =
1

2

∑

j

kHjQ
2
j . (2)

λ0 is estimated from the polarizability of the solvent considered to be a continuous
polar medium:

λ0 =
(∆e)2

4πε0

(
1

2r1
+

1

2r2
− 1

r12

)(
1

Dop
− 1

DS

)
, (3)

where ∆e is the charge transferred from donor to acceptor; r1 and r2 are the radii of
the two reactants when in contact; r12 is r1 + r2; Dop is the square of the refractive
index of the medium and DS its static dielectric constant, and ε0 is the permittivity
of space to give S.I. units. In general λ involves moving positively charge polar groups
in the vicinity of the electron donor further from the donor and in the vicinity of the
acceptor closer to the acceptor. Vice versa for negatively charged groups.

From the Fig. 19, it can be seen λ, E‡ and 4E where 4E = ER − EP are related, so
that :

E‡ =
(λ−∆E)2

4λ
, (4)
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the reorganizational energy depends on the relative positions of the parabolas in both
reaction coordinate and energy dimensions. The main challenge for the Marcus theory is
to calculate the activation Gibbs energy. An important point is the condition under which
the Products parabola intersects the Reactant parabola at the minimum (when activation
energy E‡ is zero). Under these conditions, since the activation energy is zero,

λ = −∆G0 (5)

( −∆G is the difference in Gibbs energies corresponding to two equilibrium elongations
of the spring and here corresponds to ∆E in the Fig. 19 and equations above) and the
reaction proceeds with its maximal rate, with an intrinsic maximal rate constant (k0ET )
normalized to this condition. The dependence of the activation barrier on the standard
reaction Gibbs energy is called the electron transfer energy gap law. Values for (k0ET ) can
be found experimentally by measuring the rate constant for a reaction under different
conditions, giving different values for ∆G. The theoretical curve is shown in Fig. 20. An

Figure 20: The theoretical curve of the rate constant for different values ∆G. (C. Turro, J. M. Zaleski et

al., Biomolecular Electron Transfer in the Marcus Inverted Region, J. Am. Chem. Soc. 118 (1996) 6060).

important aspect of this curve is that it goes through a maximum at the value where
the above equation holds, and this implies that a value for λ could be determined by
experiment. A second important characteristic is the bell-shape, which implies that the
rate constant decreases as the driving force ∆G increases beyond the value at which it is
equal to −λ. The conditions under which this dropping-off of rate with increased driving
force occurs is known as the Marcus inverted region when condition is satisfied:

∆G < −λ. (6)

If

−∆G < λ (7)

we have the normal region of electron transfer. This was an important prediction of the
theory subject to experimental test. The Marcus theory predicted the rate constant of
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electron transfer in the following form (Fig. 20):

ln ket =
−(λ−∆E)2

4λ
+ constant. (8)

Research on photochemical reaction centers has been a primary arena for advances in
understanding of the relation between structure and rates of electron transfer in pro-
teins, because the crystallographically defined structures provided for the first time, in
the context of an experimental system in which the rates could be accurately measured
by picosecond spectroscopy, the spatial parameters and details of reaction medium (the
protein) necessary for understanding these processes. A major advance in these studies
came from an extensive set of experiments from Dutton’s lab [34], in which several differ-
ent reactions of the photochemical cycle were measured (and rate constants determined),
with a variety of molecular engineering tricks to set up a range of values for ∆G for the
reactions. The Fig. 21 summarize the results of this experimental work.

Figure 21: The experimental curve of the rate constants for reaction center of Rhodopseudomonas viridis

depending on different values ∆G.

We can see excellent coincidence between theory and experiment for solving electron
transfer in biological systems as for example in bacterial photosynthetic reaction centers.

Tunnelling in biology

Next way for electron transfer in biological systems is tunnelling of particles between
molecules [34, 35]. Electrons occupy states with discrete energy levels in molecules. Tun-
nelling means that electrons can be located at any of the molecules provided the energy
levels for the electrons are equal. Tunnelling is the direct consequence of the Heisenberg
uncertainty principle:

∆x∆p ' ~. (9)

As long as one knows the energy of the electron (4p = 0), one cannot say where the
electron is located. Electrons are transferred by tunnelling through a potential barrier, the
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height of which is determined by the ionization energies of the DA and D+A− complexes.
The energies of electron on the donor and acceptor must be equal. Otherwise no tunnelling
is possible. The probability of the particle penetrating the barrier, if small compared to 1,

Figure 22: Schematic picture of the temperature-dependence of photosynthetic electron-transfer in bacteria.
Curves A and B described: photo-induced cytochrome oxidation. Curves C reversed primary reaction [34].

is:

P = 16EV (E + V )−2 exp(−2b
√
2mV

~
), (10)

where ~ is Planck’s constant, m is the mass of the particle, E is the kinetic energy of the
approaching particle, V is the barrier height and b is the barrier width.

Another way of expressing this probability, used by Oppenheimer (1928), for example,
is in terms of an element, Hab of the quantum mechanical Hamiltonian matrix which
governs the rate of transition from an initial state, a of the system to a final state b. The
rate of transition is proportional to the square of the absolute value of the matrix element
|Hab|2. It is often expressed by

rate(a→ b) =
2π

~
|Hab|2ρ, (11)

which has been called the golden rule of quantum mechanics. ρ is a density of states , that
is, the number of substates qualifying as b per unit interval of energy. In equation (11) the
transition may or may not be by tunnelling.

The simplest conceptual framework for modelling the observed rate of the primary
charge separation is the Golden Rule expression obtained by Marcus in the high- temper-
ature limit:

ket ' V 2(
2π

2λkBT
)1/2 exp{−(λ−∆E)2

4λkBT
}, (12)

where V = Hab is the electronic matrix element between the initial (photoexcited) and
final (charge-separated) states, ∆E is the free energy gap between these states, λ is the
“reorganization energy” of the reaction (the energy to distort the system configuration
from reactants to products), kB is Boltzmann constant, and T is the temperature.
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If the electron transfer reaction shows temperature dependence at high temperature
and temperature independence at low temperature (Fig. 22), this can be taken as good
evidence that the nuclei are tunnelling their activation barrier at the low temperatures.

Objects and organization of the thesis

The charge-separating electron transfer reactions occur with a remarkably high quantum
yield of 96%, where from two possible symmetric branches only the branch L is active in
the electron transfer. This efficiency relies on the rates of the charge-separating reactions
being 2-3 orders of magnitude faster than the rates of the competing reactions. Therefore,
we wish to understand which features of the reaction center are responsible for the rate
constants of these reactions. Of particular interest are both the primary charge separation
from the first excited state P ∗ to the bacteriochlorophyll BChL and consequently to the
bacteriopheophytin BPhL or electron transfer directly to the BPhL, where BChL serves
as virtual intermediate state for ET. The first type of the electron transfer is referred to
as the “sequential”, the other one as the “superexchange” mechanism of ET.

The aim of the thesis is to explain the unidirectionality of ET through the RC, where
only the branch L is active in the electron transfer. The thesis is divided in two major
approaches for solving the electron transfer in photosynthetic organisms: the stochastic
and nonstochastic models of electron transfer.

The part Introduction is mainly introductory to the problem of electron transfer from
the biological point of view. We discuss systematically all the aspects for making the
implementation and understanding of unidirectionality of the electron transfer through
bacterial reaction centers. We want to elucidate biological functions of electron transfer
in photosynthetic systems. Moreover, we want to reveal some deeper aspects of electron
transfer mechanisms for understanding of unidirectionality of electron transfer (ET) in
photosynthetic reaction centers. To find general principles for transporting of energy and
next utilization by cell we describe the mechanism of ET in bacterial reaction centers as
well as in a more complicated PS II, PS I systems in plants.

Part I is devoted to solving the asymmetric electron transfer in bacterial reaction
centers and is divided into five chapters. Chapter 1 describes the first theoretical look to
the problem of electron transfer, we present the stochastic sequential model to elucidate
the unidirectionality of the primary charge separation process in the bacterial reaction
centers where two symmetric ways of electron transfer, starting from the common electron
donor are possible. We have used a model of three sites/molecules with ET beginning at
site 1 with option to proceed to site 2 or site 3. If the direct ET between sites 2 and 3 is
not allowed and electron cannot escape from the system then it is shown that the different
stochastic fluctuations in the energy of sites and the interaction between sites on these two
ways are sufficient to cause the transient asymmetric electron distribution at the sites 2
and 3 during the relaxation to the steady state. It means that the overall asymmetric ET
can be caused by the transient asymmetric electron distribution if there is a possibility
for electron to escape from the three sites system. To explore this possibility we have
introduced a sink into the model at the end of each sites 2 and 3. The dependence of the
asymmetry in electron transfer on the value of the sink parameter, introduced through
an additional imaginary diagonal matrix element of the Hamiltonian, was investigated.
The results show indeed that the unidirectionality of the electron transfer generated in
the system of three molecules depends strongly on the sink parameter value. The results
from Chapter 1 were published in [36, 37].

In Chapter 2 we also present a model to elucidate the unidirectionality of the primary
charge-separation process in the bacterial reaction centers. We have used a model of three
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sites/molecules with electron transfer beginning at site 1 with an option to proceed to site
2 or site 3. We used a stochastic sequential model with arbitrary correlation functions.
We get the quantum yields of electron escape via the sites 2,3 in two limiting cases that
correspond to a spectral density of underdamped and overdamped Brownian oscillator. In
the fast modulation limit of an overdamped regime we get the effect, which was named
“fear of death,” in which for strong enough sink parameters the electron has a tendency
to avoid the place with greater sink. The presented model was used to provide a plausible
explanation of the temperature dependence of the quantum yields of the Rhodobacter
sphaeroides photosynthetic reaction center in the high-temperature regime. We finally
published results from these models in [38, 39] as well as several new insights and the
results are in press [40].

In Chapter 3 the nonstochastic model of electron transfer was employed to elucidate
the unidirectionality of the primary charge separation process in the bacterial photosyn-
thetic reaction centers. The model assumes that the vibrational relaxation of the medium
modes is sufficiently fast and that the system relaxes to thermal equilibrium after each ET
step. ET was investigated for 6-sites (molecules) arranged in two branches. Beginning at
molecule 1, ET can proceed in two directions with M branch composed of two molecules
and L branch composed of three molecules. The analysis shows that the model can suc-
cessfully explain the asymmetry in primary electron transfer both in the wild type and
several mutants of Rb. capsulatus RC. In these cases the dependence of ET asymme-
try on temperature was also evaluated. The results are compared with the superexchange
mechanism of ET in Chapter 4. This model was published in [41, 42].

In Chapter 4 the superexchange mechanism operating in parallel with the sequential
process in both branches was evaluated. Up to now we have assumed that ET has a
sequential character in both branches of RC. Chapter 4 describes the contribution from
the superexchange mechanism to both M and L side ET. Our analysis reveals only a
very small contribution of the superexchange mechanism to ET in bacterial RC. The new
results from this approach are being prepared for the submission for publication [43].

In Chapter 5 I summarize the main results from the models of asymmetric electron
transfer. Finally, I make some plans to the future.
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MODELS FOR ASYMMETRIC
ELECTRON TRANSFER:

Stochastic and nonstochastic models for ET in

RC’s
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Chapter 1

The stochastic model with white

noise

1.1 Theory

To describe the first steps of electron transfer processes in the reaction centers we have
used the three-site model. The model is basically an extension of the theory of coupled
motion of a quantum particle in a fluctuating medium [44-54]. Let us designate the special
pair (P ) as site 1, the sites 2 and 3 then represent the first molecules on the branches
M and L. Because of symmetry we assume that both local energies at 2 (branch M) and
3 (branch L) and the hopping terms between molecule 1 and molecule 2 or 3 on both
branches are also the same. We forbid the direct ET between sites 2 to 3 and consider that
this three level system is coupled stochastically to a bath with white noise. We assume
that the energy levels 2 and 3 have an imaginary part which describes the interaction with
the next molecule in the branch. The meaning of the imaginary part is the lifetime of
electron localization at the site 2 or 3 in the limit when hopping terms are zero [52] . The
imaginary part of the energy level 1 describes the probability of electron deactivation to
the ground state. Then the Hamiltonian of our model has the form

H =
3∑

k=1

Eka
†
kak +

∑

i=2,3

(J + αi(t))(a
†
ia1 +H.c.), (1.1)

where J is the electronic coupling parameter (hopping term). The Ei and a
†
iai are the site

energy and the creation (annihilation) operator of the electron at site i, correspondingly.
The terms αi represent stochastic fluctuations of electronic coupling parameter. We assume
that

E1 = ε1 − iΓ1 , (1.2a)

E2 = ε2 − iΓ2 + β2(t) , (1.2b)

E3 = ε3 − iΓ3 + β3(t) . (1.2c)

Here βi represents stochastic fluctuations in the energy at site i. The parameter ~/2Γi

has a meaning of the lifetime of the electron localization at the site i in the limit of zero
coupling parameter. Our assumption about the stochastic functions is that

〈βk(t)〉 = 〈αi(t)〉 = 0 (1.3)
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and different from zero are only the following correlation functions

〈αi(t)αi(τ)〉 = 4iδ(t− τ), i = 2, 3, (1.4a)

〈βk(t)βk(τ)〉 = µkδ(t− τ), k = 2, 3. (1.4b)

Here 〈〉 denotes the statistical ensemble average. Relations (1.4) imply that the fluctuations
at different times are uncorrelated and correspond to the shortest correlation time limit
of a Gaussian-Markov process.

The main goal of the present work is to compute the rate of quantum yield Φ3 and Φ2
of the electron escape via the branch L (site 3) and M (site 2). We start from the Liouville
equation

i~
∂

∂t
ρ(t) = [Hρ(t)− ρ(t)H†]. (1.5)

In the matrix form we get

i~∂tρ11(t) = (J + α2(t))(ρ21(t)− ρ12(t)) + (J + α3(t))(ρ31(t)− ρ13(t))

−2iΓ1ρ11(t), (1.6a)

i~∂tρ12(t) = (J + α2(t))(ρ22(t)− ρ11(t)) + (ε1 − ε2 − iΓ1

−iΓ2 − β2(t))ρ12(t) + (J + α3(t))ρ32(t), (1.6b)

i~∂tρ21(t) = (J + α2(t))(ρ11(t)− ρ22(t)) + (ε2 + β2(t)− iΓ2

−iΓ1 − ε1)ρ21(t)− (J + α3(t))ρ23(t), (1.6c)

i~∂tρ22(t) = −2iΓ2ρ22(t) + (J + α2(t))(ρ12(t)− ρ21(t)), (1.6d)

i~∂tρ13(t) = (J + α3(t))(ρ33(t)− ρ11(t)) + (ε1 − ε3 − iΓ1

−iΓ3 − β3(t))ρ13(t) + (J + α2(t))ρ23(t), (1.6e)

i~∂tρ31(t) = −(J + α3(t))(ρ33(t)− ρ11(t))− (ε1 − ε3 + iΓ3

+iΓ1 − β3(t))ρ31(t)− (J + α2(t))ρ32(t), (1.6f)

i~∂tρ23(t) = (ε2 − ε3 + β2(t)− β3(t)− iΓ2 − iΓ3)ρ23(t)

−(J + α3(t))ρ21(t) + (J + α2(t))ρ13(t), (1.6g)

i~∂tρ32(t) = −(ε2 − ε3 + β2(t)− β3(t) + iΓ2 + iΓ3)ρ32(t)

+(J + α3(t))ρ12(t)− (J + α2(t))ρ31(t), (1.6h)

i~∂tρ33(t) = −2iΓ3ρ33(t) + (J + α3(t))(ρ13(t)− ρ31(t)). (1.6i)

The averaging (1.6) gives terms 〈αkρij〉, 〈βkρij〉. To split these terms we use Furutsu-
Novikov relation [55, 56, 57]

〈αk(t)ρij(t)〉 =
β∑

λ=α

3∑

l=2

∫
dτ〈αk(t)λl(τ)〉

〈
δρij(t)

δλl(τ)

〉
, (1.7a)

〈βk(t)ρij(t)〉 =
β∑

λ=α

3∑

l=2

∫
dτ〈βk(t)λl(τ)〉

〈
δρij(t)

δλl(τ)

〉
. (1.7b)
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Then we have

∂t〈ρ11(t)〉 = −iJ
~
(〈ρ21(t)〉 − 〈ρ12(t)〉+ 〈ρ31(t)〉 − 〈ρ13(t)〉)

−2∆2
~2

(〈ρ11(t)〉 − 〈ρ22(t)〉)

−2∆3
~2

(〈ρ11(t)〉 − 〈ρ33(t)〉)−
2Γ1
~
〈ρ11(t)〉, (1.8a)

∂t〈ρ12(t)〉 = −Γ1 + Γ2
~

〈ρ12(t)〉 − i
ε1 − ε2

~
〈ρ12(t)〉

−iJ
~
(〈ρ22(t)〉 − 〈ρ11(t)〉+ 〈ρ32(t)〉)

+
2∆2
~2

(〈ρ21(t)〉 − 〈ρ12(t)〉)−
µ2 +∆3

~2
〈ρ12(t)〉, (1.8b)

∂t〈ρ21(t)〉 = −Γ1 + Γ2
~

〈ρ21(t)〉+ i
ε1 − ε2

~
〈ρ21(t)〉

+i
J

~
(〈ρ22(t)〉 − 〈ρ11(t)〉+ 〈ρ23(t)〉)

+
2∆2
~2

(〈ρ12(t)〉 − 〈ρ21(t)〉)−
µ2 +∆3

~2
〈ρ21(t)〉, (1.8c)

∂t〈ρ22(t)〉 = −2Γ2
~
〈ρ22(t)〉 − i

J

~
(〈ρ12(t)〉 − 〈ρ21(t)〉)

+
2∆2
~2

(〈ρ11(t)〉 − 〈ρ22(t)〉), (1.8d)

∂t〈ρ13(t)〉 = −Γ1 + Γ3
~

〈ρ13(t)〉 − i
ε1 − ε3

~
〈ρ13(t)〉

−iJ
~
(〈ρ33(t)〉 − 〈ρ11(t)〉+ 〈ρ23(t)〉)

−µ3 +∆2
~2

〈ρ13(t)〉 −
2∆3
~2

(〈ρ13(t)〉 − 〈ρ31(t)〉), (1.8e)

∂t〈ρ31(t)〉 = −Γ1 + Γ3
~

〈ρ31(t)〉+ i
ε1 − ε3

~
〈ρ31(t)〉

+i
J

~
(〈ρ33(t)〉 − 〈ρ11(t)〉+ 〈ρ32(t)〉)

−µ3 +∆2
~2

〈ρ31(t)〉+
2∆3
~2

(〈ρ13(t)〉 − 〈ρ31(t)〉), (1.8f)

∂t〈ρ23(t)〉 = −Γ2 + Γ3
~

〈ρ23(t)〉+ i
ε3 − ε2

~
〈ρ23(t)〉

−iJ
~
(〈ρ13(t)〉 − 〈ρ21(t)〉)

−µ2 + µ3 +∆2 +∆3
~2

〈ρ23(t)〉, (1.8g)
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∂t〈ρ32(t)〉 = −Γ2 + Γ3
~

〈ρ32(t)〉 − i
ε3 − ε2

~
〈ρ32(t)〉

+i
J

~
(〈ρ31(t)〉 − 〈ρ12(t)〉)

−µ2 + µ3 +∆2 +∆3
~2

〈ρ32(t)〉, (1.8h)

∂t〈ρ33(t)〉 = −2Γ3
~
〈ρ33(t)〉 − i

J

~
(〈ρ13(t)〉 − 〈ρ31(t)〉)

+
2∆3
~2

(〈ρ11(t)〉 − 〈ρ33(t)〉). (1.8i)

We assume that Γ1 = 0 and Γ2 = Γ3 = Γ. In the computations of (1.8) we put ε1 = 0.
The numerical solution of this set of differential equations both for Γ equal to and not equal
to zero is presented in Figs. 1.1 and 1.2. In both cases we start with an electron initially
localized at the site 1. The behaviour of the system depends strongly on the fluctuation
of the parameters. For the case of Γ2 = Γ3 = Γ = 0 (Fig. 1.1) the probability to find
an electron at site 1 is decreasing with the elapsed time. However, the probability to find
electron at site 2 and 3 increases asymmetrically. At the site 2 the probability is slowly
approaching the value of 1/3 in a long time scale. The different behaviour is observed at
the site 3. At this site the probability is rapidly raised and at some specific time it has a
value greater than 1/3 and with the elapsing time it relaxes to 1/3. This kind of overall
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Figure 1.1: The time dependence of the site-occupation probabilities 〈ρll(t)〉 for the sites l = 1, 2, 3. The
following parameters were used: J = 1, Γ = 0, ε2 = 10, ε3 = 10, µ2/~ = 2, µ3/~ = 8, ∆2/~ = 0.1,
∆3/~ = 1. J is a hopping term; εi are the site energies; µi and ∆i characterize the energy level fluctuation
and the fluctuations of hopping term at site i, respectively. Γ describes the possibility of electronic escape
from the system of three molecules. Time is in ~/J units and the other parameters are in J units.

transition to the steady state we call the asymmetric relaxation. The final steady state
distribution is equal for each site because the noise does not depend on the localization of
the electron. The similar results were obtained earlier for the two states model [55, 58]. We
can also see that the unidirectionality of the electron transfer generated in the system of
three molecules may depend on the next step of electron transport (Fig. 1.1). It means that
it depends on the probability of electronic escape from the system. We will assume that
this probability is equal for branches L and M . To characterize this probability we have
included the parameter Γ to the model. It is ad hoc generalization of the Wigner-Weisskopf
exponential decay law [59]. The solution of the equations (1.8) with Γ different from zero
is presented in Fig. 1.2. The integral below the curve 〈ρ22(t)〉(〈ρ33(t)〉) characterizes the
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Figure 1.2: The time dependence of the site-occupation probabilities 〈ρll(t)〉 for the sites l = 1, 2, 3. The
parameters used were: J = 1, Γ = 0.3, ε2 = 10, ε3 = 10, µ2/~ = 2, µ3/~ = 8, ∆2/~ = 0.1, ∆3/~ = 1. Units
are as described in the legend of Fig. 1.1.

possibility of the electronic escape through the branch M(L). Time is measured in the
units ~/J .

