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LOW-ENERGY PHYSICS OF BCS HAMILTONIAN OF STRONGLY
CORRELATED ELECTRONS

E. A. Kochetov
Bogoliubov Lab. of Theoretical Physics, JINR, 141980 Dubna, Russia

The investigation of strongly correlated electron systems has been the central issue in
solid state physics for more than four decades. The discovery of high-Tc superconductivity
in copper-oxide based compounds (cuprates) revived interest in simple models displaying
such strong correlations. Two much investigated models are the Hubbard model and its
�descendant the t-J model. One of the main theoretical questions in that �eld is whether or
not there is a superconducting phase in the t-J model [1]. Besides, the interplay between
antiferromagnetism and superconductivity in the cuprates as well as their sensitivity to
doping is still not very well understood.
An electron system is said to be strongly correlated if the leading energy scale in the problem
is the on-site Coulomb repulsion energy. In this case, the low-energy sector of the underlying
on-site Hilbert space should be modi�ed to exclude a state occupied by two electrons. Such
a modi�cation results in an entirely new physics to account for the relevant low-energy
excitations. Formally, strong correlations are encoded into the Gutzwiller-projected electron
(Hubbard) operators, Xσ0 = |σ〉〈0|, where the electron spin projection σ =↑, ↓, and vector
|0〉 stands for a vacancy state. These operators act directly in the restricted Hilbert space as
opposed to the conventional electron operators c†σ which describe the unconstrained system.
In contrast with the conventional fermion operators, which generate the standard fermionic
algebra, the Hubbard operators obey more complicated commutation/anticommutation rela-
tions and are closed into a superalgebra su(2|1) [2].
The conventional Bardeen-Cooper-Schrie�er (BCS) Hamiltonian induced by phonon-electron
interaction reads

HBCS = −t
∑
ijσ

(
c†iσcjσ + H.c.

)
+ ∆

∑
ij

(
c†i↑c

†
j↓ − c†i↓c

†
j↑ + H.c.

)
, (1)

where t and ∆ are coupling constants and the summation is extended over nn lattice
sites. It can easily be diagonalized in the momentum space, which results in the ground
state represented by a phase-coherent condensate of Cooper pairs. On the other hand, in
superconducting state induced by electron-electron interaction the formation of Cooper pairs
must re�ect strong electron correlations. As a result, the BCS e�ective Hamiltonian should be
directly modi�ed by the inclusion of the non-double occupancy (NDO) constraint to account
for such an e�ect. The Gutzwiller-projected (or strongly correlated) BCS Hamiltonian then
reads

HG
BCS = −t

∑
ijσ

(
Xσ0

i X0σ
j + H.c.

)
+ ∆

∑
ij

(
X↑0

i X↓0
j −X↓0

i X↑0
j + H.c.

)
. (2)

A few years back, Park discussed a close connection between the t-J model and the Gutzwiller-
projected BCS Hamiltonian [3]. It was shown both numerically and analytically that the
ground states of the t-J model at half �lling (i.e. of the aniferromagnetic (AF) Heisenberg
model) and of the strongly correlated BCS Hamiltonian are equivalent to each other. Moreover,
at su�ciently small doping, there is numerical evidence of a strong overlap between those
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two ground state wavefunctions, which provides further support for the existence of super--
conductivity in the t-J model. Clearly, it is interesting to establish by analytical means such
an equivalence at nonzero hole concentration. As is known, slightly away from half �lling the
long-range AF order is still observed in the cuprate superconductors. If the projected BCS
Hamiltonian is indeed believed to contain close to half �lling the low-energy physics of the
t-J Hamiltonian, its ground state must also exhibit the AF order in the immediate vicinity
of half �lling.
However, an analytical treatment of strongly correlated BCS Hamiltonian (2) poses a sever
technical problem. This Hamiltonian cannot be diagonalized either in a general case, or in
the limiting cases of t = 0 or ∆ = 0. Due to the local NDO constraint the present problem
is essentially at strong coupling. To derive a reliable approach, one should resolve the NDO
constraint prior to any approximations.
This can explicitly be carried out within the su(2|1) path-integral representation of the
partition function. We employ this technique to derive the low-energy long-wavelength
e�ective action for the lightly doped 2D projected BCS Hamiltonian (2) on a bipartite lattice.
The action obtained is shown to be identical to that of the 2D quantum antiferromagnetic
Heisenberg model explicitly represented by the classical 3D nonlinear σ-model [4]. In other
words, close to half �lling the ground state of the Gutzwiller-projected BCS Hamiltonian is
antiferromagnetically ordered and non-superconducting. Since the conventional BCS Hamil-
tonian does not exhibit any magnetic ordering and always displays superconductivity, this
result explicitly demonstrates that antiferromagnetism appears as a natural consequence of
the strong Coulomb repulsion at low doped regimes. This result shows also that the ground
state of the strong-pairing Gutzwiller-projected BCS Hamiltonian (2) can be considered
as a reference state to a lightly doped Mott insulator. Technically, this is an important
observation since it explicitly shows that the ordered magnetic state can evolve directly out
of the strongly correlated spin-liuid phase.
On the other hand, at moderate doping the ground state of the Gutzwiller-projected BCS
Hamiltonian becomes qualitatively similar to Anderson's resonating valence bond state which
is known to �t nicely the properties of the t-J model in this regime. This indicates that the
projected BCS Hamiltonian (2) captures the essential low-energy physics of the t-J model
in the whole underdoped region [4].

[1] E. Dagotto, Rev. Mod. Phys. 66 (1994) 763.

[2] P.B. Wiegmann, Phys. Rev. Lett. 60 (1988) 821.

[3] K. Park, Phys. Rev. Lett. 95 (2005) 027001.