1.2 Calculation of electronic escape through the branches

The quantum yield of the electronic escape via the site i can be characterized by the
expression

Φi =
2Γi

~

∫ ∞

0
〈ρii(t)〉 dt =

2Γi

~
lim

p→0+
〈ρ̃ii(p)〉, i = 1, 2, 3, (1.9)

where 〈ρ̃ii(p)〉 is the Laplace transformation of 〈ρii(t)〉. The quantum yields must fulfil the
expression

Φ1 +Φ2 +Φ3 = 1. (1.10)

It means that electron can escape from the system through the branch L or M or the
system decay to the ground state which is characterized by the quantity Φ1. Assuming the
initial conditions

〈ρ11(0)〉 = 1, 〈ρ22(0)〉 = 〈ρ33(0)〉 = 0 (1.11)

we can solve Eqs. (1.8) in Laplace transformation. For our goal of main importance is the
parameter K,

K =
Φ3
Φ2

=
〈ρ̃33(p→ 0)〉
〈ρ̃22(p→ 0)〉 , (1.12)

which expresses the asymmetry in probabilities of electronic escape through the branch L
(site 3) and M (site 2).

Generally the analytical results are cumbersome. Here we present only some special
cases where it is possible to describe the main characteristics of the process. First, we
assume the case where ε2 = ε3 = ε, ∆2 = ∆3 = µ2 = 0, and µ3 = µ . It means that we
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have only the energy level fluctuation on branch L at the site 3. In this case the parameter
K has the form

K =

J4 + Γ(Γ2 + ε2)

(
Γ + µ

~

)
+ J2Γ

(
2Γ + µ

~

)

J4 + 2J2Γ

(
Γ + µ

~

)
+ Γ2

(
Γ2 + ε2 + 2Γµ

~
+ µ2

~2

) . (1.13)

We can see that as Γ → ∞, K ≈ 1. It means that when the electron escapes from the
system very quickly the asymmetry of the electron distribution cannot be achieved. For
the very slow escape, when Γ → 0 , the system can achieve the steady state. The steady
state is symmetric and so we have the symmetric electron transfer with K ≈ 1 . Now we
will analyze the case when all sites in the system have the same energy. If ε = 0 we get

K =
J2 + Γ2

J2 + Γ

(
Γ + µ

~

) . (1.14)

For Γ ≥ 0 the parameter K has only one extreme. The minimum is achieved when Γ = J
and K is

K =
2J

2J + µ
~

. (1.15)

If J À µ/~ then K ≈ 1. We get the symmetric electron transfer for any value of Γ. When
J ¿ µ/~ we have K ≈ 2J~/µ ¿ 1. In this case we get the asymmetric electron transfer.
The electron is transported mainly through the branch M (site 2) where no fluctuations
of the energy level exist.

In the second example we consider only the fluctuation of the hopping term between
sites 1 and 3 on the branch L. If ε2 = ε3 = ε, ∆2 = µ2 = µ3 = 0, ∆3 = δ we get

K =
A

B
, (1.16)

where

A = 2J6
(
Γ +

δ

~

)
+ Γ

δ

~

(
2Γ +

δ

~

)(
Γ2 + 4Γ

δ

~
+ ε2

)

×
[(

Γ +
δ

~

)2
+ ε2

]

+J4
(
4Γ3 + 11Γ2

δ

~
+ 17Γ

δ2

~2
+ 4

δ3

~3
+ ε2

δ

~

)

+J2Γ

(
Γ +

δ

~

)(
2Γ3 + 9Γ2

δ

~
+ 24Γ

δ2

~2
+ 8

δ3

~3

)

+J2ε2
(
2Γ3 + 7Γ2

δ

~
+ 9Γ

δ2

~2
+
δ3

~3

)
,

(1.17)

B = J2
(
Γ +

δ

~

)[
J2 + Γ

(
Γ +

δ

~

)][
2J2 +

(
2Γ +

δ

~

)(
Γ + 4

δ

~

)]

+J2ε2
[
J2

δ

~
+

(
Γ +

δ

~

)2(
2Γ +

δ

~

)]
.

(1.18)
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Figure 1.3: The dependence of the ratio of electronic escape probabilities through the branch L and M(K)
on Γ with the parameters: J = 1, µ2/~ = 0.005, µ3/~ = 0.005, 42/~ = 0.005, 43/~ = 0.3. Units are as
described in the legend of Fig. 1.1.

In the case when Γ→ 0, K ∼= 1. At this limit, as in the previous case, the system relaxes
to the steady state while the electron is escaping from the system. When Γ → ∞ then
K → (δ/~J2)Γ. This limit, in the case when ∆2 6= 0, has the form K ∼ ∆3/∆2. With
this limit the electron distribution in the system is developing from the time zero highly
asymmetrically. We get the asymmetric electron transfer through the system. The electron
is transported mainly through the branch where the fluctuation of hopping term is bigger.
From Eqs. (1.11)-(1.14) it can be seen that K does not depend on the sign of the energy
ε.

In the third example we consider that all fluctuations are equal zero ∆2 = µ2 = ∆3 =
µ3 = 0. In this special case we show the dependence of electron transfer on the value of
energy level of the molecules. In this case the parameter K has the form

K =
4(J2 + Γ2)2 + ε22(2J

2 + 5Γ2 + ε22)− 2ε2ε3(2J
2 + Γ2 + ε22) + ε23(2J

2 + Γ2 + ε22)

4(J2 + Γ2)2 + ε23(2J
2 + 5Γ2 + ε23)− 2ε2ε3(2J2 + Γ2 + ε23) + ε22(2J

2 + Γ2 + ε23)
.

(1.19)

If we assume in Eq.(1.19) that ε3 = 0, we get

K =
4(J2 + Γ2)2 + ε22(2J

2 + 5Γ2) + ε42
4(J2 + Γ2)2 + ε22(2J

2 + Γ2)
≥ 1. (1.20)

Likewise, if we assume that ε2 = 0, we get

K =
4(J2 + Γ2)2 + ε23(2J

2 + Γ2)

4(J2 + Γ2)2 + ε23(2J
2 + 5Γ2) + ε43

≤ 1. (1.21)

From Eqs. (1.19)-(1.21) it can be seen that electron transfer in the case of zero fluctua-
tions is strongly dependent on the value of energy level of molecules 2,3. In the case of
(1.20) electron transfers mainly via the L side with molecule 3 contrary to the case (1.21)
where electron active is the branch M with molecule 2. In this special case the electron is
transported mainly through the branch with smaller energy level of the molecule. From
expressions above it can be seen that the parameter K does not depend on the sign of the
energy level of molecules 2,3.
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The dependence of K on Γ for some parameters which characterize our system is
illustrated in Figs. 1.3-1.8. Figure 1.3 presents the influence of asymmetry in parameters
∆i on the electron transport. The electron is transferred mainly through the branch where
∆i is greater. The influence of asymmetry in parameters µi on the ET is illustrated on
Fig. 1.4. If ε = 0 we get ET through the branch where the µi is smaller. When ε2 = ε3 6= ε1
we can get ET through the branch with bigger µi. The increase in the asymmetry of
parameters µi, ∆i increases the asymmetry in ET (Fig. 1.5). The same effect increases the
energy difference between the sites 2, 3, and 1 (Fig. 1.6).

The influence of energy difference between molecules on the electron transfer asymme-
try in the case of small fluctuations is presented in Fig. 1.7. The increase of the fluctuations
causes the decrease of ET asymmetry in the case of asymmetric arrangement of energy
levels (Fig. 1.7 and 1.8).

1.3 Discussion of the model

From our analysis we can conclude that the fluctuation of the hopping term increases
the electron transport in a particular direction. As a consequence is the fact that the
branch with a larger ∆i, characterizing the size of fluctuation in interaction responsible
for electron transfer in branch with the ith molecule, has also a larger quantum yield Φi.
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Figure 1.4: The dependence of the ratio of electronic escape probabilities through the branch L and M(K)
on Γ with the parameters: J = 1, µ2/~ = 5, µ3/~ = 0.5, 42/~ = 0.01, 43/~ = 0.01. Units are as described
in the legend of Fig. 1.1.

The influence of the energy level fluctuation depends on the energy level differences
between the molecules. The quantum yield is smaller on the branch where the parameter
µi, characterizing the size of energy fluctuation at the ith molecule, is greater for the
resonance case (εi = 0). In the nonresonant case, with a nonzero difference in the energy
between sites 2,3 and 1, the situation can be opposite. The quantum yield is higher in the
branch with higher energy fluctuation and it is also dependent on the relations between
εi and µi.

The asymmetry is strongly dependent on the parameter Γ. When the value of the
parameter Γ is close to J , then the parameter K, describing the asymmetric quantum
yield, has a local maximum.

For a large Γ the parameter K achieves the value ∆3/∆2 which can be greater then its
local maximum. By changing Γ we can choose the branch where the electron is transported
with higher probability. Figure 1.4 illustrates the case where with a small Γ when ET
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proceeds mainly trough the branch M and from some specific value of the Γ the electron
is transported with higher probability through the branch L.

If we assume that the overall C2 symmetry is only approximate and there is a difference
in energy levels between the branches L and M , we can get highly asymmetric ET. The
interesting case is presented in Figs. 1.7 and 1.8 with the small fluctuation of parameters
in the asymmetric arrangement of energy levels. The energy asymmetry of a few J (energy
is measured in J units) can cause a strong asymmetry in ET through the system for some
parameter Γ. The fluctuation of hopping term decreases strongly the asymmetry of ET
through the system in the case when C2 symmetry is only approximate. The effect of
the energy level fluctuation depends on the asymmetry arrangement of energy level. Some
value of the parameters which characterize the energy level fluctuation can increase the ET
asymmetry, however the larger value of the same parameters decreases the ET asymmetry.
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Figure 1.5: The dependence of the ratio of electronic escape probabilities through the branch L and M(K)
on Γ with the parameters: J = 1, ε2 = 10, ε3 = 10, µ2/~ = 0.01, 42/~ = 0.01. Units are as described in
the legend of Fig. 1.1.

Now we would like to apply our model to the primary charge transfer in bacterial
reaction center. Candidates for molecules 2 and 3 are the accessory BChl or some amino
acids between P and BChl. Crystallography measurements indicate a higher mobility of
the cofactors in the branchM [22]. If we want to elucidate unidirectionality of the primary
charge separation through the branch with lower mobility in the case of fully symmetric
RC’s, we must consider a situation depicted on Fig. 1.4, the resonance case. The asymmetry
is caused by fluctuation of energy in the case of zero energy difference between sites 1,2
and 3. In this case electron is transported mainly through the branch with the smaller
fluctuation of energy level. The fluctuation of hopping terms must be small. In this case
we get the value for K ∼ 2 − 3. A similar unidirectional asymmetry of electron transfer
was measured in modified RC’s [24].

To elucidate the higher asymmetry in an electron transfer in the case of exact C2
symmetry we must assume that there is the larger noise difference between the branch L
and M .

However, the overall C2 symmetry is only approximate in RC’s. There are differences
in the vicinity of prosthetic groups which can cause the differences in the energy level
between molecules in branches L andM . In this case ET can be highly asymmetric (Fig. 1.7
and 1.8). Moreover, the position of atoms in the vicinity of the special pair P must also
have a strong stability to get such high asymmetry. In some bacterial reaction center the
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Figure 1.6: The dependence of the ratio of electronic escape probabilities through the branch L and M(K)
on Γ with the parameters: J = 1, µ2/~ = 0.01, µ3/~ = 0.08, 42/~ = 0.01, 43/~ = 0.08. Units are as
described in the legend of Fig. 1.1.

estimated value of the hopping term to be J ∼ 0.01eV [29] for primary charge transfer
separation. The difference of a few hundred of eV between energy levels can cause a high
asymmetry in the quantum yield of electronic escape through the different branches. This
energy difference can be caused by different environments of cofactors on branches L and
M .

The model show that the asymmetry of ET can be caused by the difference in the
energy levels of molecules whereas the asymmetry in electronic couplings has not to be
included in the models. Next possibility is different values of the stochastic fluctuations
of interaction between molecules on the branches can be also the reason of a considerable
asymmetry of ET and for the description of the quantum yields of some mutants of RC
are inevitable. bacteriochlorophylls on the M and L branches of RC’s.
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Figure 1.7: The dependence of the ratio of electronic escape probabilities through the branch L and M(K)
on Γ for the parameters: J = 1, ε2 = 10, ε3 = 0, µ2/~ = µ3/~ = 0.01. Units are as described in the legend
of Fig. 1.1.
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Figure 1.8: The dependence of the ratio of electronic escape probabilities through the branch L and M(K)
on Γ with the parameters: J = 1, ε2 = 10, ε3 = 0, ∆2/~ = 43/~ = 0.01. Units are as described in the
legend of Fig. 1.1.

1.4 Application to RC’s

The analysis of amino acid mutations or cofactor modifications [24,60-67] that alter the
highly asymmetric functionality of RC’s can provide the insight into the key factors im-
pacting the directionality and the yield of electron transfer. The cases are described in
the literature in which ET to the L versus the M side in the RC was essentially modu-
lated by changing several parameters. The drastically reduced quantum yield (QY) was
observed in RC’s where substantially different chromophores were in the binding pockets
of the electron acceptors [65, 66]. In a series of Rhodobacter capsulatus RC mutants [63]
the G(M201)D/L(M212)H (denoted DH) double mutant has 15% electron transfer to
M -side bacteriopheophytin, 70% of electron transfer to the L-side cofactors and 15% was
deactivated to the ground state. The changes in the ET directionality were explained by
the raised free energy of P+BChl−L in the interaction with Asp M201.

With a triple mutant S(L178)K/G(M201)D/L(M212)H (denotedKDH) 62% of elec-
tron transfer was observed to the L-side BPh, 23% to theM -side BPh, and 15% was return-
ing to the ground state. In the case of triple mutants, S(L178)K/G(M201)D/L(M212)H,
the S(L178)K mutation might lower a P+BChl−M free energy and thus increase the yield
of electron transfer to BPhM in comparison to the G(M201)D/L(M212)H double mutant.

ET to the primary quinone in the normal β-type mutant was ∼ 70% and ∼ 30%
was returning to the ground state [24, 63]. The exact values depend on the specificity of
mutation. The F (L121)D mutant exhibits beta type photochemistry [63]. It was proposed
that P+BChl−L lies at higher free energy in the F (L121)D mutant than in the wild-type
(WT) RC.

The RC’s of Rb. sphaeroides (M)H202L single mutant and (M)H202L/(L)L131H
double mutant [64] contain a bacteriochlorophyll/bacteriopheophytin heterodimer as a
primary electron donor. These heterodimer mutants display a reduced yield of P+Q−L
formation for about 40% (single mutant) and 25% for the double mutants. This per-
turbation results from an upshift of the heterodimer free energy relative to homodimer
primary donor of wild-type RC’s. Electron transfer along the M -side was observed in the
H(M182)L mutant of Rb. sphaeroides [65]. In this mutant bacteriopheophytin (referred
to as ΦM ) is incorporated in place of BChlM . One would expect that the P+Φ−M state
would be considerably lower in energy than P+BChl−M , thus enhancing the probability of
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M -side electron transfers. The yield of the P+Φ−M state is apparently 30− 40%.
The RC’s of Rhodopseudomonas viridis mutant, where histidine was replaced by gluta-

mate (denoted as L153HE), the quantum yield of P+Q−L formation is reduced to 75% [66].
In this mutant rise in the energy level of P+BChl−L occured because of the presence of glu-
tamate. The exchange of histidine to leucine in RC’s of Rh. viridis (the mutant denoted as
L153HL) causes the incorporation of a bacteriopheophytin b instead of a bacteriochloro-
phyll b molecule (referred to as BL ). As a consequence of the chromophore exchange the
energy level of the electron transfer state P+B−L is lowered in comparison to P+BChl−L
(WT). Consequently the quantum yield of P+B−L is reduced to 50% in this mutant [66].
The presented experimental data show that the free energy of the intermediates P+BChl−L
and P+BChl−M does have a major importance. If the free energy of P+BChl−L is raised
relative to that of wild type (WT) RC (e.g. by the introduction of a negative charge like
in the mutant L153HE) the quantum efficiency is considerably lowered.

The implementation of the theory requires information regarding the energetic param-
eters such as the energy gap of the equilibrium nuclear configuration between P ∗ and
P+BChl−L(M). The energy level of P+BChl−L in RC’s of Rb. sphaeroides is about 450 cm−1

below P ∗ state [67]. Another calculation shows that this energy level is about 250 cm−1

above the special pair [68]. Theoretical calculation using the Rp. viridis RC crystal struc-
ture suggested that the P+BChl−M state is 2000 cm−1 higher than P ∗ [69].
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Figure 1.9: The dependence of charge separation quantum yields Φi (i=1,2,3) on ε3 energy. Parameters
used for simulation: J = 1, ε2 = 100, µ2/~ = µ3/~ = 10, 42/~ = 43/~ = 0, Γ2 = Γ3 = 0.2 and Γ1 = 0.001.
Units are as described in the legend of Fig. 1.1.

The other parameters included in our model are the imaginary parts of the energy
levels Γ1, Γ2, Γ3. The value of Γ1 is calculated from the internal conversion rate of P ∗.
This rate was estimated to be between (90 ps)−1 and (350 ps)−1 from the measurements
on WT RC’s [64]. For our theoretical simulations the internal conversion rate of (130 ps)−1

was selected. Then the parameter Γ1, characterizing the decay of the system to the ground
state, is obtained from the expression 2Γ1/~ ≈(130 ps)−1. The values of parameters Γ2,
Γ3 can be calculated in a similar way from the decay time of P+BChl−L . The decay time
of P+BChl−L in Rhodopseudomonas viridis is 0.65 ps (Ref. [67]) and the transfer integral
J is estimated to be about 20 cm−1 [70, 71, 72].

To characterize the wild-type RC in our model the following parameters were chosen:
the energy levels ε2=2000 cm−1, ε3=400 cm−1, hopping term J=20 cm−1, imaginary part
of energy levels Γ2 = Γ3 = Γ=4 cm−1 [2Γ/~ ≈(0.65 ps)−1]. Similarly to the work [70] it
was assumed that Γ1 is smaller by about two orders of magnitude than the Γ2 and Γ3.
This assumption has the experimental support [64, 67]. The parameters characterizing
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the noise and the decay of the system to the ground state were: µ2/~ = µ3/~=200 cm−1,
∆2/~ = 43/~ = 0 and Γ1=2.10−2 cm−1 for WT RC’s. It has to be noticed that QY in our
model does not depend on the sign of the energy levels ε2, ε3 and we also assume that the
hopping terms do not fluctuate.

Using the above parameters the following quantum yields were obtained for wild-
type RC’s: Φ1 = 0.05, Φ2 = 0.05, Φ3 = 0.9. If we assume the asymmetry in the noise
characterizing parameter and the value of parameter Γ1 is taken to be equivalent to the
internal conversion rate (130 ps)−1 then with µ2/~ = 0, µ3/~=200 cm−1 the quantum
yields are: Φ1 = 0.05, Φ2 = 0.001, Φ3 = 0.949. Even if the Γ1 value in calculation is
greater than average we will get a relatively high quantum yield to ground state.

Based on our model Figs. 1.9 and 1.10 present the dependence of the quantum yields
on the energy gaps between P ∗ and P+BChl−L(M). These figures describe the mutated
RC’s, where the mutation changed the relative free energies of the participating states.

Φ
Φ
Φ

Φ

ε [ ]

Figure 1.10: The dependence of charge separation quantum yields Φi (i=1,2,3) on ε2 energy. Parameters
used for simulation: J = 1, ε3 = 20, µ2/~ = µ3/~ = 10, 42/~ = 43/~ = 0, Γ2 = Γ3 = 0.2 and Γ1 = 0.001.
Units are as described in the legend of Fig. 1.1.

When the energy of ε3 is increased, as in the G(M201)D/L(M212)H double mu-
tant compared to WT RC’s, we have QY: Φ1 = 0.14, Φ2 = 0.14, Φ3 = 0.72 with the
parameters: ε2=2000 cm−1, ε3=800 cm−1, J=20 cm−1, Γ2=4 cm−1, Γ3=0.8 cm−1, µ2/~ =
µ3/~=200 cm−1, ∆2/~ = 43/~ = 0 and Γ1=2.10−2 cm−1. The smaller value of parameter
Γ3 in comparison to WT is justified by the experimental data [24, 63].

When the energy of ε2 is decreased, as in S(L178)K/G(M201)D/L(M212)H triple
mutant in comparison with the double mutant we have QY: Φ1 = 0.13, Φ2 = 0.20,
Φ3 = 0.67 using the parameters: ε2=1600 cm−1, ε3=800 cm−1, J=20 cm−1, Γ2=4 cm−1,
Γ3=0.8 cm−1, µ2/~ = µ3/~=200 cm−1, ∆2/~ = 43/~ = 0 and Γ1=2.10−2 cm−1.

When the energy ε2 is considerably decreased in comparison toWT as in theH(M182)L
mutant of Rb. sphaeroides where bacteriopheophytin is incorporated in place of BChlM
we get the following QY: Φ1 = 0.04, Φ2 = 0.33, Φ3 = 0.63 by using the parameters:
ε2=−600 cm−1, ε3=400 cm−1, J=20 cm−1, Γ2=4 cm−1, Γ3=4 cm−1, µ2/~ = µ3/~=200 cm−1,
∆2/~ = 43/~ = 0 and Γ1=2.10−2 cm−1.

When the energy ε3 is sufficiently decreased in comparison to WT as in the L153HL
mutant of Rh. viridis where bacteriopheophytin is incorporated in place of BChlL we have
the following QY: Φ1 = 0.12 , Φ2 = 0.44 , Φ3 = 0.44 with the parameters: ε2=2000 cm−1,
ε3=−2000 cm−1, J=20 cm−1, Γ2=4 cm−1, Γ3=4 cm−1, µ2/~ = µ3/~=200 cm−1, ∆2/~ =
43/~ = 0 and Γ1=6.10−3 cm−1. The parameter Γ1 in comparison with RC’s of other

37



CHAPTER 1. The stochastic model with white noise

bacteria was lowered. Our value of Γ1 corresponds to the value of (390 ps)−1 for the P ∗

internal conversion rate which is relatively small. The higher value of this parameter causes
the strong decay to the ground state. It means that the difference between ε1 and ε2, ε3
ought to be smaller.

The normal β-type mutant was not analyzed because of the strong possibility that
electron is also delocalized on the BChl(β) which is incorporated in the place of BPhL. This
possibility is not incorporated in our model. And in the case of the heterodimer mutant
it is not obvious how the electron levels might be shifted and without this information it
is difficult to make the simulations.

1.5 Conclusions

The present study addresses the important problem of the highly asymmetric ET in the
photosynthetic reaction centers. Using the stochastic model it was possible to elucidate the
unidirectionality of electron transfer. In the model the electron is delocalized to the three
molecules (P , BChlL and BChlM ) with the electron density dependent on the parameters
characterizing the system. The electron density in this system can be strongly asymmetric
and the energy levels of the BChlL and BChlM molecules have been shown to influence
profoundly the asymmetry.

We have shown that in mutations of RC’s where the difference between energy levels
ε2 and ε1 are increased in comparison with the wild type, the unidirectionality of electron
transfer is also increased. The same effect is observed for the decrease of the energy level
difference between ε3 and ε1. The results demonstrate that an individual amino acid residue
can, through its influence on the free energy of the charge-separated states, effectively
dictate the balance between the ET to the L and M -side chromophores of the RC’s.

In the present model the temperature dependence of ET was not analyzed. Neverthe-
less, we would like to say a few words about the temperature effect. A noise which influences
the asymmetric ET in the present analysis is dependent on the temperature. It would be
interesting to know whether the unidirectionality of the primary charge separation pro-
cess in RC’s is temperature dependent. The primary processes in photosynthetic reaction
centers have the anomal temperature dependence. This dependence can be explained by
the inclusion of the relative motion of exchanging groups into the electron-transport the-
ory [73]. The main effect will be the temperature dependence of J [73, 74]. Because the
parameter Γ can also be dependent on the temperature there is a possibility to change the
asymmetry of ET in RC’s with the temperature.

However, the primary electron transfer reactions in RC’s have the slight temperature
dependence. The charge separation time constant decreases only two to three times on
cooling from 300 to 10 K [22]. If consequently the parameter Γ is changed two times in
the vicinity of maximum asymmetry (Γ ∼ J) there is no sufficient change in asymmetry
of ET. As a result we have a weak temperature dependence of asymmetry in electron
transfer in the RC’s. Also in the case of small fluctuations the asymmetry of ET through
the system is temperature independent. When Γ ¿ εL and εM then the several times
increase or decrease of the parameter Γ does not affect strongly the asymmetry of ET and
its temperature dependence.

It was shown that the different hopping terms (electron-transfer integrals) in the
branches can result in the asymmetry of charge separation across the L andM branches of
the RC [75, 76]. However, the present work demonstrates that for the asymmetric ET it is
not sufficient to consider only the asymmetry in electron-transfer integrals. For example,
in the case of small Γ, the system approaches the quasi steady state, where asymmetry
is determined by the equilibrium electron density distribution and does not depend on
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electron-transfer integrals.
For example, there is a mutant of RC’s where hopping integrals are not changed signifi-

cantly and yet the unidirectionality is suppressed considerably [63]. It is in contradiction to
the work [77] where the unidirectionality was explained only on the basis of the asymmetry
of transfer integrals in the L andM regions. It was suggested also that the dimmer of RC’s
plays the decisive role for the vectorial charge separation [78]. However, this explanation
is in contrast to the experimental data. The profound changes in the unidirectionality
of ET were observed for some mutants of RC’s without the changes in the aggregation
state [24, 63, 66].
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Chapter 2

The stochastic model with

color noise

2.1 Theory

In this model we assume that the electron transfer has a hot character because of the
very fast primary charge-separation process. This means that ET is so fast that the bath
does not have sufficient time to relax to the new thermal equilibrium before the particle
moves away. The result of this assumption is that we used the stochastic model where the
fluctuations do not depend on the localization of electron in the branch. We begin with
the Liouville equation for the density matrix ρ of the total electron-bath system

i~
∂ρ(t)

∂t
= [Hρ(t)− ρ(t)H†], (2.1)

where the Hamiltonian H consist of two parts

H = H0 + V, (2.2)

with

H0 =
n∑

i=1

[hi(~R) + εi − Γi]a
†
iai, (2.3)

V =
n∑

i,j=1

Vij(a
†
iaj +H.c.), i 6= j. (2.4)

We assume that the total statistical system described by the density matrix ρ consists
of a system of interest (electrons) and a bath (molecules of the environment). V is a

perturbation causing a transition between the eigenstates of H0. The εi and a†i (ai ) are
the site energy and the creation (annihilation) operator of the electron at site i. The
parameter ~/2Γi has a meaning of the lifetime of the electron localization at the site i in
the limit of the zero coupling parameter. We denote the solvent Hamiltonian when the
electron is at site i by hi(~R). ~R denotes the coordinates of the position and orientation of
the solvent molecules. We assume that

hi(~R)− hj(~R) = ∆ij +Wij(t). (2.5)
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Wij(t) is taken to be a Gaussian-Markovian process with zero mean and the correlation
function

〈Wij(t)Wij(τ)〉 = Kij(t− τ), (2.6)

where the functions Kij will be defined below. We start from the Liouville equation and
designate

ρI(t) =

[−→
T exp

(
i

~

∫ t

0
H0(τ)dτ

)]
ρ(t)

[←−
T exp

(
− i

~

∫ t

0
H†
0(τ)dτ

)]
, (2.7)

VI(t) =

[−→
T exp

(
i

~

∫ t

0
H0(τ)dτ

)]
V (t)

[←−
T exp

(
− i

~

∫ t

0
H0(τ)dτ

)]
. (2.8)

−→
T (
←−
T ) is a time ordering operator ordering the later times to the right (left). The Liouville

equation for the density matrix in the interaction picture reads

i
∂ρI(t)

∂t
=

1

~
[VI(t)ρI(t)− ρI(t)V

†
I (t)] = L(t)ρI(t), (2.9)

where L(t) is the Liouville operator in the interaction picture. Now using standard pro-
jection techniques [49, 79, 80] we get

∂tDρI(t) = −iDL(t)DρI(t)− iDL(t)(1−D)ρI(t), (2.10a)

∂t(1−D)ρI(t) = −i(1−D)L(t)(1−D)ρI(t)− i(1−D)L(t)DρI(t). (2.10b)

Here D is a projection operator. Solving the last equation and introducing the result into
(2.10a) yields

∂tDρI(t) = −iDL(t)DρI(t)

−DL(t)
∫ t

0

[←−
T exp

(
− i(1−D)

∫ t

τ
L(τ1)dτ1

)]
(1−D)L(τ)DρI(τ)dτ,

(2.11)

where it is assumed that the initial condition is

(1−D)ρI(0) = 0. (2.12)

We will work to second order of perturbation theory. In this approximation we have (Ap-
pendix A)

∂tDρI(t) = −iDL(t)DρI(t)−DL(t)

∫ t

0
(1−D)L(τ)DρI(τ)dτ. (2.13)

We use the identity (Appendix E)

DL(t)D = 0 (2.14)

and from (2.13)we get

∂tDρI(t) = −DL(t)
∫ t

0
L(τ)DρI(τ)dτ. (2.15)
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Now we are using the projector in the form

(DA)mn = δmn〈Amm〉. (2.16)

The bracket 〈〉 is the ensemble average over the solvent motion. For eq. (2.15) we take the
matrix elements 〈i|...|i〉, |i = 1, 2, ...n〉 are the eigenstates of H0. We get the generalized
master equations (GME) [39] for the population probabilities (Appendix B)

∂Pi(t)

∂t
= −2Γi

~
Pi(t)−

n∑

j=1

2 | Vij |2
~2

∫ t

0
cos

(
εi − εj +∆ij

~
(t− τ)

)

×Θij(t− τ) exp

(
− Γi + Γj

~
(t− τ)

)
{Pi(τ)− Pj(τ)}dτ,

i = 1...n , i 6= j (2.17)

where Pi(t) is the population probability Pi(t) = 〈ρii(t)〉 and Θij(t) has the form

Θij(t) = exp

(
− 1

2~2

∫ t

0

∫ t

0
Kij(τ2 − τ1)dτ1dτ2

)
. (2.18)

2.2 Model of Reaction Center

To describe the first steps of electron transfer processes in the reaction centers we have
used the three-sites model. Let us designate the special pair (P ) as sites 1, the sites 2 and
3 then represent the molecules of accessory bacteriochlorophyll on the branches M and
L. We assume that the hopping terms between molecule 1 and molecule 2 or 3 on both
branches are not the same. We forbid the direct ET between sites 2 to 3. We assume that
the energy levels 2 and 3 have imaginary part which describes the interaction with the next
molecule in the branch. The imaginary part of the energy level 1 describes the probability
of electron deactivation to the ground state. In this three sites model Eqs.(2.17) has the
form

∂P1(t)

∂t
= −2Γ1

~
P1(t)

−2J2M
~2

∫ t

0
cos

(
εM
~

(t− τ)

)
exp

(
− Γ1 + Γ2

~
(t− τ)

)
ΘM (t− τ){P1(τ)− P2(τ)}dτ

−2J2L
~2

∫ t

0
cos

(
εL
~
(t− τ)

)
exp

(
− Γ1 + Γ3

~
(t− τ)

)
ΘL(t− τ){P1(τ)− P3(τ)}dτ,

(2.19a)

∂P2(t)

∂t
= −2Γ2

~
P2(t)

−2J2M
~2

∫ t

0
cos

(
εM
~

(t− τ)

)
exp

(
− Γ1 + Γ2

~
(t− τ)

)
ΘM (t− τ){P2(τ)− P1(τ)}dτ,

(2.19b)

∂P3(t)

∂t
= −2Γ3

~
P3(t)

−2J2L
~2

∫ t

0
cos

(
εL
~
(t− τ)

)
exp

(
− Γ1 + Γ3

~
(t− τ)

)
ΘL(t− τ){P3(τ)− P1(τ)}dτ,

(2.19c)
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where we denote εL = ε1−ε3+∆13, εM = ε1−ε2+∆12, Θ12 = ΘM , Θ13 = ΘL, V12 = JM ,
and V13 = JL. The quantum yield (QY) Φi of the electronic escape via the site i can be
characterized by the expression [52]

Φi =
2Γi

~

∫ ∞

0
Pi(t)dt =

2Γi

~
lim

p→0+
P̃i(p), i = 1, 2, 3, (2.20)

where P̃i(p) is the Laplace transformation of Pi(t). The Laplace transform to Eqs. (2.19),
with the initial conditions P1(0) = 1, P2(0) = P3(0) = 0, reads

pP̃1(p)− 1 = −2Γ1
~
P̃1(p)− wM (p)[P̃1(p)− P̃2(p)]

−wL(p)[P̃1(p)− P̃3(p)], (2.21a)

pP̃2(p) = −2Γ2
~
P̃2(p)− wM (p)[P̃2(p)− P̃1(p)], (2.21b)

pP̃3(p) = −2Γ3
~
P̃3(p)− wL(p)[P̃3(p)− P̃1(p)], (2.21c)

where

wM (p) =
2J2M
~2

∫ ∞

0
cos[

εM
~
t] exp[−Γ1 + Γ2 + ~p

~
t]ΘM (t)dt, (2.22a)

wL(p) =
2J2L
~2

∫ ∞

0
cos[

εL
~
t] exp[−Γ1 + Γ3 + ~p

~
t]ΘL(t)dt. (2.22b)

These integrals can be expressed as [81]

wM (p) =
2J2M
~2

τMRe
M(1, dM + 1, zM )

dM
, (2.23a)

wL(p) =
2J2L
~2

τLRe
M(1, dL + 1, zL)

dL
, (2.23b)

where M(1, d+ 1, z) is the confluent hypergeometric function and

dM =
Γ1 + Γ2 + ΓM + ~p− iεM

~
τM , zM =

ΓMτM
~

, (2.24a)

dL =
Γ1 + Γ3 + ΓL + ~p− iεL

~
τL, zL =

ΓLτL
~

, (2.24b)

where we denote ΓL = Γe
13, ΓM = Γe

12, τL = τ e13 and τM = τ e12.

2.3 Overdamped regime

In this section, we assume that the correlation function corresponds to a spectral density
of the strongly overdamped Brownian oscillator. In this regime we have [39, 82, 83]

Kij(t) = 〈ξ2ij〉slv exp(−
| t |
τ eij

), (2.25a)

Θij(t) = exp

(
−

Γe
ij

~

{
t− τ eij

[
1− exp

(
− t

τ eij

)]})
, i, j = 1, ..., n. (2.25b)
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2.3.1 Fast modulation limit

We start with the fast modulation limit, where we will work in the limit of short correlation
time of the solvent where we assume that Γe

ijτ
e
ij/~¿ 1. Here Γe

ij = 〈ξ2ij〉τ eij/~. In this limit
we have

wM (p) =
2J2M
~2

p+ (Γ1 + Γ2 + ΓM )/~

[p+ (Γ1 + Γ2 + ΓM )/~]2 + [εM/~]2
, (2.26a)

wL(p) =
2J2L
~2

p+ (Γ1 + Γ3 + ΓL)/~

[p+ (Γ1 + Γ3 + ΓL)/~]2 + [εL/~]2
. (2.26b)

Here we denote ΓL = Γe
13, ΓM = Γe

12, τL = τ e13, and τM = τ e12. Using the solution of
Eqs.(2.21), we can compute the quantum yields. Here we present the ratio K32 = Φ3/Φ2
which characterizes the asymmetry of electron transfer through the L and M branches
and the ratio K13 = Φ1/Φ3 which characterizes the decay of the system to the ground
state:

K32 =
J2LΓ3(Γ1 + Γ3 + ΓL){J2M (Γ1 + Γ2 + ΓM ) + Γ2[(Γ1 + Γ2 + ΓM )2 + ε2M ]}
J2MΓ2(Γ1 + Γ2 + ΓM ){J2L(Γ1 + Γ3 + ΓL) + Γ3[(Γ1 + Γ3 + ΓL)2 + ε2L]}

,

(2.27a)

K13 =
Γ1{J2L(Γ1 + Γ3 + ΓL) + Γ3[(Γ1 + Γ3 + ΓL)

2 + ε2L]}
J2LΓ3(Γ1 + Γ3 + ΓL)

. (2.27b)

Now we want to present optimal relations between the model parameters for the maximal
asymmetry of ET through the system. The parameter Γ1 ought to be small in comparison
to other parameters to get relatively small electronic decay to the ground state. In this
case we have

K32 =
J2LΓ3(Γ3 + ΓL){J2M (Γ2 + ΓM ) + Γ2[(Γ2 + ΓM )2 + ε2M ]}
J2MΓ2(Γ2 + ΓM ){J2L(Γ3 + ΓL) + Γ3[(Γ3 + ΓL)2 + ε2L]}

(2.28)

and K13 ∼ 0. When εL, εM À ΓL,ΓM , JL, JM and ΓL À Γ3, ΓM À Γ2 we have

K32 =
J2LΓLε

2
M

J2MΓMε2L
. (2.29)

When ΓM , ΓL are large in comparison to other model parameters from Eq.(2.28), we get

K32 =
J2LΓM

J2MΓL
. (2.30)

In this limiting case ΓL and ΓM are in inverse relation as in the previous case. The electron
is transported mainly through the branch where the fluctuation of energy level is smaller.
In the next cases we assume that the values of parameters ΓL and ΓM are small. From
Eq.(2.28), we get

K32 =
J2LΓ3(J

2
M + Γ22 + ε2M )

J2MΓ2(J2L + Γ23 + ε2L)
. (2.31)

If we assume that the parameters JM , JL are very large in comparison to parameters εL,
εM , Γ2 and Γ3, we get

K32 =
Γ3
Γ2
. (2.32)
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Here we get electron transfer through the branch with greater sink. It means that the first
step of ET is so fast that the next step of ET is limiting for unidirectionality. When we
assume that the parameters εL, εM are very large in comparison to parameters Γ2, Γ3,
JM and JL from Eq.(2.31), we get

K32 =
J2LΓ3ε

2
M

J2MΓ2ε2L
. (2.33)

As similar result was obtained in the works [76, 84], for the superexchange mechanism of
electron transfer. Now we assume the case which is interesting from a theoretical point of
view. If the parameters Γ2, Γ3 are very large in comparison to the parameters εL, εM , JL,
JM , ΓL, ΓM and Γ1 ≈ 0 we get

K32 =
J2LΓ2
J2MΓ3

, K13 ≈ 0. (2.34)

In this limit of strong sink at place 2 (branch M) and 3 (branch L) we have inverted
the regime of electron transfer in comparison with the previous cases. When we assume
that JL ∼ JM , an electron is transported mainly through the branch with a smaller value
of the sink parameter. In this case, the electron has a tendency to avoid the place with
greater sink parameter. A similar result was obtained in [85] where the energy transport
in a semi-infinite chain with one sink was described. This effect was named fear of death.
It is caused because of memory functions in the equations which describe the dynamics
of the system depending on the value of the sink parameters. On the other hand, if the
parameter Γ1 is large, the electron escapes from the system through site 1. Because of
small sink parameters in comparison to energy differences between molecules, these cases
can be hardly realized in RC.