[4] E. Kochetov, A. Ferraz and R. Pepino, Phys. Rev. B 79 (2009) 115135.
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MOBILITY IN EPITAXIAL GaN: LIMITATION OF ELECTRON
TRANSPORT DUE TO DISLOCATION WALLS

S. E. Krasavin
Bogoliubov Lab. of Theoretical Physics, JINR, 141980 Dubna, Russia

It is well known that the extended defects of di�erent types (mainly dislocations and dislocation
substructures) frequently occur in thin semiconducting �lms and layers. In this context, the
problem of their e�ect on carriers transport is of considerable present interest, both for
theoretical and practical reasons [1].
Recently, these investigations have been stimulated additionally by the reason of new promising
applications of GaN epitaxial �lms in optoelectronics [2, 3]. However, the performance of the
devices based on GaN is limited by threading dislocations (exclusive of recently synthesized
materials [4, 5]) with large densities 108−1011 cm−2, which are the result from the large lattice
mismatch between epilayer and substrate [6, 7, 8]. To improve the device characteristics, the
e�ect of dislocations on the mobility should be studied.
To study the peculiarities in electron mobility at room temperature in application to GaN
epitaxial �lms, we suggest a model based on the well-known Read approach [9, 10]. We
explain the sharp mobility drop at some critical carrier density which, in turn, depends
on the dislocation substructure [11, 12]. The total transverse mobility µ∗ versus carrier
density n is calculated when additional scattering due to electrostatic potential of a row
of dislocations or a dislocation wall exists along with other mechanisms. The reason to
consider dislocation walls is the fact found in most experiments that threading dislocations
concentrate at subgrain boundaries lining up in row [11, 13]. In this picture, at some
conditions (See discussion below) the mobility can be thermally activated because of the
charged dislocation barriers present. The equation for the potential barriers is obtained here
based on the model proposed in [14].
Let the wall of negatively charged dislocations be oriented along the y axis with the distance
between them equal to D, and the lines of each dislocation are directed along the z axis.
The negative charge in the dislocation line is compensated by a cylindrical positive space-
charge region, with radius R around any dislocation. Thus, we have the periodically ordered
cylinders with radius R. The Poisson equation in this case in the Schottky approximation
can be written as

∂2φ(x, y)

∂x2
+

∂2φ(x, y)

∂y2
= − e

εε0

[(
N+

d −N−
a

)
θ(L(y)− |x|)− fδ(x)

c

∞∑
n=−∞

δ(y − nD)
]
, (1)

θ(ξ) =

{
1, ξ > 0
0, ξ ≤ 0 ,

where N+
d , N−

a are the volume doping and unintentional acceptor densities, respectively.
D = b/2 sin α

2
, b is the absolute value of the Burgers vector, f is the fraction of sites of

dislocation that are occupied, ε is the dielectric constant, L(y) =
√

R2 − y2 is a periodic
function along the y axis which is the screening length where the potential φ(x, y) is not
equal to zero (by de�nition, φ(x, y) = 0 when |x| ≥ L(y)). Notice that φ(x, y) is an even
function on y with the period D, and can be represented as a Fourier series

φ(x, y) = φ0(x) +
∞∑

n=1

φn(x) cos(
2πny

D
), (2)
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where the explicit form of the expansion coe�cients in Eq.(2) can be found in [15].
The barrier-limited mobility, generally, takes the form [16]

µGB =
( eL√

8kTπm∗

)
exp

(−V (0, y = R)/kT
)
, (3)

where e is the absolute value of the electron charge, m∗ its e�ective mass, k is the Boltzmann
constant, T is the temperature, L is the average grain size, and V (0, y = R) = −eφ(0, y = R)
is the value of the two-dimensional potential barrier caused by charged dislocations at x = 0.
Notice that the potential V (0, y = R) has quite a simple form when 2R ≈ D [14]

V (0, y = D/2) = −eφ(0, y = D/2) =
4e2(N+

d −N−
a )R3

3ε0εD
− e2f

2cπε0ε
ln 2. (4)
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Figure 1: Room temperature mobility vs free carrier concentration for two samples with
Ndis = 5 × 109cm−2 (open circles), Ndis = 2 × 1010cm−2 (closed circles) from Ref. [12].
Solids lines are theoretical curves. A set of the model parameters used in calculations: (open
circles) f = 0.05, D = 1000�A, compensation ratio equal to 0.3, L = 30000�A; (closed circles)
f = 0.05, D = 900�A, compensation ratio equal to 0.4, L = 30000�A. Other parameters are
taken from Ref. [18]

Thus, the total e�ective mobility takes the form [16, 17]

1

µ∗
=

1

µ1

+
1

µGB

, (5)

where µ1 is the mobility caused by di�erent mechanisms of scattering in GaN �lms except
charged dislocation walls. We have used the explicit form for µ1 and the main parameters
for GaN from [18]. Using the proposed here model, we are able to reproduce quantitatively
the drop of the mobility µ∗ at some critical meanings of carrier density, as one can see from
Figure 1. The sharp transition to the low mobility regime is caused by the domination of
µGB as n falls.
The nature of this domination is the rise of the potential barrier as the dopant density
decreases, since V (0, y = R) is a function of the ratio 2R/D, while R ∼ 1/

√
N+

d −N−
a . As
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the result, µGB decreases as n = N+
d − N−

a − nt decreases (µ1 À µGB), and from Eq.(9)
we have µ∗ ' µGB. Since the doping level increases, the bulk single-crystal mobility starts
to dominate. Also, at �xed 2R, V (0, y = R) will be greater for smaller D (increase of the
local dislocation density in the dislocation wall). This explains the correlation between the
position of the minimum of n and the dislocation density. However, the model does not
allow to reproduce the rise of the mobility below the minimum (2R/D > 1). Most likely,
this increase can be explained in the framework of the percolation theory [16, 19].
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DROPLET SHAPE WITHIN THE SPHERICAL MODEL OF LATTICE
GAS

A. E. Patrick
Bogoliubov Lab. of Theoretical Physics, JINR, 141980 Dubna, Russia

Substances in the liquid state tend to form droplets. On the phenomenological level, the
description of their shapes reduces to minimization of surface tension (the Wul� functional).
However, in order to solve this problem from �rst principles (starting from a microscopic
description of a macroscopic system), one has to overcome several fundamentally di�cult
obstacles. The �rst one is connected with the fact that in translation invariant systems the
spatial location of the droplet is not �xed, and hence the natural state of the system under
investigation is mixed (not pure). Average values of microscopic variables in a state like this
inherit translation invariance of the Hamiltonian and, therefore, do not reveal the droplet
shape. On the other hand, experimental observations are described by pure states.
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Figure 1: The shape of the maximally symmetric droplet.

One can try to single out pure states with the help of quasi-averages, but in doing so we
encounter the second obstacle one has to overcome. Quasi-averaging proved to be quite
an e�cient tool for calculating observable values of intensive quantities, like density or
magnetization. However, when it comes to surface properties, the situation becomes more
complicated. An arbitrarily weak external �eld (of magnitude ε) deforms droplets unrecogni-
sably and, therefore, is not helpful for �nding such delicate characteristics as a droplet shape.
Fortunately, there exists a more potent version of quasi-averaging, where the magnitude of
external �eld tends to zero in the thermodynamic limit (as εn−δ), see [1]. It turns out that
if the �eld is switched o� su�ciently fast, the obtained density pro�les do not depend on
the �eld magnitude ε and the switching-o� exponent δ, and hence these pro�les describe the
true droplet shapes.
In paper [3], the shape of droplets of condensed matter is investigated within the spherical
model of a lattice gas, see [2, 4], de�ned on a square lattice Zd. The Hamiltonian of the
model is given by

Hn = −J
∑

j,k∈Vn

Tjkxjxk −
∑
j∈Vn

hjxj,
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where J > 0, and Tjk are the elements of the nearest-neighbour interaction matrix. In
order to obtain a model with a physically sensible low-temperature phase, one can impose
the so-called spherical constraint,

∑
j∈Vn

x2
j = nd. Finally, in order to prevent one of the

thermodynamically stable phases �lling the entire available volume Vn, we have to impose
the density constraint

∑
j∈Vn

xj = ρnd.
It is shown in [3] that the droplet boundary within the spherical model is always di�use, as
opposed to sharp, and the corresponding density pro�les (droplet shapes) can be described
by exact formulae. The 2D slice of the maximally symmetric droplet is shown in Fig. 1.

[1] J. G. Brankov, V. A. Zagrebnov, and N. S. Tonchev, �Description of the limit Gibbs
states for the Curie-Weiss-Ising model�, Theor. Math. Phys. 66 (1986) 72�80.

[2] H. A. Gersch and T. H. Berlin, �Spherical Lattice Gas�, Phys. Rev. 127 (1962) 2276�
2283.

[3] A. E. Patrick, �A Droplet within the Spherical Model�, to be published in Journal of
Statistical Physics [arXiv: 1011.4924].

[4] W. Pressman and J. B. Keller, �Equation of State and Phase Transition of the Spherical
Lattice Gas�, Phys. Rev. 120 (1960) 22�32.
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MICROSCOPIC THEORY OF SPIN-EXCITATION SPECTRUM IN
SUPERCONDUCTING CUPRATES

A.A. Vladimirova, D. Ihleb, and N. M. Plakidaa,c

aJoint Institute for Nuclear Research, 141980 Dubna, Russia
b Institut f�ur Theoretische Physik, Universit�at Leipzig, D-04109, Leipzig, Germany
cMax-Planck-Institut f�ur Physik komplexer Systeme, D-01187, Dresden, Germany

1. General theory
To describe spin excitations in strongly correlated electronic systems, such as superconducting
cuprates [4], the t�J model is commonly used. It can be written as

H = −
∑

i6=j,σ

tijX
σ0
i X0σ

j − µ
∑
iσ

Xσσ
i +

1

4

∑

i6=j,σ

Jij

(
Xσσ̄

i X σ̄σ
j −Xσσ

i X σ̄σ̄
j

)
, (1)

where tij is the hopping integral and Jij is the exchange interaction. The Hubbard operators
Xαβ

i = |i, α〉〈i, β| describe transitions between three possible states at a site i on a square
lattice: an empty (hole) state |i, 0〉 and a singly occupied state |i, σ〉 with spin σ = ±(1/2), (σ̄ =
−σ). The number and spin operators are given by: Ni =

∑
σ Xσσ

i , Sσ
i = Xσσ̄

i , Sz
i =

∑
σ σXσσ

i .
The chemical potential µ is determined from the equation for the average electron density
n = 〈Ni〉 = 1− δ, where δ = 〈X00

i 〉 is the hole concentration.
Applying the Mori-type projection technique, an exact representation of DSS in terms of the
transverse spin-density operators S±q = Sx

q ± iSy
q was derived [1],

χ(q, ω) = −〈〈S+
q |S−−q〉〉ω =

m(q)

ω2
q + ω Σ(q, ω)− ω2

, (2)

where m(q) = 〈[iṠ+
q , S−−q]〉 = 〈[ [S+

q , H], S−−q]〉, and ωq is the spin-excitation spectrum in a
generalized mean-�eld approximation (MFA). The self-energy is given by the many-particle
Kubo-Mori relaxation function

Σ(q, ω) = [1/m(q)] ((−S̈+
q | − S̈−−q))

(proper)
ω , (3)

where −S̈±q = [ [S±q , H], H]. The Kubo-Mori relaxation function is de�ned as

((A|B))ω = −i

∫ ∞

0

dteiωt(A(t), B), (A(t), B) =

∫ β

0

dλ〈A(t− iλ)B〉, (4)

where β = 1/kBT . The �proper� part of the relaxation function (3) does not contain parts
connected by a single-particle relaxation function which corresponds to the projected time
evolution in the original Mori projection technique. The spin-excitation spectrum is given
by the imaginary part of DSS χ′′(q, ω) in (2). The static susceptibility in (2) is de�ned by
the equation χq = χ(q, 0) = m(q)/ω2

q. The spin-excitation spectrum ωq was calculated from
the equality m(q) = (−S̈+

q , S−−q) = ω2
q (S+

q , S−−q), where the correlation function (−S̈+
q , S−−q)

was evaluated in the mode-coupling approximation (MCA).
The self-energy (3) is de�ned in terms of the operators −S̈±i = [[S±i , (Ht+HJ)], (Ht+HJ)] ≡∑

α Fα
i (α = tt, tJ, Jt, JJ), where Ht and HJ are the hopping and the exchange parts of
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the Hamiltonian (1). There are 16 contributions of type ((Fα
q |F γ