The implementation of the theory requires information regarding some parameters,
such as the energy gaps, hopping terms, imaginary parts of energy levels and parame-
ters characterizing the noise. The energy level of P+BChl−L in RC’s of Rb. Sphaeroides is
about 450 cm−1 below P ∗ [67]. Another calculations show that this energy level is about
250 cm−1 above special pair [68]. Theoretical calculations, using the Rp. viridis RC crystal
structure suggested that the P+BChl−M state is 2000 cm−1 higher than P ∗ [69]. The value
of Γ1 is calculated from the internal conversion rate of P ∗. This rate was estimated to
be between (90 ps)−1 and (350 ps)−1 from the measurements on wild-type RC’s [67]. For
our theoretical simulations the internal conversion rate 2 Γ1/~=(170 ps)−1 was selected.
The values of the parameters Γ2, Γ3 can be calculated from the decay time P+BCh−L .
The decay time of P+BCh−L in Rhodopseudomonas viridis is 0.9 ps [67]. The transfer inte-
gral JL is estimated to be about 20 cm−1 [70, 71, 72]. We have chosen the next parameters
which characterize the wild-type of RC in our model. The energy levels are εM=2000 cm−1

and εL=430 cm−1, the hopping terms are JL = JM=26 cm−1 and the rate constants are
2 Γ2/~ = 2Γ3/~=(0.9 ps)−1. We assume, as in the works [64, 70], that Γ1 is smaller than
Γ2, Γ3 by about two orders of magnitude.

We used in the computations the following values of the parameters which characterized
the noise: ΓL = ΓM=800 cm−1 for wild-type of RC. With these parameters we get the
following quantum yields and the constants kL, kM for WT of RC in our simulation:
Φ1 = 0.023, Φ2 = 0.170, Φ3 = 0.807, kL=(4 ps)−1, kM=(23 ps)−1. Here we denote wL(p→
0) = kL and wM (p → 0) = kM . In the computations it was assumed that JL = JM .
Possible contributions to unidirectionality of ET from asymmetry of hopping terms JM ,
JL and sink parameters Γ2, Γ3 were derived in the works [75, 76, 77, 84].

When we assume similarly as in the work [75] that there exists the asymmetry JL/JM =
2.8 and Γ3/Γ2 = (2.1)2, we get the following QY and constants kL, kM : Φ1 = 0.027, Φ2 =
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0.026, Φ3 = 0.947, kL=(4 ps)−1, kM=(178 ps)−1. We used the parameters: εM=2000 cm−1,
εL=430 cm−1, JL=26 cm−1, 2 Γ3/~ ≈(0.9 ps)−1, 2 Γ1/~=(170 ps)−1, ΓL = ΓM=800 cm−1.

When we assume that the only one asymmetry is the above mentioned asymmetry in
the hopping terms and in the imaginary parts of energy levels, we have QY: Φ1 = 0.025,
Φ1 = 0.119, Φ1 = 0.856, kL=(4 ps)−1, kM=(32 ps)−1 with parameters: εM = εL=430 cm−1,
JL=26 cm−1, 2 Γ3/~ ≈(0.9 ps)−1, 2 Γ1/~=(170 ps)−1, ΓL=800 cm−1, ΓM=800 cm−1.

Special cases

Now we present some special cases where we describe the main characteristics of the
process. We assume that JM = JL = J and Γ1 = 0, Γ2 = Γ3 = Γ. In this case we
compute the parameter K32 = Φ3/Φ2 that characterizes the ratio between the probability
of electronic escape through the L and M branch of RC. From (2.27a) we have

K32 =
(Γ + ΓL)[J

2(Γ + ΓM ) + Γ(Γ2 + 2ΓΓM + Γ2M + ε2M )]

(Γ + ΓM )[J2(Γ + ΓL) + Γ(Γ2 + 2ΓΓL + Γ2L + ε2L)]
. (2.35)

We can see that at Γ → ∞, K ≈ 1. It means that when the electron escapes from the
system very quickly, the asymmetry of the electron distribution cannot be achieve. For
the very slow escape, when Γ→ 0 and ΓL = ΓM = 0, we get

K32 =
J2 + ε2M
J2 + ε2L

. (2.36)

At this limit the steady state does not exist. The asymmetry in the electron distribution
is caused by the asymmetry arrangement of the energy levels. If they are not zero the
system can achieve the steady state. The probability to find electron at site 2 and 3 is
raising asymmetrically. From Eq.(2.20) we can see that the probability of electronic escape
depends on the history of the system. Because of the steady state is fully symmetric in
this case the asymmetry in the quantum yields depends on the parameters which caused
the asymmetry in the relaxation and does not depend on the steady state. For large εL,
εM from Eq.(2.35), we get

K32 =
(Γ + ΓL)ε

2
M

(Γ + ΓM )ε2L
. (2.37)

At this limit the asymmetry in the relaxation is caused by the asymmetry in parameters
which characterize the energy level fluctuations. For large ΓL, ΓM we have

K32 =
ΓM

ΓL
. (2.38)

In this case the electron is transported mainly through the branch with smaller fluctuation
of the energy level. For small Γ and large ΓL, ΓM , when the conditions J2ΓL À Γ(Γ2L+ε2L)
and J2ΓM À Γ(Γ2M +ε2M ) are fulfilled, we have electron transfer with K ≈ 1. At this limit
the system reaches the steady state very fast. The quantum yields are determined by the
steady state. We have the same probability of the electronic escape through the branch
L and M . From equations (2.35-2.38) we can see that the main effect on the unidirec-
tionality of ET has asymmetry of the energy levels. The quantum yields do not depend
on the sign of the energy level. The implementation of the theory requires information
regarding energetic parameters, such as the energy gap between the equilibrium nuclear
configuration between P ∗ and P+BChl−L(M) which, in spite of the recent progress, cannot

be reliably calculated. The energy level of P+BChl−L in RCs of Rb. Sphaeroides is about
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50meV below P ∗ [67]. Another calculations show that this energy level is about 30meV
above special pair [68]. Theoretical calculation, using the Rp.viridis RC crystal structure
suggested that the P+BChl−M state is 240meV higher than P ∗ [69]. The (200 ps)−1 P ∗

internal conversion rate is the average of the values of (90 − 350 ps)−1 that have been
estimated from measurements in wild-type RC’s [67]. The decay time of P+BChl−L in Rp.
viridis is 0.65 ps [67]. The transfer integral J is estimated to be about 2.5meV [70, 71, 72].
We have chosen the next parameters which characterized the wild type of RC in our model.
The energy levels are εM=250meV, εL=50meV, the hopping term is J=2.5meV, the rate
constants are 2 Γ2/~ = 2Γ3/~ = 2Γ/~ ≈(0.65 ps)−1. We assume, as in the work [70],
that Γ1 is smaller than Γ2, Γ3 by about 2 orders of magnitude. This also follows from
experimental date [64, 67]. We used in computations the next values of parameters which
characterized the noise and the decay of the system to the ground state: ΓL = ΓM=25meV
and 2Γ1/~=(200 ps)−1 for wild-type (WT) of RC. We get the following quantum yields
for WT of RC in our simulation: Φ1 = 0.03, Φ2 = 0.05, Φ3 = 0.92.

Electron transfer reactions in modified RC

The highly asymmetric functionality can be changed by amino acid mutations or cofactor
modifications [24, 29]. These mutants have provided insights into key factors impacting
the directionality and yields of electron transfer in the RC by changing the relative free
energies of the participating states [60-67]. Electron transfer to the L-versus the M -sides
in the RC may be substantially modulated by the relative free energies of P+BChl−L and
P+BChl−M .

A drastically reduced quantum yield is observed in RC’s where substantially different
chromophores were in different binding pockets of the electron acceptors. In the work [63]
electron transfer in a series of Rhodobacter capsulatus RC mutants is reported. In the
G(M201)D/L(M212)H (denoted DH) double mutant 15% electron transfer to M -side
bacteriopheophytin, 70% electron transfer to the L-side cofactors and 15% deactivate to
the ground state. It is proposed that the Asp at M201 raised the free energy of P+BChl−L .
In the S(L178)K/G(M201)D/L(M212)H (denoted KDH) triple mutants 62% electron
transfer to the L-side BPh, 23% electron transfer to the M -side bacteriopheophytin and
15% return to the ground state. In the S(L178)K/G(M201)D/L(M212)H triple mu-
tants the S(L178)K mutation might lower P+BChl−M in free energy and increase the
yield of electron transfer to BPhM in comparison to the G(M201)D/L(M212)H dou-
ble mutant. Electron transfer along the M -side was observed in the H(M182)L mutant of
Rb.sphaeroides [65]. In this mutant bacteriopheophytin (referred to as ΦM ) is incorporated
in place of BChlM . One would expect that the P+Φ−M state would be considerably lower
in energy than P+BChl−M , thus enhancing the probability of M -side electron transfers.
The yield of the P+Φ−M state is apparently 30− 40%.

The exchange of histidine to leucin in RC’s of Rhodopseudomonas viridis (mutant
denotes as L153HL) caused the incorporation of a bacteriopheophytin b instead of a
bacteriochlorophyll b molecule (referred to as BL ). As a consequence of this chromophore
exchange, the energy level of the electron transfer state P+B−L is lowered in comparison
to P+BChl−L in WT. The quantum yield of P+B−L in this mutant is reduced to 50%.

When we increase the energy εL in the theoretical simulations, as in the G(M201)D/
L(M212)H Rhodobacter capsulatus RC double mutants, we get the following QY: Φ1 =
0.14, Φ2 = 0.14, Φ3 = 0.72. We use the parameters: εM=250meV, εL=100meV, J=2.5meV,
2 Γ2/~=(0.65 ps)−1, 2 Γ3/~=(3.25 ps)−1, ΓL = ΓM=25meV, 2 Γ1/~=(130 ps)−1.

If we decrease the energy εM as in S(L178)K/G(M201)D/L(M212)H triple mutant
in comparison to double mutant we get the following QY: Φ1 = 0.13, Φ2 = 0.20, Φ3 =
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0.67. We use the parameters: εM=200meV, εL=100meV, J=2.5meV, 2 Γ2/~=(0.65 ps)−1,
2 Γ3/~=(3.25 ps)−1, ΓL = ΓM=25meV, 2 Γ1/~=(130 ps)−1. We lowered here the rate from
molecules 3 which agrees with experimental results [24, 63].

When we considerably decrease the energy εM in comparison toWT as in theH(M182)L
mutant of Rb.sphaeroides where bacteriopheophytin is incorporated in place of BChlM ,
we get the following QY: Φ1 = 0.04, Φ2 = 0.33, Φ3 = 0.63. We use the parameters:
εM=−75meV, εL=50meV, J=2.5meV, 2 Γ2/~=2Γ3/~=(0.65 ps)−1, ΓL = ΓM=25meV,
2 Γ1/~=(130 ps)−1.

When we considerably decrease the energy εL in comparison to WT as in the L153HL
mutant of Rh. viridis where bacteriopheophytin is incorporated in place of BChlL, we get
the following QY: Φ1 = 0.16, Φ2 = 0.42, Φ3 = 0.42. We use the parameters: εM=225meV,
εL=−225meV, J=2.5meV, 2 Γ2/~=2Γ3/~=(0.65 ps)−1, ΓL = ΓM=25meV, 2 Γ1/~ =
(260 ps)−1.

Discussion of the model

The special case solves specific problem of the highly asymmetric ET in the photosynthetic
reaction centers. Because of the very fast primary charge separation process we use the
stochastic model with the memory functions equal for the forward and backward electron
transfer. When the conditions Γ2 = Γ3 = Γ1 = 0, ΓM 6= 0 and ΓL 6= 0 are fulfilled we get
the fully symmetric steady state. It means that the electron occupation Pi(∞) probabilities
relax to the equilibrium distribution Pi(∞) = 1/3. When one of the parameters ΓM , ΓL is
also zero, for instance ΓM , we have asymmetric steady state with equilibrium occupation
probabilities and P1(∞) = P3(∞)=(ε2M +2J2)/2(ε2M +3J2) and P2(∞) = J2/(ε2M +3J2).
At this limit when εM = 0, the fully symmetric steady state is restored. On the other
hand, when ε2M À J2 we get P1(∞) = P3(∞) → 1/2 and P2(∞) → 0. In this case M -
branch is practically inactive and we get the steady state as in the stochastic two-sites
models [51, 54, 55, 58].

Extensive experimental efforts have been devoted to elucidation of the role of acces-
sory bacteriochlorophyll molecules. We considered that the electron is delocalized to the
molecules P , BChlM and BChlL. The electron density depends on the parameters which
characterize the three molecules system. The data show that the free energy of the inter-
mediates P+BChl−L , P

+BChl−M is of major importance. For instance, if the free energy of
P+BChl−L is raised relative to that of wild type RC (as, likely, if negative charge is in-
troduced in the mutant L153HE), the quantum efficiency is lowered considerably. In this
special case we have shown that there is a correlation between the shift of energy levels of
accessory bacteriochlorophyll molecules and the quantum yields. Theoretical simulations
are in correspondence with experimental results. The influence of energy fluctuations must
not be neglected. When we assume asymmetry in the parameters which characterize the
fluctuations (ΓM = 0, ΓL=25meV), we get the following quantum yields in WT of RC:
Φ1 = 0.034, Φ2 = 0.001, Φ3 = 0.965. To elucidate the unidirectionality the Markovian
approximation was used in the previous model. It must not be proper for describing the
primary charge transfer processes in the RC. In [75, 76] it was shown that different hop-
ping terms (electron-transfer integrals) in the branches can result in the asymmetry of
charge separation across the L and M branches of the RC. In the present model we have
demonstrated that for the asymmetric ET it is not sufficient to consider only an asymme-
try in electron-transfer integrals. For example, in the case of small Γ the system approaches
the quasi steady state, where asymmetry is determined by equilibrium electron density
distribution and does not depend on the electron-transfer integral.

We have mutant, where hopping integrals are not changed significantly, and unidirec-
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tionality is lowered considerably [60]. It is in contradiction with the work [77], where the
unidirectionality is explained only through the asymmetry of the transfer integrals in the
L and M regions. The results of the work [78] suggest that the dimmer is playing the
decisive role for the vectorial charge separation. There are mutations where dimmer is
not changed and we have strong changes in unidirectionality [24, 63, 66]. The asymmetry
of the hopping terms can also contribute to unidirectionality. It was not assume in this
special case.

2.3.2 Slow modulation limit

Now we analyze the slow modulation limit. We will work in the limit of long correlation
time of the solvent. This limit is obtained when the condition Γe

abτ
e
ab/~À 1 is fulfilled. In

this limit we have

wM (p) =
2J2M
~2

∫ ∞

0
cos[

εM
~
t] exp[−Γ1 + Γ2 + ~p

~
t− 〈ξ

2
M 〉

2~2
t2]dt, (2.39a)

wL(p) =
2J2L
~2

∫ ∞

0
cos[

εL
~
t] exp[−Γ1 + Γ3 + ~p

~
t− 〈ξ

2
L〉

2~2
t2]dt. (2.39b)

Similarly as in the previous limit using the solution of Eqs.(2.21), we can compute the
quantum yields. The ratio K32 = Φ3/Φ2 has the form

K32 =
kL(kM + 2Γ2

~
)Γ3

kM (kL + 2Γ3
~
)Γ2

, (2.40)

and the ratio K13 = Φ1/Φ3 has the following form:

K13 =
(kL + 2Γ3

~
)Γ1

kLΓ3
, (2.41)

where we denote kL = wL(p→ 0+) and kM = wM (p→ 0+). Now we analyze some special
cases of ET in the RC. In the case when kM À 2Γ2/~ and kL À 2Γ3/~ we getK32 = Γ3/Γ2
and K13 = Γ1/Γ3. In the opposite case we have

K32 =
kL
kM

, (2.42)

and

K13 =
2Γ1
~kL

. (2.43)

In the static limit, when the conditions (2ξ2L)
1/2 À Γ1 + Γ3 and (2ξ2M )1/2 À Γ1 + Γ2 are

fulfilled,

kL =
2π

~
J2L

√
1

2π〈ξ2L〉
exp[− ε2L

2〈ξ2L〉
], (2.44a)

kM =
2π

~
J2M

√
1

2π〈ξ2M 〉
exp[− ε2M

2〈ξ2M 〉
]. (2.44b)

In this case we can see that the sink parameters have similar values as the constants kL,
kM so that this limit predicts that the balance between the ET to the L and M branch
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can be effectively regulated also with the change of the sink parameters, in contrast to the
fast modulation limit.

Now we compute the QY’s and rate constants in the slow modulation limit. When we
assume the only asymmetry in the energy levels we have: Φ1 = 0.019, Φ2 = 0.003, Φ3 =
0.978, kL=(2.4 ps)−1, kM=(918 ps)−1 with the parameters: εM=2000 cm−1, εL=430 cm−1,

JL = JM = 26 cm−1, 2 Γ2/~ = 2Γ3/~ ≈(0.9 ps)−1, 2 Γ1/~=(170 ps)−1 and
√

2〈ξ2L〉 =
√

2〈ξ2M 〉= 800 cm−1 for wild-type of RC.

When we assume as in the fast modulation limit that there exist the asymmetry
JL/JM = 2.8 and Γ3/Γ2 = (2.1)2 we have: Φ1 = 0.0189, Φ2 = 0.0004, Φ3 = 0.9807,
kL=(2.4 ps)−1, kM=(7200 ps)−1 with the parameters: εM = 2000 cm−1, εL = 430 cm−1,

JL = 26 cm−1, 2 Γ3/~ ≈(0.9 ps)−1, 2 Γ1/~=(170 ps)−1 and
√

2〈ξ2L〉 =
√

2〈ξ2M 〉= 800 cm−1.

When we assume that the only one asymmetry is the above mentioned asymmetry in
the hopping terms and the asymmetry in the imaginary parts of energy levels we have :
Φ1 = 0.016, Φ2 = 0.125, Φ3 = 0.859, kL=(2.4 ps)−1, kM=(18 ps)−1 with the parameters:

εM = εL=430 cm−1, JL=26 cm−1, 2 Γ3/~ ≈(0.9 ps)−1, 2 Γ1/~=(170 ps)−1 and
√

2〈ξ2L〉 =√
2〈ξ2M 〉= 800 cm−1.

2.4 Underdamped regime

In the present section, we assume the regime where the correlation function corresponds
to a strongly underdamped Brownian oscillator. It means that we assume the correlation
function Kij(t) in the form [82, 83]

Kij(t) = 〈ξ2ij〉slv exp
(
− |t|/τ eij

){
cos[ωijt] +

1

ωijτ eij
sin[ωij |t|]

}
. (2.45)

We will work in the strongly underdamped limit where the condition ωijτ
e
ij À 1 is fulfilled.