−q))ω. As calculations show,
at a �nite hole doping δ > 0.05 the largest contribution to the self-energy (3) is given by the
term Σt(q, ω) = ((F tt

q |F tt
−q))ω coming from the spin-electron scattering [2],

F tt
i =

∑
j,n

tij

{
tjn

[
H−

ijn + H+
nji

]− tin
[
H−

jin + H+
nij

]}
, (5)

where Hσ
ijn = Xσ0

i S+
j X0σ

n + X+0
i (1 − Nj/2)X0−

n . We calculate the self-energy in the MCA
assuming independent propagation of electronic (Xσ0

i ) and bosonic (S+
j , Nj ) excitations

at di�erent lattice sites in (5). This results in the decoupling of the time-dependent many-
particle correlation function into a product of the corresponding single-particle functions:

〈Xσ0
q3

S−−q2
X0σ

q1
|Xσ0

q1
(t)S+

q2
(t)X0σ

q3
(t)〉 = 〈X0σ

q1
Xσ0

q1
(t)〉 〈S−−q2

S+
q2

(t)〉 〈Xσ0
q3

X0σ
q3

(t)〉 . (6)

Using the MCA and the MFA for the corresponding single-particle correlation function in
(6) the imaginary part of the self-energy can be written as [3]

Σ′′
t (q, ω) =

π(2t)4

ωm(q)

Q2

N2

∑
q1,q2

∑
ω1=±Eq1

∑

ω2=±ω̃q2

∑
ω3=±Eq3

m(q2)

8ω1ω2ω3

(7)

[N(ω2)n(−ω1)n(ω3) + N(−ω2)n(ω1)n(−ω3)]δ(ω + ω1 − ω2 − ω3)[
(Λ2

q1,q2,q3
+ Λ2

q3,q2,q1
)(ω1 + εq1)(ω3 + εq3)− 2Λq1,q2,q3Λq3,q2,q1∆q1∆q3

]
,

where the vertex function is de�ned by Λq1q2q3 = 4(γq3+q2 − γq1) γq3 + γq2 − γq1+q3 , γq =
1/2(cos qx + cos qy) with q3 = q− q1− q2. In the electron spectrum εq we take into account
only the nearest-neighbor hopping t and consider the energy dispersion in the Hubbard-I
approximation: εq = −4tQ γq − µ where Q = 1− n/2 is the Hubbard weighting factor. We
consider here the superconducting state, where the spectrum of quasiparticles is given by
the conventional formula Eq =

√
ε2
q + ∆2

q, where ∆q is the superconducting gap function.
The Fermi and Bose functions are denoted by n(ω) = (eβω + 1)−1 and N(ω) = (eβω − 1)−1.
It should be emphasized that the self-energy (7) is determined by the decay of spin excitation
with the energy ω and wave vector q into three excitations: a particle-hole pair and spin
excitation. This process is controlled by the energy and momentum conservation laws, ω =
(ω3 − ω1) + ω2 and q = q1 + q2 + q3, respectively. In the previous studies of the t-J
model the self-energy was considered in a particle-hole bubble approximation, where the
contribution of additional spin excitation was neglected or approximated by the static or
mean-�eld-type expressions (see, e.g., [5]). This approximation resulted in the random-phase-
type approximation for DSS. It is possible to derive the particle-hole bubble approximation
from Eq. (7) by ignoring the spin-energy contribution ω2 in comparison with the electron-
hole pair energy (ω3 − ω1) and excluding the spin-excitation wave-vector q2 from the wave-
vector conservation law: q = q1 + q3. In this approximation, a di�erent behavior of the
spin-excitation spectrum is observed in comparison with the results obtained for the full
self-energy (7) [3].

2. Results and discussion
2.1. Static magnetic properties [2]. The spectrum of spin excitation and the static
susceptibility were calculated by solving self-consistently the system of equations for the
spectrum ωq and the static correlation function Cq = 〈S+

q S−−q〉 = (m(q)/2ωq) coth(β ωq/2)
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Figure 1: Left panel: Staggered magnetization m(δ) for di�erent values of J/t. Right panel:
Inverse AF correlation length 1/ξ(T ) for di�erent doping and neutron-scattering data
(symbols). The inset exhibits ξ(δ) at T = 0 (solid line) and T = 0.1t (dashed line).

which de�nes the spectrum. At zero temperature, T = 0, a long-range antiferromagnetic
(AF) order (LRO) can emerge which manifests itself in the divergency of static susceptibility
χq = m(q)/ω2

q at the AF wave vector Q = π(1, 1) for a two-dimensional lattice, ωQ → ∞.
The staggered magnetization m2 = 3C/2, de�ned by the constant term in the pair spin-
correlation function, CR = (1/N)

∑
q6=Q Cqexp(iqR)+C exp(iQR) , at zero temperature is

plotted in Fig. 1 (left panel). We obtain strong suppression of LRO with increasing doping
δ due to the spin-hole interaction. Above the critical doping δ > δc LRO disappears. It is
remarkable that δc is nearly proportional to J/t.
Figure 1 (right panel) shows the inverse correlation length ξ−1(T, δ) at J/t = 0.4. At zero
doping, ξ−1(T ) exhibits the known exponential decrease as T → 0. For δ > δc we obtain �nite
values of ξ as T → 0 corresponding to the vanishing LRO. The reasonable agreement with
the neutron-scattering experiments on La1.96Sr0.04CuO4 shown by symbols is obtained [6].
Concerning the doping dependence of ξ(δ, T ) depicted in the inset of Fig. 1 (right panel), it
can be described approximately by the proportionality ξ(δ, T ) ∝ 1/

√
δ (dashed line, holding,

at T = 0, for δ ≥ 0.1) which agrees with the experimental �ndings [6].