In this regime, we proceed in the same way as in the previous sections

wL(p) =
2J2L
~2

∫ ∞

0
cos[

εL
~
t] exp[−Γ1 + Γ3 + ~p

~
t]

exp

{
− 〈ξ

2
L〉

~2ω2L

[
2t

τL
+ 1− exp(− t

τL
)

(
cos(ωLt) +

3

ωLτL
sin(ωLt)

)]}
dt,

(2.46a)

wM (p) =
2J2M
~2

∫ ∞

0
cos[

εM
~
t] exp[−Γ1 + Γ2 + ~p

~
t]

exp

{
− 〈ξ

2
M 〉

~2ω2M

[
2t

τM
+ 1− exp(− t

τM
)

(
cos(ωM t) +

3

ωMτM
sin(ωM t)

)]}
dt,

(2.46b)
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and the constant kL can be expressed in the form (Appendix B)

kL =
2J2L
~2ωL

e−SL

{ ∞∑

k=0

1

k!k!
(SL/2)

2k ΩL + 2k/αL

(ΩL + 2k/αL)2 + p2L

+

∞∑

k=0

∞∑

q=1

1

k!(k + q)!
(SL/2)

2k+q

[
ΩL + (2k + q)/αL + 3q

αL
(q − pL)

[ΩL + (2k + q)/αL]2 + [q − pL]2

+
ΩL + (2k + q)/αL + 3q

αL
(q + pL)

[ΩL + (2k + q)/αL]2 + [q + pL]2

]}
, (2.47)

where SL =
〈ξ2L〉

~2ω2L
, αL = ωLτL, ΩL = Γ1+Γ3

~ωL
+ 2SL

αL
and pL = εL

~ωL
. Changing L → M and

Γ3 → Γ2, we get the expression for the constant kM .
Now we compute QY’s in this regime. When we assume the only asymmetry in the en-

ergy levels we have: Φ1 = 0.019, Φ2 = 0.034, Φ3 = 0.947, kL=(2.6 ps)−1, kM=(96.5 ps)−1

with the parameters: εM = 2000 cm−1, εL = 430 cm−1, ~ωL = ~ωM=100 cm−1, JL =

JM=26 cm−1, 2 Γ2/~ = 2Γ3/~ ≈ (0.9 ps)−1, 2 Γ1/~=(170 ps)−1,
√

2〈ξ2L〉 =
√

2〈ξ2M 〉=
800 cm−1 and αL = αM = 20 for wild-type of RC.

When we assume as in the previous cases that there exist the asymmetry JL/JM = 2.8
and Γ3/Γ2 = (2.1)2 we have: Φ1 = 0.02, Φ2 = 0.005, Φ3 = 0.975, kL=(2.6 ps)−1,
kM=(754 ps)−1 with the parameters: εM=2000 cm−1, εL=430 cm−1, ~ωL = ~ωM=100 cm−1,

JL = 26 cm−1, 2 Γ3/~ ≈(0.9 ps)−1, 2 Γ1/~=(170 ps)−1,
√

2〈ξ2L〉 =
√

2〈ξ2M 〉= 800 cm−1 and

αL = αM = 20.
When we assume that the only asymmetry is the above mentioned asymmetry in

the hopping terms and the asymmetry in the imaginary parts of energy levels we have:
Φ1 = 0.017, Φ2 = 0.139, Φ3 = 0.844, kL = (2.6 ps)−1, kM=(21 ps)−1 with the param-
eters: εM = εL=430 cm−1, ~ωL = ~ωM = 100 cm−1, JL=26 cm−1, 2 Γ3/~ ≈(0.9 ps)−1,
2 Γ1/~=(170 ps)−1,

√
2〈ξ2L〉 =

√
2〈ξ2M 〉= 800 cm−1 and αL = αM = 20.

Now we will use the presented model to elucidate the observed ET in the YM210W
mutant of the Rhodobacter spheroides photosynthetic reaction center. We assume that the
underdamped regime can correctly describe the ET in this reaction center. In the mutant
tyrosine, M210 residue is replaced by tryptophan [23, 62, 86, 87]. The general view is that
the free energy of the state P+BChl−L has been raised in this mutant. As a result of this
mutation, the observed time constant associated with the charge separation from P ∗ is
about 70 ps at room temperature and 320−400 ps at cryogenic temperature. The decrease
in the primary electron transfer rate in a diminishing of the efficiency of P+Q−L formation
to 80% at room temperature and 60-70% at cryogenic temperature [23, 86].
To get the observed results we will examine three low frequency modes. The numerical
results are collected in Table 2.1. In the computation, it was assumed that the expression
〈ξ2ij〉 = 2EijrkBT is valid in the classical limit [82, 83], where Eijr is the “reorganiza-
tion” energy. In YM210W mutant the parameter 2Γ3/~ was decreased, similar to the
work [86], to the value (2 ps)−1 in comparison to WT. To imitate the possible tempera-
ture dependence of the parameter 2Γ1/~, we used the value (300 ps)−1 of this parameter
at temperature 200K in the computations. The numerical computations show that the
~ω=80 cm−1 mode gives the results that are in the best correspondence with observed
data. The mode ~ω=100 cm−1 gives a small increase of QY to the L-branch with a de-
crease in the temperature in the YM210W mutant. The mode ~ω=50 cm−1 can indicate
that the lifetime of P ∗ in WT increases with a decrease in the temperature, which is not
in accordance with experimental results. In the numerical computation, it was assumed
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Sample T ~ωb Sc
~/2Γ1 ~/2Γ3 εL 1/kL 1/kM Φ1 Φ2 Φ3

(K) (cm−1) (ps) (ps) (cm−1) (ps) (ps)

WT 300 100 30 170 0.9 430 2.57 119 0.019 0.028 0.953
200 100 20 300 0.9 430 2.31 469 0.01 0.007 0.983

YM210W 300 100 30 170 2 1300 15 119 0.08 0.115 0.805
200 100 20 300 2 1300 35.8 469 0.104 0.067 0.829

WT 300 80 30 170 0.9 430 2.34 329 0.019 0.01 0.971
200 80 20 300 0.9 430 2.29 1109 0.01 0.003 0.987

YM210W 300 80 30 170 2 1280 29 329 0.143 0.073 0.784
200 80 20 300 2 1280 97.6 1109 0.234 0.063 0.703

WT 300 50 30 170 0.9 430 2.53 1517 0.02 0.002 0.978
200 50 20 300 0.9 430 3.4 3056 0.014 0.001 0.985

YM210W 300 50 30 170 2 900 33 1517 0.167 0.019 0.814
200 50 20 300 2 900 125 3056 0.29 0.029 0.681

Table 2.1: Computed constants 1/kL, 1/kM and quantum yields for wild type and YM210W mutant
of the Rhodobacter sphaeroides RC’s. The value ~/2Γ2=0.9 ps, εM=2000 cm

−1, αM = αL = 20, JL =
JM=26 cm

−1 were taken in the computations. We have assumed that ω = ωL = ωM and S = SL = SM .

that the changes of parameter τL(τM ) are small in the considered temperature range. To
characterize the effect of electron-vibration coupling on the ET, we present the depen-
dence of the effective time constant AL/kL(AM/kM ) where AL(M) = 2J2L(M)/~

2ωL(M) on

the parameter SL(SM ) and αL(αM ) in the Figs. 2.1, 2.2.

  α = 20
  α = 200

Figure 2.1: Plot of log10(AL/kL) vs SL with ~/2Γ1=170 ps, ~/2Γ3=0.9 ps, εL=430 cm
−1 and ~ωL=80 cm

−1

for various values of αL. kL is the effective rate constant and AL = 2J
2
L/~

2ωL.

In the slow mutant where the lifetime of P ∗ is very long, there is a possibility that the
ET has an incoherent character. It means that there exist vibrational modes that relax
sufficiently fast after each step of electron/energy transfer. In this case, the same projector
operator as in the works [81, 88, 89, 90, 91] and in the next incoherent model has to be
used.
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  α
Μ

= 20
  α

Μ
= 200

Figure 2.2: Plot of log10(AM/kM ) vs SM with ~/2Γ1=170 ps, ~/2Γ2=0.9 ps, εM=2000 cm
−1 and

~ωM=80 cm
−1 for various values of αM . kM is the effective rate constant and AM = 2J2M/~

2ωM .

2.5 Discussion

In the previous theories with more than one sink parameter, these parameters were added
in the GME ad hoc, neglecting the effect of the sink parameters on the memory kernels in
the GME [52]. As a result, the requirement of non-negativity of population probabilities
Pi(t) was not always fulfilled. The theory presented in this model allows computation of
quantum yields of electronic escape via the branches L, M , and of direct ground-state
recombination. Computed quantum yields give subsidiary information, and together with
transient state lifetimes they can help to determine the free parameters of the system. The
lifetimes ought to be defined from GME. The temperature dependence of quantum yields
are very important experimental data, which can be theoretically described by effective
rate constants also in the case where the dynamics of electrons must be described by GME.
However, it is not the case of lifetimes.

In this present model, we describe the system by a relatively simple model with one
vibrational mode and symmetry in all parameters excluding energies. The obtained re-
sults are in agreement with the published experimental data [86]. Since the experiments
do not give full information about the temperature dependence of quantum yields, we
can compare with experimentally measured data only the temperature dependence of the
computed quantum yields Φ3 of electronic escape via the L branch. To better characterize
the free parameters of the system, full information about the temperature dependence
of the quantum yields is needed. This information can then show whether the presented
model is realistic or not.

To describe the effective rate constant, the two-vibration modes approximation is used
with high- and low-frequency modes [70, 91, 92]. The high-frequency mode is important
mainly for very fast second ET step, where there is a great free-energy gap. Using only the
low-frequency mode, the second ET step is slower than the first ET step, which is not in
accordance with experimental data. In contrast, in the first ET step, the high-frequency
mode does not seem to be so important, thus we expect that the one-mode approximation
could be realistic. The high-frequency mode can play an important role in the M-branch
ET in the case of large free-energy gap. This case can be described also in the one-mode
approximation assuming asymmetry in the frequencies ωL, ωM . Figs 2.1, 2.2 shows the
lack of the unidirectionality of electron transfer even when large asymmetry in the en-
ergies is present when very small or great values of the parameters SL(M) are used. In
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this study, the value of SL(M) corresponds to the “reorganization” energy Er ≈ 460 cm−1

when the vibrational mode ~ω=80 cm−1 is used. The similar value of the reorganization
energy was used in the paper [92] where the L branch ET was elucidated. With this value
of SL(M) the difference between the calculated values kL and kM is sufficient to obtain
the observed unidirectionality as seen in Table 2.1. The unidirectionality was previously
explained by the effective rate constants describing the first electron transfer step in bacte-
rial RC [76]. It was shown that assuming only the first ET step is not enough to elucidate
the unidirectionality [91].

2.6 Conclusions

This model addresses a specific problem of the highly asymmetric ET in the photosynthetic
reaction centers. Extensive experimental efforts have been devoted to the elucidation of
the role of accessory bacteriochlorophyll molecules [96]. At least two alternative models
have been proposed for the role of these molecules [72]. In this model, we considered that
the electron is delocalized to the molecules P , BChlM and BChlL. In the present model
we also assumed that the stochastic fluctuation does not depend on the localization of the
electron in the branch, it means we assumed that the ET has a hot character [97]. On
the studied time scale, the model excludes the repopulation processes of some electron-
accepting sites. This exclusion requires the introduction of an imaginary part of the energy
level.

In the present model, the generalized master equation (GME) was derived to describe
the primary charge transfer in the photosynthetic reaction centers. This integro-differential
equation (GME) can be changed to a differential equation (master equation). To justify
this change, it has to be shown that the memory kernels wij(t) in Eqs. (2.17) fulfill certain
conditions. Specifically, it has to be shown that the memory kernels damp very quickly
in comparison to the relaxation of the system to the steady state. However, a verification
of this condition is questionable if for the description of surrounding medium only two
vibrational modes are used, which is the most common case. This means roughly that in
the fast modulation limit the conditions, Γ1 + Γ3 + ΓL,Γ1 + Γ2 + ΓM À JL, JM , must be
fulfilled [98]. Here (Γ1 + Γ3 + ΓL)/~, (Γ1 + Γ2 + ΓM )/~ characterize the loss of memory
and JL/~, JM/~, characterize the “coherent propagation.” In the slow modulation limit,

the conditions
√

2〈ξ2L〉,
√

2〈ξ2M 〉 À JL, JM must be satisfied. When these conditions are

not fulfilled, ET has coherent or partially coherent (damped with oscillations) character
and the GME must be used to describe the relaxation of the system to the steady state.
On the other hand we have shown in the present model that the quantum yields can be
described by the parameters kL, kM usually used as rate constants.

At the fast modulation limit the maximal asymmetry of primary charge transfer is
in the case of great energy difference between molecules. In this case all asymmetries of
the system contribute to the unidirectionality of the ET. It means that the asymmetry of
the hopping terms, asymmetry of parameters Γ2,Γ3 and asymmetry of parameters ΓM ,ΓL

contribute to unidirectionality. At slow modulation limit the energy parameters can more
effectively dictate the balance between the ET to the L and M side chromophores of the
RC’s than the hopping terms.

Of course the observed QY can be reproduced also by the selection of another param-
eters. Still a little is known to give the definite answer what is the dominated factor in
regulations of ET to L and M branch, the energy or hopping terms asymmetry. The data
show [30, 60-66, 93-95] that the free energy of the intermediates P+BChl−L , P

+BChl−M is
of major importance. This can be testified in the temperature dependence of QY. And
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thus we think that the experiments which measured the temperature dependence of QY
in the mutants can shed more light into this problem.

We used the stochastic model where the interaction of electron with medium was
described with the correlation functions (2.6). Similar results can be obtained when we
describe the medium as the vibronic manifolds with the spectral density J(ω) = 2λω/(1+
ω2τ2e ) [99] or when we use the frequency dependence of the dielectric function in the form
Imε(ω)/|ε(ω)|2 = cωτe/(1+ω

2τ2e ) for the polar medium [81, 100]. When the dielectric func-
tion in the resonance approximation is used, we can get the correlation function, which was
used in the underdamped regime of the single-mode approximation [101]. The parameter
εL(εM ) is obviously split up into the free-energy difference and the reorganization energy.
This splitting in hot electron transfer strongly depends on the medium state frozen during
the ET and hardly can be verified with experiments. Thus the energy εL(εM ) was used as
one free model parameter.

The observed L-branch electron transfer is slower in the YM210W mutant than in the
wild-type bacterial RC, suggesting that the character of electron transfer reaction in the
mutant and wild-type RC can be different.
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The nonstochastic model of

electron transfer

3.1 Theory

In this Chapter we attempt to analyze the possibility that ET asymmetry can be described
by model which assumes, contrary to the previous models, that there exists the vibrational
modes of the medium which has a sufficient time for relax to the thermal equilibrium after
each ET step. We start by considering an electron transfer system in which the electron
has N accessible sites, embedded in a medium. We denote by |j〉 the state with electron
localized at the jth site and j = 1, 2, ..., N . The j and k sites are coupled by Vjk. The
interaction of the solvent with the system depends on the electronic states |j〉 by Hj . The
total model Hamiltonian for the system and medium is

H = H0 + V, (3.1)

where

H0 =
N∑

j=1

|j〉[εj − iΓj +Hj ]〈j|, (3.2)

V =
N∑

j,k=1

Vjk|j〉〈k|, j 6= k, (3.3)

where εj is the site energy. The parameter ~/2Γj has a meaning of the lifetime of the
electron at site j in the limit of the zero coupling parameter. It can characterize the
possibility of the electron escape from the system by another channel, for instance a
nonradiative internal conversion or recombination process.

The Hamiltonian describing the reservoir consisting of harmonic oscillators is

Hj =
∑

a

{
p2α
2mα

+
1

2
mαω

2
α(xα − djα)

2

}
. (3.4)

Here, mα and ωα are frequency and the mass of the αth oscillator, and djα is the equi-
librium configuration of the αth oscillator when the system is in the electronic state |j〉.
The total density matrix ρ(t) of the ET system and the medium satisfies the Liouville
equation,

∂tρ(t) = −
i

~
[Hρ(t)− ρ(t)H†] = −iLρ(t). (3.5)
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In the interacting picture,

ρI(t) = exp

(
i

~
H0t

)
ρ(t) exp

(
− i

~
H†
0t

)
. (3.6)

The Liouville equation in the interacting picture has the following form:

∂tρ(t) = −
i

~
[VI(t)ρI(t)− ρI(t)V

†
I (t)] = −iL(t)ρI(t), (3.7)

where

VI(t) = exp

(
i

~
H0t

)
V exp

(
− i

~
H0t

)
. (3.8)

Here we denote the total trace, and the partial traces over the ET system and over the
medium by Tr, Tre, TrQ, respectively. By definition Tr ≡ TrQTre. The population on
state |j〉 at time t is given by

Pj(t) = Tr(|j〉〈j|ρ(t)). (3.9)

We assume that the vibrational relaxation is sufficiently rapid so that the system can
relax to thermal equilibrium after each ET step. This assumption determines a choice of
projector operator. The projector operator D acting on an arbitrary operator B in the
Hilbert space of the total ET system and medium is defined by [81]

DB =
N∑

j=1

Tr(|j〉〈j|B)ρj |j〉〈j|, (3.10)

where ρj is the equilibrium medium density matrix in the state |j〉, i.e.,

ρj =
exp(−Hj/kBT )

TrQ exp(−Hj/kBT )
. (3.11)

One can show, using Egs.(3.9)-(3.10) that (Appendix E)

DL(t)D = 0. (3.12)

Using the standard projection operator techniques [79, 80] we can derive a generalized
master equation for the populations (Appendix D),

∂tPj(t) = −2Γj

~
Pj(t)−

N∑

k=1

∫ t

0
Wjk(t− τ)Pj(τ)dτ

+
N∑

k=1

∫ t

0
Wkj(t− τ)Pk(τ)dτ, j = 1, ..., N, j 6= k,

(3.13)

where

Wjk(t) = 2
|Vjk|2

~2
Re

{
exp

[
− Γj + Γk

~
t

]
exp

[
i(εj − εk)

~
t

]

× exp

{∑

α

Eα
jk

~ωα
[(n̄α + 1)e−iωαt + n̄αe

iωαt − (2n̄α + 1)]

}}
.

(3.14)

57



CHAPTER 3. The nonstochastic model of electron transfer

Here, n̄α = [exp(~ωα/kBT )− 1]−1 is a thermal population of the αth mode and

Eα
jk =

1

2
mαω

2
α(djα − dkα)

2 (3.15)

is the reorganization energy of the αth mode when system transfer from state |j〉 to state
|k〉.

3.2 Model of Reaction Center

To describe the first step of electron transfer processes in the reaction centers we have
used the 6-sites kinetic model of RC Fig(3.1).

Figure 3.1: The RC of purple bacteria are composed of three protein subunits called L, M and H. Dimer
P is describing by molecule 1. Cofactors in the subunits L are: 3 represent (BChlL) molecule 5 (BPhL) and
6 is (QL) and identically in the subunits M (BChlM ) is describing by molecule 2 and molecule 4 represent
(BPhM ). Cytochrom C serve as a source of electrons for reaction center.

3.2.1 6-sites kinetic model

We have established 6-sites kinetic model for solving electron transfer in some mutations
of RC. A similar 5-sites kinetic model was developed in the work [91]. We designate the
special pair P as site 1, the sites 2 and 3 represent the molecules BChlM and BChlL, and
the sites 4 and 5 then represent the molecules BPhM and BPhL. The site 6 represents
the quinone molecule QL (Fig. 3.2). We assume that this system is coupled to a bath
(medium). Based on experimental observations of ET in RC, it is expected that bacteri-
ochlorophyll play a crucial role in ET. In this 6-sites model we have assumed that ET in
RC is sequential where P+BChl− is a real chemical intermediate, and also that the repop-
ulation of accessory bacteriochlorophyll (BChlL) from the molecule of bacteriopheophytin
(BPhL) is possible because of the small energy difference between the states P+BChl−L and
P+BPh−L in several of mutations especially in the F (L121)D, L(M212)H [93]. The repop-
ulation of accessory bacteriochlorophyll (BChlM ) from the molecule of bacteriopheophytin
(BPhM ) is neglected because of the large energy difference between the molecules. The
imaginary part of energy level 1 describes the probability of electron deactivation to the
ground state. Other imaginary parts of the energy levels are neglected. In this model we
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denote the molecules BChl as B and molecules BPh as H on the corresponding branches
L, M of RC. We describe the ET in RC by the following kinetic model

Figure 3.2: Kinetic scheme for the primary electron transfer in bacterial photosynthetic reaction centers.