2.2. Spin dynamics in the normal state [2]. The spectrum of spin excitations ωq

and the damping Γq = −(1/2)Σ′′(q, ωq) were calculated by using the equation for the
imaginary part of the self-energy in the normal state Σ′′

t (q, ω) (7) with ∆q = 0 and a
similar expression for the self-energy Σ′′

J(q, ω) caused by the exchange interaction, F J =
[[S±i , HJ)], HJ ]. In the Heisenberg limit at δ = 0 the spectrum of spin excitations and the
damping ΓJ,q is shown in Fig. 2 (left panel). In the spin-wave region, at qξ À 1, we get well-
de�ned quasiparticles with Γq ¿ ωq, as usually observed for the Heisenberg model. However,
for nonzero doping the spin-hole scattering contribution Σ′′

t (q, ω) (7) increases rapidly with
doping and temperature and already at moderate hole concentration far exceeds the spin-
spin scattering contribution Σ′′

J(q, ω) , as demonstrated in Fig. 2 (right panel). We conclude
that depending on q, doping and temperature, the spin excitations may have a di�erent
character and dynamics. At low enough doping and low temperatures, i.e., at small enough
Γt,q, well-de�ned high-energy spin-wave-like excitations propagating in the AF short-range
order background are observed, while a crossover to di�usive-type spin excitations occurred
for higher doping and temperatures in accordance with neutron-scattering experiments.
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and at δ = 0.09 (right panel).

2.3. Spin dynamics in the superconducting state [3]. In the superconducting state
the spin-excitation spectrum of high-Tc cuprates is dominated by a sharp magnetic peak at
the planar AF wave vector Q which is called the resonance mode (RM). It was discovered
in the inelastic neutron scattering (INS) experiments which revealed a suppression of the
spectral weight of low-energy spin excitations at low temperatures and its transfer to higher
energies resulting in RM. Experimentally, the RM energy Er decreases with underdoping
following the superconducting transition temperature, Er ' 5.3kBTc, but only weakly depends
on temperature. In many publications the RM phenomenon was explained by the opening
of the energy gap 2∆q in the particle-hole excitations below Tc, which results in appearance
of a bound state (spin-exciton) at the spin energy Er < 2∆q. However, in this scenario a
strong temperature dependence of RM should be observed driven by 2∆(T ) which has not
been found in INS experiments.
To explain the appearance of RM above Tc and its weak temperature dependence, we
have developed a microscopic theory of RM in [3] by generalizing our approach in [2]
to the superconducting state. The temperature and doping dependence of the spectral
function χ′′(Q, ω) were calculated using the self-energy (7) for the d-wave gap function
∆q = (∆/2)(cos qx − cos qy). The DSS reveals RM at low temperatures due to a strong
suppression of the damping of spin excitations. This is explained by the involvement of spin
excitations in the decay process, as discussed above, besides the particle-hole continuum
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usually considered in the bubble-type approximation (see, e.g., [5] ). The spin gap in the
spin-excitation spectrum at Q (see Fig. 2) plays a dominant role in limiting the decay of RM
in comparison with the superconducting gap which results in the observation of RM even
above Tc in the underdoped region. So as compared with the spin-exciton scenario based on
the buble-type approximation, we propose an alternative explanation of RM which is driven
by the spin gap at Q instead of the superconducting gap 2∆.
The temperature dependence of the spectral function in the overdoped case δ = 0.2 is shown
in Fig. 3 (left panel). It has high intensity at low temperatures, but strongly decreases with
temperature and becomes very broad at T ∼ Tc, as found in experiments. In Fig. 3 (right
panel), the temperature dependence of the spectral function for the underdoped case δ = 0.09
is plotted, whereas the resonance energy decreases with underdoping and the intensity of the
RM greatly increases in accordance with experiments. The RM energy weakly depends on
temperature and is still quite visible even at T = 1.4Tc. Good agreement of our results for
the temperature and doping dependence of the spin-excitation spectrum and RM with INS
experiments provides a strong support for the proposed theory (for details see [3]).
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MULTI-PARTICLE SPACE-TIME TRANSITIONS IN THE TOTALLY
ASYMMETRIC SIMPLE EXCLUSION PROCESS

A.M. Povolotsky, V.B. Priezzhev
Joint Institute for Nuclear Research, 141980 Dubna, Russia

Recently, the totally asymmetric simple exclusion process (TASEP) was a subject of numerous
investigations [1, 2]. In particular, several exact results about time dependent transition
probabilities were obtained for the TASEP on the in�nite lattice. Among them, there are
determinant formulas for the Green functions, i.e. transition probabilities between particle
con�gurations at di�erent time moments, which were obtained �rst in [3] for continuous time
TASEP and then generalized to discrete time dynamics [4, 5] and to the ring geometry [6, 7].
The next advance is calculation of correlation functions which are the transition probabilities
for several tagged particles, while the positions of the others are integrated out. The �rst
result was a distribution of the position of N -th particle at arbitrary time for the TASEP
with parallel update and step initial conditions, [8]. It was generalized later to the backward
sequential update, [4], and extended to �at initial conditions in [9]. The way to the multi-
particle distributions was discovered in [10]. Then, extensive studies were undertaken of the
distributions of positions of tagged particles at given time, [11, 12], and of particles on the
space-like paths, [13]. The aim of present contribution is to extend the range of available
multi-particle distributions. Speci�cally, we consider the TASEP with backward sequential
update and step initial conditions, and obtain the joint distribution of times taken by selected
particles to travel given distance.
Consider N particles on the one-dimensional integer lattice. A con�guration of the system
x takes its values in the set of strictly increasing integers x1 > x2 > · · · > xN . The TASEP
is a random process which is given as a sequence of con�gurations x0, x1, . . . , xt. We refer
to such a sequence as a trajectory of the system up to time t. Every trajectory is realized
with probability

P (x0, . . . , xt) = P1(x
t|xt−1) . . . P1(x

2|x1)P1(x
1|x0)P0(x

0), (1)

where P0(x) is the initial probability of con�guration x. The one-step transition probability
P1(x|y) from con�guration y to x takes the form

P1(x|y) =
N∏

i=1

θ (xi − yi, xi−1 − yi) , (2)

where θ (k, l) = (q + pδl,1) δk,0 + pδk,1, and we formally de�ne x0 = ∞. The parameter p, the
hopping probability, varies in the range 0 < p < 1 and we de�ne q = 1− p.
Consider the probability for the system to be in a con�guration x after t time steps, t ≥ 0,

Gt(x|y) =
∑

{x0,x1,...,xt−1}
P (x0, . . . , xt), (3)

given P0(x
0) = δy,x0 .

Proposition 0.1 The GF has the determinantal form

Gt(x|y) = det[Fj−i(xi − yj, t)]i,j=1,...,N , (4)
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where
Fn(x, t) =

{
1

2πi

∮
Γ0

dw
w

(
q + p

w

)t
(1− w)−nwx, t ≥ 0

0, t < 0
, (5)

and the integration contour Γ0 encircles the origin, while the point w=1 stays outside.

In present work we consider the TASEP at space-time points associated with di�erent
moments of time. To this end, we introduce a generalized Green function (GGF), [14]

Proposition 0.2 Given two admissible N-point con�gurations (x, t) and (x0, t0), such that
ti > t0i for i = 1, . . . , N , the GGF can be expressed in the determinantal form:

G ((x, t)|(x0, t0)) = det[Fj−i(xi − x0
j , ti − t0j)]i,j=1,...,N , (6)

where Fn(x, t) is de�ned in (5).

Consider N particles starting at the same moment of time t = 0 at positions separated by
unit intervals, x0

i = 1− i. Our aim is to have the joint distribution

P = Prob
(
{tn1 ≤ a1}

⋂
{tn2 ≤ a2}

⋂
· · ·

⋂
{tnm ≤ am}

)
(7)

of times tn1 , . . . , tnm , when m ≤ N particles labeled by indices n1 < n2 < · · · < nm jump o�
positions xn1 , . . . xnm taken from an array xi = x + N − i, i = 1, . . . , N and tn1 ≤ tn2 ≤ · · · ≤
tnm .
Consider a set of the N -paths consisting of N paths starting at the positions (x− i + N, 0)
and conditioned to make a step from (x− i+N, ti) to (x− i+N +1, ti +1), for i = 1, . . . , N
respectively. The probability of a particular set t1, . . . , tN is given by GGF G((x, t)|(x0, t0)
multiplied by the last step probability pN . The probability of interest (7) is a marginal of
this N particle probability. Its derivation is simpli�ed drastically when we observe that the
GGF itself is a marginal of an auxiliary determinantal point process [15].
Consider an auxiliary signed point process over the subsets of Z≥x × {1, . . . , n} of the form

T =
⋃

1≤n≤N

{τn
n , < τn

n−1, < . . . , < τn
1 } ⊂ Z≥(x−1) × {1, . . . , n} (8)

given by the measure

F (T ) =
1

ZN

N−1∏
n=0

det[φn(τn
i , τn+1

j )]n+1
i,j=1 det

[
ΨN

i (τN
N−i)

]N−1

i,j=0
, (9)

where we de�ne the functions

φn(z, y) =

{
p, y ≥ z
0, y < z

(10)

and
ΨN

k (t) = (−1)kF̃−k(x + N − k − 1, t), (11)
where

F̃n(x, t) =
1

2πi

∮

Γ0

dw

w

(
q +

p

w

)t

(1− w)−nwx, (12)
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The integral representation holds for t ∈ Z.
We also introduce �ctitious variables τn−1

n , 1 ≤ n ≤ N , which are e�ectively less than any
τn
j , so that φn(τn

n+1, τ
n+1
j ) ≡ p for j = 1, .., n+1. If we consider τn

j as coordinates of �ctitious
particles at the n-th time step, then τn

n+1 corresponds to a particle entering into the system
from a reservoir on the left [10].
Now, we are able to interpret the GGF in the following way.

Proposition 0.3 Let

(x0, t0) = ((0, 0), . . . , (−N + 1, 0)) (13)
(x, t) = ((x + N − 1, t1), . . . , (x, tN)) (14)

with t1 ≤ t2 ≤ · · · ≤ tN ∈ Z≥x and x ≥ −N + 1. Then we have

pNG((x, t)|(x0, t0)) = M
(

N⋃

k=1

{τ k
1 = tk}

)
(15)

The measure M(T ) has the same functional form as in [10, 15, 11]. In particular, Lemma
3.4 of [11] can be directly applied here. There is a di�erence in the form of functions ΨN

n (t)
and in the space where the variables τ i

j live, which is Z≥x rather than Z. This di�erence does
not a�ect the applicability of the Lemma, which is formulated in a rather abstract fashion,
though has to be taken into account when obtaining the �nal expressions. According to
Lemma 3.4 the multi-point correlation functions of M(T ) are determinantal.

Proposition 0.4 The correlation kernel of the measure M, (9), is

K(n1, τ1; n2, τ2) = (16)

p

∮

Γ1

dv

2πiv

∮

Γ0,v

dw

2πiw

(1− p(w−1
w

))τ1(w−1
w

)n1(w/v)x+N

(1− p(v−1
v

))τ2+1(v−1
v

)n2(w − v)

−1(n2 − n1)

∮

Γ1,0

pdz

2πiz2

(
z − 1

z

)n1−n2
(

1− p
z − 1

z

)τ1−τ2−1

.

The previous results furnish us with all the means required to write the quantity of interest
(7) as a Fredholm determinant, which is the content of the following theorem:

Theorem 0.5

P = det (1− χaKχa))l2({n1,...,nm}×Z≥x) , (17)

where χa(ni)(t) = 1(t > ai).
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DYNAMICS OF QUANTUM-DOT SUPERRADIANCE

V.I. Yukalov and E.P. Yukalova
Joint Institute for Nuclear Research, 141980 Dubna, Russia