∂tP1(t) = −
2Γ1
~
P1(t)−

∫ t

0
W12(t− τ)P1(τ)dτ

−
∫ t

0
W13(t− τ)P1(τ)dτ +

∫ t

0
W21(t− τ)P2(τ)dτ

+

∫ t

0
W31(t− τ)P3(τ)dτ, (3.16a)

∂tP2(t) = −
∫ t

0
W24(t− τ)P2(τ)dτ −

∫ t

0
W21(t− τ)P2(τ)dτ

+

∫ t

0
W12(t− τ)P1(τ)dτ, (3.16b)

∂tP3(t) = −
∫ t

0
W35(t− τ)P3(τ)dτ −

∫ t

0
W31(t− τ)P3(τ)dτ

+

∫ t

0
W13(t− τ)P1(τ)dτ +

∫ t

0
W53(t− τ)P5(τ)dτ, (3.16c)

∂tP5(t) = −
∫ t

0
W53(t− τ)P5(τ)dτ −

∫ t

0
W56(t− τ)P5(τ)dτ

+

∫ t

0
W35(t− τ)P3(τ)dτ. (3.16d)

Here Pi(t) is the occupation probability of the site i and Wij(t) is a memory function.

3.3 Electronic escape through the branches

The quantum yields (QY’s) φL, φM of the electronic escape via the branches L and M,
and the quantum yields φG of the direct ground state recombination for 6-sites model can
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be characterized by the expressions

φG =
2Γ1
~

∫ ∞

0
P1(t)dt =

2Γ1
~
P1(s→ 0+), (3.17a)

φM =

∫ ∞

0

∫ t

0
W24(t− τ)P2(τ)dτdt = k24(s→ 0+)P2(s→ 0+), (3.17b)

φL =

∫ ∞

0

∫ t

0
W56(t− τ)P5(τ)dτdt = k56(s→ 0+)P5(s→ 0+), (3.17c)

where Pi(s), kij(s) are the Laplace transformations of Pi(t) and Wij(t). The quantum
yields must fulfill the expression φG + φM + φL = 1.

For our goals these two parameters are of principal importance,

K =
ΦL

ΦM
, R =

ΦL

ΦG
, (3.18)

which express the asymmetry in the probabilities of electronic escape through the branches
L and M . We can solve equation (3.16) in the Laplace transformation. Using this solution,
we have

K =
k13(exp(

−G12
kBT )k12 + k24)k35k56

k12k24[k35k56 + exp(−G13
kBT )k13(exp(

−G35
kBT )k35 + k56)]

, (3.19a)

R =
k13k35k56

2Γ1
~
[k35k56 + exp(−G13

kBT )k13(exp(
−G35
kBT )k35 + k56)]

. (3.19b)

Here we denote kij(s → 0+) as kij . Where kji = kij exp(−Gij/kBT ) is the back electron
transfer reaction rate constant which is calculated by using the detailed balance relation.
It was assumed that at the initial time the electron is localized on the first molecule.

Now we analyze some special cases of ET in the RC. In the case when backward ET
from sites 2, 3 and 5 are much greater than k24, k35 and k56, we get

K = exp

(
G25
kBT

)
k56
k24

, R =
~k56
2Γ1

exp

(
G15
kBT

)
. (3.20)

In the case when backward ET from sites 2 and 3 are much greater than k24, k35 and
constant k56 is greater then backward rate constant k53, we get identical expressions as
in [91] for 5-sites kinetic model

K = exp

(
G23
kBT

)
k35
k24

, R =
~k35
2Γ1

exp

(
G13
kBT

)
. (3.21)

It means that with small constants k24 and k35 the system can reach a quasiequilibrium and
a the unidirectionality is modified mainly by the Boltzmann factors. It does not depend
on the electron couplings V12 and V13.

In the opposite case when backward reactions are slow in comparison to constants k24
and k35, we have

K =
k13
k12

, R =
~k13
2Γ1

. (3.22)
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The form of parameter K is the same as the one used to characterize the unidirectionality
in an earlier study [84]. Using in equation (3.14) multinominal expansion of

exp{Ejk

~ω
[(n̄+ 1)e−iωt + n̄eiωt − (2n̄+ 1)]} =

exp{−Ejk

~ω
(2n̄+ 1)

∞∑

α=0

∞∑

β=0

[S(n̄+ 1)]α[Sn̄]β

α!β!
exp[iω(α− β)τ ]} =

exp{−Ejk

~ω
(2n̄+ 1)

∞∑

q=−∞

(
n̄+ 1

n̄

)q/2

Iq(2S[n̄(n̄+ 1)]1/2)eiωqτ}, (3.23)

when we have assumed that ~ωjk À Γj + Γk and that our system is characterized by
two vibrational modes α = 2, we get the expression for the rate constant in the form
~ωcij À kBT À ~ωmij for intermediate temperature range

kij(s→ 0+) =

∫ ∞

0
Wij(t)dt =

2πV 2ij
~2ωmij

exp[−Smij(2n̄m + 1)] exp(−Scij)

×
∞∑

n=0

Sn
cij

n!

(
n̄m + 1

n̄m

)p(n)/2

I|p(n)|(2Smij [n̄m(n̄m + 1)]1/2), (3.24)

where p(n) = (−Gij − n~ωcij)/~ωmij , Gij = εi − εj and I|p(n)| is the modified Bessel
function.

We assume that the memory function which characterizes ET can be described by both
a low frequency medium vibrational mode and a high frequency intramolecular vibrational
mode. At a high temperature regime the constant kij(s→ 0+) is in the form [102]:

kij =

∫ ∞

0
Wij(t)dt =

2π

~
V 2ij(

1

4πλmijkBT
)1/2 exp(−Scij)

×
∞∑

n=0

Sn
cij

n!
exp[−(Gji + λmij + n~ωcij)

2

4λmijkBT
].

(3.25)

Here, Gij = εi − εj and Scij = 1
2~mcijωcij(dci − dcj)

2 is the scaled reorganization
constant for the high frequency ij-th mode, which is nonzero when electron is transferring
from the state |i〉 to the state |j〉, and λmij =

1
2mmijω

2
mij(dmi−dmj)

2 is the reorganization
energy of the low-frequency mode when the electron is transferring from the state |i〉 to
the state |j〉. In the derivation of the constants k12 and k13 it was also assumed that
Γ1 << ~ω12, ~ω13.

To solve Eq.(3.13) the inverse Laplace transformation of Pi(s) has to be applied and for
this purpose a complete frequency dependence of kij(s) is needed. Changing Eq.(3.13)to
the ordinary rate constants, where the constants kij are employed as rate constants, gives
the solutions for the population probabilities Pi(t) which are different from the exact
solutions of Eq.(3.13). The solution of Pi(t) from the ordinary rate equations which employ
constant kij as a rate constant may even yield a negative population in the short time
scales [103]. In the longer time scales it is assumed that these equations approach the exact
solutions. However, it was shown that it is not generally true [98]. Assuming in Eq. 3.14
that reorganization energies Eα

13, and E
α
12 are zero we get the coherent sequential electron

transfer in both branches. This case was already described in our previous models [37, 39,
40].
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The presented 6-sites kinetic model excludes on the studied time scale the repopulation
processes of electron accepting sites. Similarly as in the previous model this exclusion
requires the introduction of imaginary part of energy levels both to explain the observed
asymmetry and to have physically meaningful occupational probabilities. Without the
imaginary part the solution of equations for the occupational probability can lead to the
negative values.
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Chapter 4

Superexchange vs. sequential

model of electron transfer

The implementation of the theory of the incoherent model of electron transfer requires
an information regarding the energetic parameters, the medium reorganization energies,
the high frequency modes, and electronic coupling terms. Several sets of parameters were
used to describe a charge transfer in the RC. A set of parameters based on molecular
dynamics simulations [95] corresponds to a dominance of superexchange mechanisms for
the primary ET reaction in RC’s. Another set of parameters [70, 92] was used to fit
experimental data. This second set of parameters derives a dominant contribution from
the sequential mechanism. The first set of parameters has the larger reorganization energies
and the greater coupling factors. This set of parameters makes the ET rate much larger
than it is found in the wild-type proteins.

4.1 Sequential model

First, we assume that ET has sequential character in both branches of RC. Because
ET kinetic in Rb.capsulatus is similar to kinetic of Rb.sphaeroides, we adapt in this
model the set of parameters that characterizes the observed L-side experimental kinet-
ics of Rb.sphaeroides RC very well [70, 92]. The following parameters were used to de-
scribe the electron transfer in the L-branch of the wild type (WT) and mutants of re-
action centers: the high frequency modes have the same value ~ωcij=1500 cm−1 besides
one which is ~ωc56=1600 cm−1, the values V12 = V13=32 cm−1, V24 = V35=59 cm−1 and
V56=4.8 cm−1 for the electronic coupling constants, and Scij = 0.5 for the scaled reorgani-
zation constants for the high frequency ijth mode with only one distinguished value which
is Sc56 = 1. The energetic parameters for WT of RC at room temperature are: ε1 = 0,
ε3=−450 cm−1, ε2=800 cm−1, ε4=−1000 cm−1, ε5=−2000 cm−1, ε6=−7200 cm−1, and the
medium’s low frequency vibrational modes have the same value for each step of electron
transfer, λmij=800 cm−1 except one, λm56=4800 cm−1. The P* internal conversion rate
is 2Γ1

~
=(170 ps)−1. We assume similarly as in the work [94] for WT of RC that the free

energy of P+BPh−M is about 1000 cm−1 above P+BPh−L . In this case the M -branch is prac-
tically inactive. In a series of Rhodobacter capsulatus RC mutants [93] the F (L121)D
mutant shows 78% of the electron transfer to L-side cofactors and 22% recombination to
the ground state at room temperatures. The suggested model for the F (L121)D mutant
assumes that P+H−L has higher free energy than in the wild-type of RC, thus we had to
increase the energy ε5 from the value ε5=−2000 cm−1 to the value ε5=−450 cm−1.

To characterize the structural changes on the L branch in the F (L121)D mutant we
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also slightly changed the free energy of the P+BChl−L state and in the computation we
used the value ε3=−350 cm−1. Other parameters stay the same as in the WT of RC.
Experimental observations in the F (L121)D mutant at low temperature (77K) show 88%
quantum yield via the L-side in comparison with 78% at room temperature. The results
of our numerical computations for WT and mutant RCs are collected in Table 4.1.

Sample T ε3 ε5 1/k12 1/k24 1/k13 1/k35 1/k56 ΦL ΦM ΦG

(K) (cm−1) (cm−1) (ps) (ps) (ps) (ps) (ps)

WT 295 -450 -2000 96.7 1.02 2.35 0.9 200 0.97 0.016 0.014
200 508 1.2 2.11 1.1 186 0.985 0.002 0.013

F(L121)D 295 -350 -450 96.7 1.02 2.65 1.2 205 0.763 0.123 0.114
200 508 1.2 2.53 1.42 195 0.934 0.011 0.055

L(M212)H 295 -520 -440 96.7 1.02 2.2 1.9 205 0.746 0.136 0.118
200 508 1.2 1.9 2.7 194 0.929 0.013 0.058

Table 4.1: Computed constants 1/kij and quantum yields for wild type and F (L121)D, L(M212)H mutants
of RC’s. The site energy ε1 = 0. Sequential mechanism on both branches was assumed.

Charge separation in the L(M212)H mutant of Rp. Capsulatus [93] is very simi-
lar to that reported previously in other RC’s where BPh is replaced with a BChl (de-
noted β) or with a pheophytin and mutation raised the free energy of P+BPh−L roughly
to the free energy level of P+BPh−M . To characterize this change of energy level we
have used the value of energy ε5=−440 cm−1 which are above the energy level ε3 in
this mutant. Observed quantum yields P+Q−A of this mutation is 76% near room tem-
perature and slightly decrease or stay about the same at low temperature. The mea-
sured quantum yields can be reproduced by the following parameters: ~ωcij=1500 cm−1,
~ωc56=1600 cm−1, V12 = V13=32 cm−1, V24 = V35=59 cm−1, V56=4.8 cm−1, Scij = 0.5,
Sc56 = 1 and λmij=800 cm−1, λm56=4800 cm−1, 2 Γ1/~=(170 ps)−1 and energetic param-
eters are ε3=−520 cm−1, ε5=−440 cm−1, other energy levels stay the same as in the WT
of RC. The results of our numerical computations for WT and mutant RCs are collected
in Table 4.1. In both branches only the sequential mechanism of ET was assumed.

4.2 Parallel superexchange/sequential model

Up to now we have assumed that ET has sequential character in both branches of reaction
centers. Now we would like to analyze the contribution from a superexchange mechanism
to both branches M and L where sequential mechanism of electron transfer will be still
assumed. We would like to show the contribution of superexchange mechanism of ET to
unidirectionality of electron transfer through RC. Kinetic scheme of ET with the con-
tribution of superexchange mechanism in RC is described in Fig. 4.1. If we assume also
superexchange mechanism of ET, we can write for 6-sites kinetic model of RC the following
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Figure 4.1: Kinetic scheme for the primary electron transfer in RC with contribution of superexchange
mechanism of ET.

equations:

∂tP1(t) = −(2Γ1
~

+ k12 + k13 + kSM + kSL)P1(t)

+k21P2(t) + k31P3(t) + kSL exp[−∆G15
kBT

]P5(t), (4.1a)

∂tP2(t) = −(k21 + k24)P2(t) + k12P1(t), (4.1b)

∂tP3(t) = −(k35 + k31)P3(t) + k13P1(t) + k53P5(t), (4.1c)

∂tP5(t) = −(k53 + k56 + kSL exp[−∆G15
kBT

])P5(t) + k35P3(t) + kSLP1(t). (4.1d)

Here we denote kij(s→ 0+) = kij . The formula for superexchange rate based on different
approximations was derived in the earlier works [103-110]. Using the formula derived in
the work [104], which is proper for the bath used in the presented model, we get the
rate constant which characterizes the superexchange mechanism at the M branch in the
following form:

kSM =
2π

~

V 212V
2
24

E2

(
1

4πλ14kBT

)1/2
exp(−S14)

×
∞∑

n=0

Sn
14

n!
exp

[
− (G41 + λ14 + n~ω14)

2

4λ14kBT

]
, (4.2)

where

E = ε1 − ε2 − λ̃12 −A(ε1 − ε4 − λ̃14), (4.3)

λ̃12 = S12~ω12 + λ12, (4.4)

λ̃14 = S14~ω14 + λ14, (4.5)

A =

√
S12S14~

2ω214 + 2
√
λ12λ14kBT

S14~2ω214 + 2kBTλ14
. (4.6)
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Similar to the work [92], for the computations the values, S15 = S14 = 1, ~ω15 =
~ω14=1500 cm−1, and λ15 = λ14=1600 cm−1 were taken. All other parameters were as
defined in the Sequential Model. With these parameters we get A =

√
0.5. Changing

2 → 3 and 4 → 5 in Eqs. (4.2)-(4.6) we get the expression for kSL which characterizes
the superexchange mechanism in the L branch of RC. The quantum yields ΦL, ΦM of
electronic escape via branch L, M and the quantum yields ΦG of direct ground state
recombination can be characterized for 6-sites parallel superexchange/sequential kinetic
model by the expressions

φG =
2Γ1
~
P1(s→ 0+), (4.7a)

φM = k24(s→ 0+)P2(s→ 0+) + kSMP1(s→ 0+), (4.7b)

φL = k56(s→ 0+)P5(s→ 0+). (4.7c)

In the special case when we assume that in the M branch the ET have superexchange
character and in the L branch the ET have sequential character, the parameters R and K
have the form,

K =
k13k35k56

kSM [k35k56 + exp(−G13
kBT )k13(exp(

−G35
kBT )k35 + k56)]

, (4.8a)

R =
k13k35k56

2Γ1
~
[k35k56 + exp(−G13

kBT )k13(exp(
−G35
kBT )k35 + k56)]

. (4.8b)

Moreover, if we assume that k56 À k53 we get the expressions as in the work [91] for 5-sites
superexchange/sequential kinetic model

K =
k13k35

kSM (k35 + k31)
, (4.9a)

R =
k13k35

2Γ1
~
(k35 + k31)

. (4.9b)

The results of numerical calculations of QY’s and superexchange rate constants for the
parallel sequential and the superexchange mechanism in both branches of RC for different
samples of RC are collected in Table 4.2.

Sample T 1/kSL 1/kSM ΦL ΦM ΦG

(K) (ps) (ps)

WT 295 105 1232 0.968 0.018 0.014
200 102 1195 0.984 0.003 0.013

F(L121)D 295 1607 1232 0.751 0.136 0.113
200 2160 1195 0.925 0.019 0.056

L(M212)H 295 2609 1232 0.734 0.15 0.116
200 3535 1195 0.927 0.018 0.055

Table 4.2: Computed constants 1/kSL, 1/kSM and quantum yields for wild type and mutant RC’s. Parallel
sequential and superexchange mechanism in both branches was assumed.
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4.3 Asymmetry in electronic couplings

There is also a possibility that the the asymmetry of the electronic factors can contribute to
the unidirectionality [75, 77, 84, 111, 112]. When we assume, similarly as in the work [75],
that there is an asymmetry in the electronic couplings, V13/V12 ≈ 2.8 and V35/V24 ≈
2.1, and also using the parameters for computations: ~ωij=1500 cm−1, ~ω56=1600 cm−1,
V12=11.4 cm−1, V13=32 cm−1, V24=28 cm−1, V35=59 cm−1, V56=4.8 cm−1, Sij = 0.5, S15 =
S14 = S56 = 1, ε1 = 0, ε3=−450 cm−1, ε2=800 cm−1, ε4=−1000 cm−1, ε5=−2000 cm−1,
ε6=−7200 cm−1, λij=800 cm−1, λ15 = λ14=1600 cm−1, λ56 = 4800 cm−1, and 2Γ1/~ =
(170 ps)−1, we get the corresponding quantum yields and constants kij for the wild type
of RC in the case if only sequential mechanism of ET via both branches L, M at T=295K
was assumed: ΦG ≈ 0.015, ΦM ≈ 0.002, ΦL ≈ 0.983, k13=(2.35 ps)−1, k35=(0.9 ps)−1,
k12=(762 ps)−1, k24=(4.5 ps)−1, k56=(200 ps)−1. At a temperature T=200K: ΦG ≈ 0.0125,
ΦM ≈ 0.0004, ΦL ≈ 0.9871, k13=(2.1 ps)−1, k35=(1.1 ps)−1, k12=(4 ns)−1, k24=(5.4 ps)−1,
k56=(186 ps)−1. If we assume also superexchange mechanism of ET we get the values of
corresponding quantum yields and rate constant kij for the wild type of RC as is shown
in Table 4.3.

Sample T ε2 ε3 ε4 ε5 1/kSL 1/kSM ΦL ΦM ΦG

(K) (cm−1) (cm−1) (cm−1) (cm−1) (ps) (ps)

WT 295 800 -450 -1000 -2000 105 43092 0.984 0.002 0.014
200 102 41827 0.9873 0.0004 0.0123

WT 295 -450 -450 -2000 -2000 105 3694 0.873 0.115 0.012
200 102 3581 0.881 0.108 0.011

Table 4.3: Computed constants and quantum yields for wild type of RC in the case of asymmetry in the
electronic couplings V13/V12 ≈ 2.8 and V35/V24 ≈ 2.1. Parallel sequential and superexchange mechanism in
both branches was assumed. Rate constants kij has the same values as in the case of sequential mechanism
of ET.

However, if there is only one asymmetry in the electronic couplings, we have the fol-
lowing QY and kij for wild type of RC in the case if only sequential mechanism of ET
in both branches at T=295K was assumed : ΦG ≈ 0.013, ΦM ≈ 0.116, ΦL ≈ 0.871,
k13=(2.35 ps)−1, k35=(0.9 ps)−1, k12=(18 ps)−1, k24=(4 ps)−1, k56=(200 ps)−1. At tem-
perature T=200K we have : ΦG ≈ 0.011, ΦM ≈ 0.110, ΦL ≈ 0.879, k13=(2.1 ps)−1,
k35=(1.1 ps)−1, k12=(17 ps)−1, k24=(5 ps)−1, k56=(186 ps)−1. In the computations the
following parameters were utilized: ~ωij=1500 cm−1, V12=11.4 cm−1, V13=32 cm−1, V24
= 28 cm−1, V35=59 cm−1, Sij = 0.5, S15 = S14 = 1, ε1 = 0, ε3=−450 cm−1, ε2 =
−450 cm−1, ε4 = −2000 cm−1, ε5 = −2000 cm−1, ε6 = −7200 cm−1, λij = 800 cm−1,
λ15 = λ14=1600 cm−1, and 2Γ1/~=(170 ps)−1. Similarly as in the previous case if we
assume the contribution of superexchange mechanism to ET we get the values of corre-
sponding quantum yields and rate constant kSL(M) for the wild type of RC as is shown in
Table 4.3.