The theory of quantum-dot radiation is developed being based on microscopic equations. The
possibility of realizing the superradiant regime is analyzed. The temporal evolution during all
radiation stages is studied in detail. Special attention is payed to the process when coherence
arises from an initially incoherent state. The description of this process is impossible by
means of the standard semiclassical equations, because of which a more accurate method
has been used in the paper, employing the stochastic mean-�eld approximation that has been
developed earlier and applied for describing the dynamics of spin assemblies, Bose systems
in random �elds, and atomic squeezing [1-3].
It is necessary to emphasize that the radiation dynamics of quantum dots has several speci�c
features distinguishing this dynamics from atomic radiation. This is connected, �rst of all,
with rather di�erent values of physical dot parameters, as compared to atomic parameters.
Because of this, despite many analogies, the theory of dot radiation requires a separate
investigation. The principal theoretical points that have been suggested in the present paper
for the adequate description of dot radiation are as follows [4]:
(i) Because of essential current �uctuations in semiconductor, the standard semiclassical
approximation, often used for atoms in free space, is not applicable for quantum dots.
For the latter more elaborate techniques are required, such as the stochastic mean-�eld
approximation.
(iii) For the correct description and principal understanding of the mechanism, triggering
the beginning of the radiation process, it is important to stress the existence of triggering
dipolar waves.
(iv) The single-mode picture is not applicable for quantum dots. It is necessary to consider
a bunch of transverse modes forming spatial �laments. To reduce the consideration to a
treatable problem, it is necessary to involve some tricks, like the transverse-mode expansion.
(v) The overall dynamics of dot radiation consists of several stages, which have been thoroughly
studied and described, both analytically and numerically, for the parameters typical of
quantum dots.
In the dynamics of dot radiation, it is possible to distinguish the following qualitatively
di�erent stages. The �rst is the �uctuating stage lasting during the time interval 0 < t < tint,
when the radiation process is triggered by dipolar waves. At this stage, there is no yet
su�ciently strong interaction between dots. The interaction time is of an order of tint ∼
10−15s− 10−14s.
The second is the quantum stage in the temporal interval tint < t < tcoh, when the dot
interactions through photon exchange start playing a noticeable role, but coherence has not
yet been developed. The coherence time, required for the appearance of the well-developed
coherence is of an order of tcoh ∼ 10−14s− 10−13s.
Then the coherent stage comes into play in the interval tcoh < t < T2 when the dots emit
a coherent superradiant pulse. For the quantum dot materials, the dephasing time is of an
order of T2 ∼ 10−13s−10−12s. The maximum of the pulse occurs at the delay time t0 ' 5tcoh

and the pulse duration is τp ' 2tcoh. The pulse duration is inversely proportional to the
dot density, that is, inversely proportional to the number of dots involved in the process of
radiation, which is a typical feature of superradiance.
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Figure 1: The upper left �gure represents the behavior of the coherence intensity w(t)
(solid line) and population di�erence s(t) (dashed line) as functions of dimensionless time
(measured in units of T2) for the attenuation parameters γ1 = 0.003, γ3 = 1 (measured in
units of γ2), for the coupling parameter g = 10, with the initial conditions w0 = 0, s0 = 1.
The upper right �gure presents the behaviour of the coherence intensity w(t) (solid line)
and population di�erence s as functions of dimensionless time (measured in units of T2) for
the attenuation parameters γ1 = 0.003, γ3 = 10 (measured in units of γ2), for the coupling
parameter g = 10, with the initial conditions w0 = 0, s0 = 1. A larger dynamic attenuation
γ3 makes the pulse more asymmetric. The lower �gure presents the coherence intensity w(t)
(solid line) and population di�erence s(t) (dashed line) as functions of dimensionless time
(measured in units of T2) in the case of external pumping, for the parameters γ1 = 10, γ3 = 1
(measured in units of γ2), for the coupling parameter g = 100, with the initial conditions
w0 = 0, s0 = 1. The coherence intensity, as well as population di�erence, exhibit �ve pulses
with the decaying amplitude.

After the superradiant pulse is emitted, the system relaxes to an incoherent state during
the relaxation stage in the interval T2 < t ¿ T1. The population di�erence reverses. For the
system of dots in a semiconducting material, the longitudinal relaxation time is T1 ∼ 10−9s.
However, this is not yet the �nal stage of evolution.
The stationary stage is reached for t & T1 if there is no external permanent pumping or the
e�ective dot interactions are weak, so that |gζ| ¿ 1. Then the system tends to a stationary

19



incoherent state representing a stable node.
If the system of dots is subject to a su�ciently strong external permanent pumping, the
regime of pulsing superradiance occurs. Then a series of about 10 superradiant bursts can
appear, �ashing in the intervals of time Teff ∼ 10−13s.
Figure 1 shows the evolution of coherence intensity and population dynamics as functions of
dimensionless time t, measured in units of T2 ≡ 1/γ2, for several typical cases. We assume
that at the initial time, the system is inverted, but coherence is absent and develops in a
self-organized way. The upper �gures correspond to the case of no external pumping when
ζ = −1. The di�erence between these �gures is in the value of the dynamical attenuation
rate. As we see, a larger γ3 decreases the delay time and makes the superradiant pulse
strongly asymmetric. The essential asymmetry of superradiant pulses is the feature typical
of quantum-dot radiation. Another typical feature of the quantum-dot dynamics, also caused
by the large rate γ3, is a much faster, than for atoms in free space, tendency of the population
di�erence to the stationary state. The lower �gure demonstrates the radiation dynamics in
the case of external pumping, when ζ = 1, and there appear several superradiant pulses with
decaying amplitude.
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LOW-TEMPERATURE ELECTRICAL RESISTIVITY IN THE
GEOMETRICALLY FRUSTRATED NEARLY ANTIFERROMAGNETIC

METALLIC SYSTEM LiV2O4

V.Yu.Yushankhai
Joint Institute for Nuclear Research, 141980 Dubna, Russia

The metallic vanadium oxide LiV2O4 has attracted much attention after a heavy fermion
behavior in this 3d-electron system was discovered about a decade ago. LiV2O4 has the
cubic spinel structure with the magnetic vanadium ions (in the mixed valence state V3.5+)
occupying the pyrochlore lattice sites. At low temperatures, the spin system of LiV2O4