Now we would like to get observed QY of the D, DH, KDH mutants of RC. Based
on Rb.capsulatus RC mutants [63, 94] it was suggested that the L(M212)H mutation
(denoted β) raises a free energy of P+H−

L roughly to the free energy level of P+H−
M .

We expect that the value ε5=−1000 cm−1 should correctly characterize these mutants.
G(M201)D/L(M212)H of Rb.capsulatus RC double mutant (denoted DH) shows 15%
of ET to M -side bacteriopheophytin, 70% to the L-side cofactors, and 15% was deacti-
vated to the ground state. The suggested model for the DH mutant assumes that the
G(M201)D mutation increases a free energy of P+B−L above P ∗ (ref. [69]) and so we
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had to increase the energy ε3 from the value ε3=−450 cm−1 to the value ε3=−200 cm−1.
With this energy change, comparing to wild type of RC, we can reproduce the ob-
served quantum yields in the DH mutants. With a triple mutant of Rb.capsulatus [63],
S(L178)K/G(M201)D/L(M212)H (denoted KDH), 62% of ET was observed to the L-
side bacteriopheophytin, 23% to the M-side, and 15% was returning to the ground state.
It is expected that in this mutation, it is the S(L178)K mutation which lowers the free en-
ergy of the P+B−M state. To characterize this change of energy level we have used the value
ε2=700 cm−1. This is the only change in parameters comparing to the previous mutant to
elucidate the quantum yields.

If we want to elucidate the observed quantum yields also inD,DH, andKDH mutants
of RC, we have to assume, similarly as in the works [111, 112] that there is an asymmetry
in the electronic couplings (V mut

13 /V WT
13 )2 ≈ 0.42 on the branch L for this kind of mutants.

Moreover, that DH, KDH mutants of RC change also value of the electronic coupling
V35 from the value V35=59 cm−1 to the value V35=6 cm−1 because of the mutation near
bacteriopheopytin BPhL.

Sample T ε3 ε5 ε2 1/k121/k241/k131/k351/k561/kSL1/kSM ΦL ΦM ΦG

(K)(cm−1)(cm−1)(cm−1) (ps) (ps) (ps) (ps) (ps) (ps) (ps)

WT 295 -450 -2000 800 96.7 1.02 2.35 0.9 200 105 1232 0.97 0.02 0.01
200 508 1.2 2.1 1.1 186 102 1195 0.9840.0030.013

D 295 -200 -2000 800 96.7 1.02 13.5 1.03 200 1332 1231 0.85 0.08 0.07
200 508 1.2 14.5 1.21 186 1291 1195 0.91 0.01 0.08

DH 295 -200 -1000 800 96.7 1.02 13.5 55 192 11589 1231 0.69 0.17 0.14
200 508 1.2 14.5 46 179 11249 1195 0.85 0.02 0.13

KDH 295 -200 -1000 700 60 0.99 13.5 55 192 11589 963 0.62 0.25 0.13
200 253 1.23 14.5 46 179 11249 935 0.83 0.05 0.12

Table 4.4: Computed constants and quantum yields for D, DH, KDH mutants compare with WT of RC in
the case of the asymmetry in the electronic couplings (V mut

13 /V WT
13 )2 ≈ 0.42 and in addition for DH, KDH

mutants V35=6 cm
−1. Parallel sequential and superexchange mechanism in both branches was assumed.

The following parameters which are not included in Table (4.4) for WT and D, DH,
KDH mutants of RC were used to described the electron transfer in the both branches of
RC: ε1=0, ε4=−1000 cm−1, ε6=−7200 cm−1, V12=32 cm−1, V24=59 cm−1, V56=4.8 cm−1,
all next parameters which we need for calculations are the same as in the previous case
for computations of WT of RC in case of the asymmetry in electronic couplings. Only the
following parameters were different for calculations: for computations of WT of RC we
use value of the electronic couplings V13=32 cm−1, V35=59 cm−1, in the case of D mutant
we chose (because of the mutation near bacteriochlorophyll) V13=16 cm−1, V35=59 cm−1,
and finally for DH, KDH mutant of RC we chose the following values (because of the
mutation also near bacteriopheophytin) V13=16 cm−1, V35=6 cm−1 for computations of
quantum yields and the rate constants for the mutants of RC. The results of our numerical
calculations for D, DH, KDH mutants of RC compare with WT of RC for 6-sites parallel
superexchange/sequential kinetic model of ET are collected in Table (4.4). All the results
from the parallel superexchange/sequential model of electron transfer are being prepared
for the submission for publication. [43].
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4.4 Conclusions

Of course, the observed QY can be also reproduced by the selection of another parameter.
However, at the present there is not very much known about the change of electronic
coupling in the mutants to proceed in the discussion about these parameters. In case that
there is a strong asymmetry in the electronic couplings for the wild type of RC, the QY
of the mutants must be elucidated with other energetic parameters than the ones used in
this thesis. We believe that to discriminate between these options the determination of
the temperature dependence of QY can be most valuable.

The assignment of free-energy arrangement can be verified by similar temperature mea-
surements. For this purpose temperature effects on ET were calculated. We have predicted
the quantum yield for Rb.capsulatus mutant at 200K. Moreover, the calculated tempera-
ture dependence of ET with the selected energy arrangement shows that the asymmetry of
primary charge transfer is increasing with decreasing the temperature in the case of wild
type of RC. We have not demonstrated a strong increase of the ground state recombination
with a decrease of temperature in the case of F (L121)D, L(M212)H mutants compared
with double and triple mutants of Rb.capsulatus or YM210W mutant from our previous
models, because the free energy ε3 for F (L121)D, L(M212)H mutants is below P ∗(not as
in the case D, DH, KDH, Y FH, YM210W where the free energy ε3 is above P

∗).
Moreover, there is a possibility to elucidate the observed QY in the D mutant which

can be in accordance with the observed P ∗ lifetime temperature dependence. Experimental
data indicate a small temperature dependence of the lifetime of P ∗ state in a temperature
range 77 − 295K. The lifetime of P ∗ state is about (7.6 ps) at 285K and (10 ps) at 77K
in the D mutant [113]. From these data a value of ε3 can be estimated to be about
200 − 500 cm−1 above P ∗ and this case was analyzed in the work [91] for 5-sites kinetic
model of RC. The other possibility that we have to investigate is that ε3 can be 200 −
500 cm−1 below P ∗. In this case the increase of the lifetime of the D mutant, in comparison
to the wild type, should be also caused by changes in the electronic couplings on the
subunit L. This possibility leads to, assuming the changes in comparison to wild type of
RC in parameters, ε3=−200 cm−1, V13=16 cm−1 and in addition for DH, KDH mutants
V35=6 cm−1. Consequently, to elucidate the observed QY’s in D, DH, KDH mutants, we
established a 6-sites kinetic model with a contribution of the superexchange mechanism
of ET. We have also included in the model a possibility of repopulation of accessory
bacteriochlorophyll BChlL from the bacteriopheophytin BPhL molecule on the branch
L because of the smaller energy difference between the states P+BChl−L and P+BPh−L
compared to WT of RC.

Next, we obtain the QY’s and rate constants for D, DH, KDH mutants which are in
good agreement with experimental data. Moreover, we have predicted the change of QY’s
and rate constant depending on temperature in the case of high temperature regime. At
lower temperatures we get the QY’s through the branch L which are increasing together
with decreasing of temperatures (it is depending on whether energy level ε3 is below or
above P ∗). Up to now no experimental evidence is observed for temperature dependence
of D, DH, KDH mutants to give more credible information about their behaviour and
tell us which results are nearest to the reality.

From our analysis it follows that the superexchange mechanism operating in parallel
with the sequential process can be used to get a reliable QY’s. From Tables 4.2, 4.3 we
can see that the superexchange mechanism contributes a very small value and therefore
does not change the final quantum-yield visibly. In an approximation a parameter K,
which characterizes the asymmetry of ET, can be expressed for the coherent sequential
model by K ≈ (ε2 − ε1)

2/(ε3 − ε1)
2 and for the incoherent sequential model by K ≈
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exp{(E3 − E2)/kBT}, where the activation energy Ei is given by Ei = (εi − ε1 − λ)2/4λ,
i = 2, 3. λ is the medium reorganization energy. These two approximate expressions of the
parameter K for the coherent and the incoherent models are identical to the corresponding
formulas of a superexchange and sequential (two-step) model, respectively [84]. But the
parameter K expressed for our coherent and incoherent models before approximation, is
more complex with 6-ET kinetic sites.

The change of the free energy of the states P+BChl−L , P
+BChl−M significantly influences

the QY. The free-energy arrangement can be verified by the determination of the temper-
ature dependence of QY. For the 6-sites kinetic model, concretely for mutant F (L121)D
(where the energy level ε5 is increased but it is below the energy level ε3), we obtain the
results which are in good agreement with the observed data at high-temperature regime
and could elucidate the observed data also in the low temperature regime (77K). An ex-
perimental measurement observed in L(M212)H mutant the small reduction of ΦL from
the state P+BPh−L to the state P+Q−L by a low temperature at the same time with the
increase deactivation of P+BPh−L to the ground state. In our model we have not consid-
ered deactivation from P+BPh−L to the ground state and this might be the reason that ΦL

increased by the low temperature in this mutant. However, the quantum yields ΦL and
ΦM are more sensitive to the first step of ET and so small changes in the second step of
ET have no strong influence on the QY. The result is that our model predicts the sim-
ilar QY’s in these two mutants. The essential difference between F (L121)D, L(M212)H
and other mutants of RC is the fact that they have very small energy difference between
states P+BCh−L and P+BPh−L on the branch L, and therefore the repopulation of BChL

is possible.
In order to obtain numerical results at a low-temperature regime we have to use the

formula for kij where the low-frequency mode is described quantum-mechanically and
consequently compare the calculated results with the observed quantum yields.
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Chapter 5

Conclusions: the main results of

doctoral thesis

The aim of this dissertation is to get a deeper understanding and description of asymmetric
electron transfer in the photosynthetic bacterial reaction centers. This is the first step to
a better understanding of the process of electron transfer and thus the transport of energy
in photosynthetic organisms. Consequently, it could open a way for using the solar energy
more effectively. In the following I summarize achievements and the main results of my
doctoral thesis.

• Stochastic and nonstochastic models of asymmetric electron transfer in photosyn-
thetic bacteria have been suggested. For both the approaches generalized master
equations for a system of N molecules for population probability were established.
The expressions which characterize the asymmetry of electron transfer depending on
parameters included in the models were derived. Also analytical expressions for the
rate constants were found in the models.

• Analytical expressions for the ratios of quantum yields of electron escape via the
branch L, M or deactivation of the system to the ground state were defined. In all
the models from indicated analytical expressions numerical values of quantum yields
and the rate constants for WT and also some mutations of RC were computed. As
well the temperature dependence of the quantum yields and rate constants for several
mutations of RC were found out. The computed results are in a good accordance
with the experimental data.

• In the stochastic models it was shown that there are two ways how to explain the
unidirectionality of electron transfer in RC. The first one is a large difference of the
noise on L and M side of RC’s. The second one is a large difference in energy levels
of the accessory bacteriochlorophylls on the M and L branches of RC’s. The results
demonstrate that an individual amino acid residue can, through its influence on the
free energy of the charge-separated states, effectively dictate the balance between
the ET to the L and M -side chromophores of the RC’s. Despite the crucial role
of energy levels of accessory bacteriochlorophyll molecules for the unidirectionality
the overall reaction required certain relation among the parameters describing the
whole systems. In some cases all asymmetries of the system contribute to the unidi-
rectionality of the ET. It means that the asymmetries of the hopping terms, energy
levels and also the imaginary part of the energy levels of molecules contribute to the
unidirectionality.
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• Using the models we have derived the generalized master equations (GME), which
describe the primary charge transfer in the photosynthetic reaction centers. Usually
these integrodifferential equations (GME) are changed to differential equations (mas-
ter equations) without a verification of the correctness of this step. To justify this
change it has to be shown that the memory kernels Wij(t) fulfill certain conditions.
Specifically, if the memory kernel is damped very quickly in comparison to the relax-
ation of the system to the steady state, the ET has an incoherent character. When
these conditions are not fulfilled, ET has a coherent or partially coherent (damped
with oscillations) character and the (GME) must be used to describe the relaxation
of the system to the steady state.

• The asymmetry of electron transfer in photosynthetic reaction centers can be ex-
plained in several ways. One approach [37, 39, 40] which is presented in Chapter 2,3
assumes that the stochastic fluctuation does not depend on the localization of the
electron in the branch. In other words the transfer of electrons has a hot character.
The second possible explanation, presented in Chapter 3,4, is based on the model
where we suggest that in the RC the vibrational modes with a fast enough relaxation
are present and the system can partially relax to thermal equilibrium after each ET
step. We think that both the approaches give qualitatively the same ET asymmetry
dependence on the free energy and electronic coupling parameters. This means that
using slightly different parameters which characterize the models we can get the
same quantum yields at high temperature and also similar rate constants. The dif-
ference in the parameters and also the interplay between the forward and backward
kinetics, which depends on the temperature in incoherent sequential model and does
not depend on the temperature in the hot electron transfer case, predicts a differ-
ent dependence of ET asymmetry on the temperature in the incoherent sequential
model in comparison to the model where the electron transfer has a hot or coherent
character.

• Due to the presence of an imaginary part of energy levels in our models we get the
effect, which was named “fear of death”. With this effect, for strong enough sink
parameters the electron has a tendency to avoid the place with greater sink.

• From the outcome of our models it was found out that superexchange mechanism of
ET has only a very small effect on the final quantum yields. There is also a possi-
bility that with decreasing temperature the reorganization energy is also decreasing
so that at low temperature the incoherent sequential ET is changed to the coher-
ent sequential and it can have a similar contribution to QY as the superexchange
mechanism. Moreover, the application of incoherent sequential model to ET in some
mutants of RC can not describe the directionality of ET and it can also indicate that
ET in RC can have coherent or hot character at the first stage.

• From the indicated results it is evident that these models provide an estimation of
energetic and kinetic parameters of the systems, the knowledge of which is very im-
portant for understanding the origin of asymmetric electron transfer in the primary
process during photosynthesis. The photosynthetic reaction centers are complex sys-
tems in which one step is correlated with the following one to achieve the best
efficiency of their activity.

• To give a more credible information about the free energy arrangement and possible
asymmetry in the electronic coupling terms we have to compare the theoretical pre-
diction with observed quantum yields also at the low temperature regime. Still a little
is known about the parameters which we have included into our theoretical models
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especially at low temperatures. Therefore, we have to wait for new experimental
measurements that can shed more light into this problem.

• It is possible that the primary charge separations in photosynthesis can have a
nonlinear character. Therefore, we will need a nonlinear model of the electron transfer
to obtain a precise description of the charge-separation processes. In such a nonlinear
model we can use a gauge-field-theory approach [117, 118] to solve the problem of
unidirectionality of ET in reaction centers.

• I tried to offer in my thesis a complete analysis of unidirectionality of ET in RC’s and
addressed all relevant issues which arose during my research work. The results from
this doctoral thesis was already published and it has met with a positive feedback.

The highly asymmetric electron transfer in photosynthetic reaction centers is a promising
and interesting field of research in biophysics. In my thesis I offer solutions to several prob-
lems because the better understanding of this mechanism could help us to solve the puzzle
of the conversion of solar energy into chemical usable energy of photosynthetic organisms.
It would be also very beneficial to obtain the M -branch electron transfer of an RC mutant
with the same L-branch electron transfer rate as the wild type RC. Nevertheless, I am
convinced that the ideas and calculations presented in this thesis will contribute to better
understanding of photosynthesis and other related biomolecular systems.
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Appendix A

Projection operators

Projection operators make us possible to separate not important information from an
important one. Solving Liouville equation we get a complete information about systems,
which can be very complicated for the next use. Establishing suitable projection operators
allows us an effective choice of important information for us. Projection operators are
called also superoperators. Projection operators must fulfill the expressions

D = D2, D + (1−D) = 1. (A.1)

The time evolution of the operators of density state is described by the Liouville equation

i~
∂ρ(t)

∂t
= [H, ρ(t)]. (A.2)

We can write Liouville operators in the form

Lρ(t) ≡ 1

~
[H, ρ(t)]. (A.3)

By using (A.3) we can rewrite equation (A.2) in the form

i
∂

∂t
ρ(t) = Lρ(t). (A.4)

The quantum Liouville operator has four-index form and its elements are defined

(Lρ(t))ij =
∑

k,l

Lijklρkl(t). (A.5)

From the definition, the operator L commutes with hamiltonian H (in units ~ = 1)

Lijkl = Hikδjl −Hljδik. (A.6)

Using (A.1) and following applications of D and (1−D) on the equation (A.4) we get

i∂tDρ(t) = DL(t)ρ(t) = DL(t)Dρ(t) +DL(t)(1−D)ρ(t), (A.7a)

i∂t(1−D)ρ(t) = (1−D)L(t)ρ(t) = (1−D)L(t)(1−D)ρ(t)

+(1−D)L(t)Dρ(t). (A.7b)
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From Eq. (A.7b) we can compute the expression (1−D)ρ(t) then put it to the (A7a). In
the case when it is fulfilled

i∂t[e
i(1−D)Lt(1−D)ρ(t)] = ei(1−D)Lt(1−D)LDρ(t), (A.8a)

iei(1−D)Lt(1−D)ρ(t) = (1−D)LDρ(0)

+

∫ t

0
ei(1−D)Lτ (1−D)LDρ(τ)dτ, (A.8b)

i(1−D)ρ(t) = e−i(1−D)Lt(1−D)LDρ(0)

+

∫ t

0
e−i(1−D)L(t−τ)(1−D)LDρ(τ)dτ, (A.8c)

we get the Nakajima-Zwanzig identity

∂tDρ(t) = −iDLDρ(t)−DL

∫ t

0
e−i(1−D)L(t−τ)(1−D)LDρ(τ)dτ

−DLe−i(1−D)Lt(1−D)LDρ(0). (A.9)

By suitable choice of initial conditions, the term DLe−i(1−D)Lt(1−D)LDρ(0) will be equal
zero. With a simple calculation we get (Appendix E) that also the term iDLDρ(t) = 0.
We will work to the second order of perturbation theory. In this approximation we have

∂tDρ(t) = −DL(t)
∫ t

0
L(τ)Dρ(τ)dτ. (A.10)

For illustration we show some type of projection operators [79, 114, 115]:

(1) Nakajima-Zwanzig projection operator has the form

Dabcd = δabδacδbd,

(Dρ(t))ab = δabρaa(t) = δabPa(t). (A.11)

(2) Peierov projection operator has the form

Dabcd ≡ Dmµ,nν,pπ,sσ = δmnρ
R
µνδmpδnsδπσ ,

∑

ν

ρRνν = 1

(Dρ(t))mµ,nν = δmnρ
R
µν

∑

π

ρmπ,mπ(t) = δmnρ
R
µν

∑

π

Pmπ(t) = δmnρ
R
µνPm(t),

(A.12)

where ρRµν is an arbitrary matrix with indices, which describe the bath of investigated
system. Pm(t) is the probability of founding system in the state m regardless of the
surrounding bath.
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Appendix B

Derivation of GME for

stochastic model of ET

We begin from the equations (2.15)

∂tDρI(t) = −DL(t)
∫ t

0
L(τ)DρI(τ)dτ, (B.1)

and use the projection operator (2.16) in the form

(DA)mn = δmn〈Amm〉. (B.2)

First, we will compute the left side of equation (B.1). With using (B.2) we can write

∂t(DρI(t))aa = ∂t〈ρI(t)aa〉. (B.3)

If we assume (2.3) and (2.7) we get

B.3 = ∂t

{
exp[

i

~

∫ t

0
(ha(~R) + εa − iΓa)dτ ]ρaa(t) exp[−

i

~

∫ t

0
(ha(~R) + εa + iΓa)dτ ]

}

= ∂t(exp[
2Γat

~
]Pa(t)) =

2Γa

~
Pa(t) exp[

2Γat

~
] + exp[

2Γat

~
]∂tPa(t). (B.4)

The right side of equation (B.1), with using the prediction Pa(t) = 〈ρaa(t)〉 and (A.5),
(A.6) can be computed,

(DLI(t)LI(τ)DρI(τ))aa = 〈(LI(t)LI(τ)DρI(τ))aa〉 = 〈LI(t)aabcLI(τ)bcef (DρI(τ))ef 〉
= 〈LI(t)aabcLI(τ)bcefδef (ρI(τ))ff 〉

=
1

~2
〈
(
VI(t)abδac − V +I (t)caδab

)(
VI(τ)beδcf − V +I (τ)fcδbe

)
〉

×δef exp[
2Γfτ

~
]Pf (τ), (B.5)

we get

(DLI(t)LI(τ)DρI(τ))aa =
1

~2

∑

b

{
〈VI(t)abVI(τ)ba〉e

2Γaτ
~ Pa(τ)

−〈VI(t)abV
+
I (τ)ba〉e

2Γbτ

~ Pb(τ)

−〈V +I (t)baVI(τ)ab〉e
2Γbτ

~ Pb(τ)

+〈V +I (t)baV
+
I (τ)ab〉e

2Γaτ
~ Pa(τ)

}
, (B.6)
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APPENDIX B. Derivation of GME for stochastic model of ET

where from equation (2.8) VI(t) can be defined as

VI(t)ab = Vabe
i
~
(εa−εb)te

Γa−Γb
~

t exp[
i

~

∫ t

0
(ha(τ)− hb(τ))dτ ], (B.7a)

VI(t)
+
ab = Vabe

i
~
(εb−εa)te

Γb−Γa
~

t exp[
i

~

∫ t

0
(hb(τ)− ha(τ))dτ ]. (B.7b)

If we put (B.7a) into (B.6) we get the following equation

B.6 =
1

~2

∑

b

{
VabVbae

i(εa−εb)

~
(t−τ)e

Γa−Γb
~

(t−τ)〈exp[ i
~

∫ t

τ
(ha(τ1)− hb(τ1))dτ1]〉e

2Γaτ
~ Pa(τ)

−VabVbae
i(εa−εb)

~
(t−τ)e

Γa−Γb
~

(t+τ)〈exp[ i
~

∫ t

τ
(ha(τ1)− hb(τ1))dτ1]〉e

2Γbτ

~ Pb(τ)

−VabVbae
i(εb−εa)

~
(t−τ)e

Γa−Γb
~

(t+τ)〈exp[ i
~

∫ t

τ
(hb(τ1)− ha(τ1))dτ1]〉e

2Γbτ

~ Pb(τ)

+VabVbae
i(εb−εa)

~
(t−τ)e

Γa−Γb
~

(t−τ)〈exp[ i
~

∫ t

τ
(hb(τ1)− ha(τ1))dτ1]〉e

2Γaτ
~ Pa(τ)

}
.