exhibits pronounced short-range antiferromagnetic (AFM) correlations, but no long-range
magnetic ordering was detected at any measured temperatures. The geometrical frustration
of the pyrochlore lattice is likely to be a crucial aspect of the problem. The frustration
may suppress at any T a long-range ordering of strongly correlated itinerant electrons, but
instead, the system is placed near a magnetic instability. The emergence of largely degenerate
nearly critical (low-energy) AFM spin excitations in the ground state of LiV2O4 is expected
to be responsible for low-T properties of this material, including its heavy fermion behaviour.
Actually, the quasiparticle mass enhancement is expected when a metallic system is driven
by strong electron correlations to the vicinity of a charge and/or spin phase transition at
low T . This appealing picture has been suggested [1] and examined further [2, 3, 4, 5] by
comparing the theoretical results with experimental data obtained by di�erent techniques,
like the inelastic neutron scattering and the nuclear magnetic resonance. In our theory, the
temperature evolution of nearly critical spin �uctuations is treated in the framework of the
self-consistent renormalization (SCR) approach. In the present report, I give a short review
of our latest results obtained along this line and presented together with my colleagues in
Ref.[6].
Speci�cally, we show that the low-T Fermi liquid behaviour of the resistivity and a deviation
from this behavior for higher T may also be understood within that context. We calculate the
temperature dependence of the electrical resistivity ρ(T ) assuming that two basic mechanisms
of the quasiparticle scattering, resulting from impurities and spin-�uctuations, operate simul-
taneously. A peculiar behavior of ρ(T ) in LiV2O4 is related to the properties of low-energy
spin �uctuations whose T -dependence is obtained from the SCR theory in a wide temperature
range up to 40 K, where the SCR approach is valid.
In the linear response theory, in an applied electric �eld E the quasiparticle distribution
function fk is linearized around the equilibrium Fermi distribution f 0

k, according to fk =
f 0
k − Φkdf

0
k/dεk. The electronic transport can be found from the Boltzmann equation

−e(Evk)
df0

k

dεk
=

∑

k

Wkk′Φk′ . (1)

The scattering operator Wkk′ can be expressed through the total equilibrium transition
probability Pkk′ = P imp

kk′ + Psf
kk′ as (kB = ~ = 1):

Wkk′ =
1

T

(
δkk′

∑

k′′
Pkk′′ −Pkk′

)
, (2)
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provided the spin �uctuations are in thermal equilibrium, i.e., there is no drag e�ect.
For the elastic impurity scattering one has

P imp
kk′ = 2πni|Tkk′|2δ(εk − εk′)f

0
k(1− f 0

k′). (3)

To a su�ciently good approximation, the T -matrix in Eq.(3) is frequently assumed to be a
constant |Tkk′|2 ≈ V 2

imp and niV
2
imp, where ni is the impurity density, is regarded as a free

parameter to be chosen so as to give a realistic value of the measured residual resistivity
ρimp. We avoid this approximation and treat below the matrix elements of P imp

kk′ generally.
For the spin-�uctuation (sf) scattering one has

Psf
kk′ = 3J2

sff
0
k(1− f 0

k′)[n(εk − εk′) + 1]Imχ (k− k′, εk − εk′) , (4)

where n(ε) is the Bose distribution function, χ (q, ε) is the dynamical spin susceptibility
describing the low-T paramagnetic state of LiV2O4 and Jsf is an e�ective coupling constant
which is the second free parameter. It is worth emphasizing that in the present study the
other parameters of the phenomenological SCR theory determining the behavior of χ (q, ε)
are considered to be known and �xed from a �t to the data of inelastic neutron scattering
measurement on LiV2O4, as discussed in [2].
The SCR theory o�ers a phenomenological description for "critical"spin �uctuations in
nearly antiferromagnetic itinerant electron systems by taking into account e�ects of mode-
mode coupling between spin �uctuations at |q| ∼ |Qc|. The location in q-space and the
multiplicity of "critical"wave vectors Qc are produced by speci�c properties of the electronic
band structure and the topology of the many-sheet Fermi surface (FS) in LiV2O4.
Following the standard notation, the Boltzmann equation (1) can be rewritten in the form
Xk =

∑
k′ Wkk′Φk′ . Then the electrical resistivity can be obtained by minimizing a functional

ρ[Φ] = min

[ 〈Φ,WΦ〉
|〈Φ, X(E = 1)〉|2

]
. (5)

Here E = 1 means the unit electrical �eld, and the scalar product of two functions Φk and
Ψk is de�ned as 〈Φ, Ψ〉 =

∑
k ΦkΨk. In fact, in Eq.(5) the k-integration over the actual FS

is implied which follows from the property of the scattering operator Wkk′ and the explicit
form of Xk = e(Evk)(−df 0

k/dεk). A way to search for a variational solution of Eq.(5) for the
deviation function Φk is to expand it in a set of the Fermi-surface harmonics (FSH) φL(k):

Φk =
∑

L

ηLφL(k), (6)

where ηL are variational parameters and L is a convenient composite label that includes
numbering of di�erent sheets of the Fermi surface in LiV2O4

Then any matrix element of the scattering operator WLL′ = 〈φL,WφL′〉 contains a nearly
constant (at low T ) term W imp

LL′ and a T -dependent spin-�uctuation term W sf
LL′ that can be

presented in a factorized form
W sf

LL′ ≈ CLL′F(T ), (7)
where

CLL′ =

(
1

2π

)6 ∮
d2k

vk

∮
d2k′

vk′
[φL(k)− φL(k′)] M sf

kk′ [φL′(k)− φL′(k
′)] , (8)

22



Fig. 1 Theoretical �t to
the experimental data
(Refs.[7, 8], open circles)
for the electrical resistivity
ρ(T ) in LiV2O4 in di�erent
temperature regions.

F(T ) =
1

T

∞∫

0

dε

∫
d3q

(2π)3
εn(ε)[n(ε) + 1]Imχ (Qc + q, ε) , (9)

and the matrix M sf
kk′ is de�ned as M sf

kk′ ' 3J2
sf

∑
{Qc} δ(k′ − k−Qc). The matrix is invariant

under simultaneous operations of the lattice point group on both k and k′, since the manifold
{Qc} is an invariant as well.
Special attention has been paid to two limiting regimes of low- and comparatively high-
temperatures (T < 40K). In Fig.3, the calculated ρ(T ) is compared with physical resistivity
ρexp(T ) reported in [7, 8].
A satisfactory coincidence between the experimental data and calculated results is achieved in
both temperature regimes. Our theory provides also the interpolation T -dependent function
describing ρexp(T ) correctly between the low- and high-T limits as well.
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