(B.8)

Now after integration (B.8) for the overdamped regime (2.25) and with using (2.5) and
(2.6), we can substitute (B.4), (B.8) into (B.1) and find generalized master equations for
the population probabilities

∂Pi(t)

∂t
= −2Γi

~
Pi(t)−

n∑

j=1

2 | Vij |2
~2

∫ t

0
cos[

εi − εj +∆ij

~
(t− τ)]

×Θij(t− τ) exp[−Γi + Γj

~
(t− τ)](Pi(τ)− Pj(τ))dτ,

i = 1...n , i 6= j (B.9)

where Pi(t) is the population probability Pi(t) = 〈ρii(t)〉 and Θij(t) for the overdamped
regime (2.18), (2.25) has the form

Θij(t) = exp

(
−

Γe
ij

~

{
t− τ eij

[
1− exp

(
− t

τ eij

)]})
, i, j = 1, ..., n. (B.10)

Finally, we can solve (B.9) for two limiting cases, the fast and slow modulation limit as is
shown in sections 2.3.1 and 2.3.2, respectively.
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Appendix C

Derivation of rate constant in

underdamped regime

We will work in the strongly underdamped limit where condition ωL(M)τL(M) À 1 is
fulfilled. We start from equations (2.46)

wL(p) =
2J2L
~2

∫ ∞

0
cos[

εL
~
t] exp[−Γ1 + Γ3 + ~p

~
t]

exp

{
− 〈ξ

2
L〉

~2ω2L

[
2t

τL
+ 1− exp(− t

τL
)

(
cos(ωLt) +

3

ωLτL
sin(ωLt)

)]}
dt.

(C.1)

One can rewrite the above expression to the following form

wL(p) =
2J2L
~2

∫ ∞

0
cos[

εL
~
t] exp[−Γ1 + Γ3 + ~p

~
t]

exp{− 2〈ξ2L〉
~2ω2LτL

t} exp{− 〈ξ
2
L〉

~2ω2L
}

exp

{ 〈ξ2L〉
~2ω2L

e−t/τL cos(ωLt) +
3〈ξ2L〉

~2ω3LτL
e−t/τL sin(ωLt)

}
dt. (C.2)

Now we can distribute the last term in expression (C.2) to the form

exp

{ 〈ξ2L〉
~2ω2L

e−t/τL cos(ωLt) +
3〈ξ2L〉

~2ω3LτL
e−t/τL sin(ωLt)

}
=

exp

{ 〈ξ2L〉
~2ω2L

e−t/τL
1

2
(eiωLt + e−iωLt) +

3〈ξ2L〉
~2ω3LτL

e−t/τL
1

2i
(eiωLt − e−iωLt)

}
. (C.3)

We will continue with modification of the last term to the final form

exp

{ 〈ξ2L〉
~2ω2L

e−t/τL
1

2
(eiωLt + e−iωLt) +

3〈ξ2L〉
~2ω3LτL

e−t/τL
1

2i
(eiωLt − e−iωLt)

}
=

exp

{ 〈ξ2L〉
2~2ω2L

e−t/τLeiωLt(1 +
3

iωLτL
)

}
exp

{ 〈ξ2L〉
2~2ω2L

e−t/τLe−iωLt(1− 3

iωLτL
)

}
. (C.4)

Using the expansion of the exponential terms, (C.4) can be recast in the form

∞∑

α,β=0

1

α!β!

( 〈ξ2L〉
2~2ω2L

e−t/τL

)α+β(
1 +

3

iωLτL

)α(
1− 3

iωLτL

)β

eiωL(α−β)t. (C.5)
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APPENDIX C. Derivation of rate constant in underdamped regime

With the substitution q = α− β we can rewrite expression (C.5) to

∞∑

q=−∞

∞∑

β=0

1

β!(β + q)!

( 〈ξ2L〉
2~2ω2L

e−t/τL

)2β+q(√
1 +

3

iωLτL

)2β+q(√
1− 3

iωLτL

)2β+q

×
(√1 + 3

iωLτL√
1− 3

iωLτL

)q

eiωLqt, (C.6)

by using the definition of Bessel function we get the expression

∞∑

q=−∞

(√1 + 3
iωLτL√

1− 3
iωLτL

)q

Iq

{ 〈ξ2L〉
~2ω2L

e−t/τL

√
1 +

9

(ωLτL)2

}
eiωLqt. (C.7)

Splitting of (C.7) gives the terms

C.7 ≈ I0

{ 〈ξ2L〉
~2ω2L

e−t/τL

}
+

∞∑

q=1

Iq

{ 〈ξ2L〉
~2ω2L

e−t/τL

}

×
[(

1 + 3
iωLτL

1− 3
iωLτL

)q/2

eiωLqt +

(
1− 3

iωLτL

1 + 3
iωLτL

)q/2

e−iωLqt

]
. (C.8)

By using the relations 1
1±ε ≈ 1 ∓ ε, (1 ± ε)n ≈ 1 ± nε for ε → 0 (that is fulfilled in the

strongly underdamped limit) we get

I0

{ 〈ξ2L〉
~2ω2L

e−t/τL

}
+ 2

∞∑

q=1

Iq

{ 〈ξ2L〉
~2ω2L

e−t/τL

}{
cos(ωLqt) +

3q

ωLτL
sin(ωLqt)

}
. (C.9)

If we put (C.9) to (C.2), we finally obtain the expression

wL(p) =
2J2L
~2

exp{− 〈ξ
2
L〉

~2ω2L
}
∫ ∞

0

{
cos[

εL
~
t] exp[−Γ1 + Γ3 + ~p

~
t] exp{− 2〈ξ2L〉

~2ω2LτL
t}

×
[
I0{
〈ξ2L〉
~2ω2L

e−t/τL}+ 2
∞∑

q=1

Iq[
〈ξ2L〉
~2ω2L

e−t/τL ][cos(ωLqt) +
3q

ωLτL
sin(ωLqt)]

]}
dt,

(C.10)

here with using the distribution sin(α) cos(β) = 1/2[sin(α+β)+sin(α−β)], cos(α) cos(β) =
1/2[cos(α+β)+cos(α−β)] and after integration we get the expression for the rate constant

kL =
2J2L
~2ωL

e−SL

{ ∞∑

k=0

1

k!k!
(SL/2)

2k ΩL + 2k/αL

(ΩL + 2k/αL)2 + p2L

+
∞∑

k=0

∞∑

q=1

1

k!(k + q)!
(SL/2)

2k+q

[
ΩL + (2k + q)/αL + 3q

αL
(q − pL)

[ΩL + (2k + q)/αL]2 + [q − pL]2

+
ΩL + (2k + q)/αL + 3q

αL
(q + pL)

[ΩL + (2k + q)/αL]2 + [q + pL]2

]}
, (C.11)

where SL =
〈ξ2L〉

~2ω2L
, αL = ωLτL, ΩL = Γ1+Γ3

~ωL
+ 2SL

αL
, pL = εL

~ωL
and kL = wL(p→ 0+).
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Appendix D

Derivation of GME for

nonstochastic model of ET

We begin similarly as for the stochastic model of electron transfer from the equation

∂tDρI(t) = −DL(t)
∫ t

0
L(τ)DρI(τ)dτ, (D.1)

but we are using the projection operator in the form

DB =
N∑

j=1

Tr(|j〉〈j|B)ρj |j〉〈j|, (D.2)

where ρj is the equilibrium medium density matrix in the state |j〉, i.e.,

ρj =
exp(−Hj/kBT )

TrQ exp(−Hj/kBT )
. (D.3)

By using (D.2) on the left side of equation (D.1) and if we assume that the population on
the state |j〉 at time t is given by Pj(t) = Tr(|j〉〈j|ρ(t)), Tr ≡ TrQTre, we get

∂t〈n|DρI(t)|n〉 = ∂t

{
〈n|
∑

m

Pm(t)ρm|m〉〈m|n〉e
2Γm

~
t

}
= ρn∂t

{
e
2Γn

~
tPn(t)

}

= ρn

{
2Γn

~
Pn(t) exp[

2Γnt

~
] + exp[

2Γnt

~
]∂tPn(t)

}
. (D.4)

If we use (D.2), on the right side of equation (D.1) we can write

〈n|DL(t)
∫ t

0
L(τ)DρI(τ)dτ |n〉 = 〈〈|n〉〈n|L(t)

∫ t

0
L(τ)DρI(τ)dτ〉〉ρn. (D.5)

Now we need to compute the expression bellow, by using (A.6) on (D.5) we get

〈〈|n〉〈n|L(t)L(τ)DρI(τ)〉〉 = 〈〈|n〉〈n|
{
1

~
[VI(t)L(τ)DρI(τ)− L(τ)DρI(τ)V

+
I (t)]

}
〉〉

= 〈〈|n〉〈n|
{

1

~2

[
VI(t)[VI(τ)DρI(τ)−DρI(τ)V

+
I (τ)]

−[VI(τ)DρI(τ)−DρI(τ)V
+
I (τ)]V +I (t)

]}
〉〉. (D.6)
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Finally we obtain for (D.6) the expression

(D.6) =
1

~2
〈〈|n〉〈n|

{
VI(t)VI(τ)DρI(τ)− VI(t)DρI(τ)V

+
I (τ)− VI(τ)DρI(τ)V

+
I (t)

+DρI(τ)V
+
I (τ)V +I (t)

}
〉〉. (D.7)

We need to compute all terms in (D.7), beginning with the first one. Using (D.2),(3.2),(3.6)
we can rewrite the first term to the form

〈〈|n〉〈n|VI(t)VI(τ)DρI(τ)〉〉 =
∑

m(6=n)

〈〈VI(t)nmVI(τ)mnρn〉〉Pn(τ)e
2Γn

~
τ . (D.8)

Substituting (3.8) into equation (D.8) we find

〈〈|n〉〈n|VI(t)VI(τ)DρI(τ)〉〉 =
∑

m(6=n)

J2nm〈〈e
i
~
Hn(t−τ)e−

i
~
Hm(t−τ)ρn〉〉Pn(τ)e

2Γn
~

τ . (D.9)

We can rewrite hamiltonian (3.2) to the form

Hn = εn − iΓn +
∑

α

[
p2α
2mα

+
1

2
mαω

2
α(xα − dnα)

2

]

= εn − iΓn +
∑

α

[
~ωα(b

+
α bα + 1/2)−mαω

2
αdnα(bα + b+α )

√
~

2mαωα
+

1

2
mαω

2
αd
2
αn

]

= εn − iΓn + Eα
rn +

∑

α

[
~ωα(b

+
α bα + 1/2)−∆αn(bα + b+α )

]
, (D.10)

where Eα
rn = 1

2mαω
2
αd
2
αn, ∆αn =

√
~Eα

rnωα and b+α , bα are creation and annihilation
operators. Now substituting (D.10) into (D.9) we get

(D.9) =
∑

m(6=n)

J2nme
Γn−Γm

~
(t−τ)e

i
~
∆nm(t−τ)〈〈ρn exp

[
i

~
[~ω(b+b+ 1/2)−∆n(b+ b+)](t− τ)

]

× exp

[
− i

~
[~ω(b+b+ 1/2)−∆m(b+ b+)](t− τ)

]
〉〉Pn(τ)e

2Γn
~

τ , (D.11)

where ∆nm = εn +Ern − εm −Erm. To solve equation (D.11) we have to use the relation

e−
i
~
[~ω(b+b+1/2)−∆m(b+b+)]t = e−

i
~
[~ω(b+b+1/2)−∆n(b+b+)]t

× exp[+]

[
− i

h

∫ t

0
dse

i
~
[~ω(b+b+1/2)−∆n(b+b+)]s

×
{
(∆n −∆m)(b+ b+)

}
e−

i
~
[~ω(b+b+1/2)−∆n(b+b+)]s

]
,

(D.12)

and we obtain

(D.9) =
∑

m(6=n)

J2nme
Γn−Γm

~
(t−τ)e

i
~
∆nm(t−τ)e−

2i(∆n−∆m)∆n

~2ω
(t−τ)

×
〈〈

ρn exp[+]

[
− i

~

∫ t

0
dseiωsB

+B(∆n −∆m)(B +B+)e−iωsB+B

]〉〉
Pn(τ)e

2Γn
~

τ ,

(D.13)
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where we denote B = b− ∆n

~ω , B+ = b+− ∆n

~ω . By using the relations eiωsB
+BBe−iωsB+B =

Be−iωs, eiωsB
+BB+e−iωsB+B = B+eiωs [116] we gain

(D.9) =
∑

m(6=n)

J2nme
Γn−Γm

~
(t−τ)e

i
~
∆nm(t−τ)e−

2i(∆n−∆m)∆n

~2ω
(t−τ)Pn(τ)e

2Γn
~

τ

× exp

[
− (∆n −∆m)2

~2

∫ t

0
ds1

∫ s1

0
ds2

{
〈〈ρnB+B〉〉eiω(s1−s2) + 〈〈ρnBB+〉〉e−iω(s1−s2)

}]
.

(D.14)

In (D.14) it was assumed that 〈〈ρnB+B+〉〉 = 0, 〈〈ρnBB〉〉 = 0. Moreover, if we denote
〈〈ρnB+B〉〉 = n̄ and using commutation relations for the operators bb+− b+b = 1, we find

(D.9) =
∑

m(6=n)

J2nme
Γn−Γm

~
(t−τ)e

i
~
∆nm(t−τ)e−

2i(∆n−∆m)∆n

~2ω
(t−τ)Pn(τ)e

2Γn
~

τ

× exp

[
− (∆n −∆m)2

~2

∫ t

0
ds1

∫ s1

0
ds2

{
n̄eiω(s1−s2) + (n̄+ 1)e−iω(s1−s2)

}]
.

(D.15)

After integration (D.15) and a simple modification we finally find

〈〈|n〉〈n|VI(t)VI(τ)DρI(τ)〉〉 =
∑

m(6=n)

J2nme
Γn−Γm

~
(t−τ)e

i
~
(εn−εm)(t−τ)

× exp

[
Er

nm

~ω

{
n̄eiω(t−τ) + (n̄+ 1)e−iω(t−τ) − (2n̄+ 1)

}]
Pn(τ)e

2Γn
~

τ , (D.16)

where the Eα
nm = 1

2mαω
2
α(dnα− dmα)

2 is the reorganization energy of the αth mode when
the system transfer from the state |n〉 to the state |m〉. Similarly we can compute next
three terms in (D.7) and substituting (D.7), (D.4) into (D.1) we can express the general
master equation in the form

∂tPn(t) = −2Γn

~
Pn(t)−

N∑

m=1

∫ t

0
Wnm(t− τ)Pn(τ)dτ

+
N∑

m=1

∫ t

0
Wmn(t− τ)Pm(τ)dτ, n = 1, ..., N, n 6= m,

(D.17)

where

Wnm(t) = 2
|Vnm|2

~2
Re

{
exp

[
− Γn + Γm

~
t

]
exp

[
i(εn − εm)

~
t

]

× exp

{∑

α

Eα
nm

~ωα
[(n̄α + 1)e−iωαt + n̄αe

iωαt − (2n̄α + 1)]

}}
.

(D.18)

Here, n̄α = [exp(~ωα/kBT ) − 1]−1 is a thermal population of the αth mode and Vnm =
Vmn = Jnm is the interaction energy between n and m sites.
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Appendix E

Derivation of DL(t)D = 0 for the

models of ET

We begin with the derivation for the stochastic model of electron transfer. By using the
projection operators (2.16) acting on an arbitrary operator B in the Hilbert space, the
relation for DL(t)DB can be expressed as

(DL(t)DB)mn = δmn(L(t)DB)nn = δmn

∑

a,b

〈L(t)nnab(DB)ab〉

= δmn

∑

a,b

〈
L(t)nnabδab〈(B)aa〉

〉
= δmn

∑

a

〈
L(t)nnaa〈(B)aa〉

〉

= δmn

∑

a

〈L(t)nnaa〉〈(B)aa〉. (E.1)

Now we can compute the Liouville operator L(t)nnaa. By using (A.6), (B.7a), we obtain

L(t)nnaa = VI(t)naδna − V +I (t)anδna = δna(VI(t)na − V +I (t)an) = 0, (E.2)

which means that for stochastic model of ET the relation DL(t)DB = 0 is fulfilled.
For the nonstochastic model of electron transfer by using the projection operator (3.10)

the relation for DL(t)DB can be rewritten as follows:

DL(t)DB =
∑

n

〈〈
|n〉〈n|L(t)DB

〉〉
ρn|n〉〈n| =

∑

n

1

~

〈〈
〈n|[VI(t)DB

−DBV +I (t)]|n〉
〉〉

ρn|n〉〈n| =
∑

n6=m

1

~

〈〈
〈n|VI(t)|m〉〈m|DB|n〉

−〈n|DB|m〉〈m|V +I (t)|n〉
〉〉

ρn|n〉〈n| =
∑

n6=m

1

~

〈〈
VI(t)nm(DB)mn

−(DB)nmV
+
I (t)mn

〉〉
ρn|n〉〈n|. (E.3)

Substituting (3.8) into (E.3) we get (E.3)=0, it means that also for the nonstochastic
model of electron transfer the relation DL(t)DB = 0 is fulfilled.
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• M. Pudlak and R. Pincak
Charge separation in photosynthesis, Proceedings of the Conference Small Triangle
Meeting on Theoretical Physics , September, Snina (2001) 49.

• R. Pincak and M. Pudlak
Kinetic model of electron transfer in bacterial photosynthetic reaction center, Pro-
ceedings of the Conference Small Triangle Meeting on Theoretical Physics, October,
Snina (2002) 58.

Additional publication

• R. Pincak and V. A. Osipov
Localized electron states near pentagons in variously shaped carbon nanoparticles,
Physics Letters A 314 (2003) 315.

89


