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ELECTRONIC SPECTRUM IN HIGH-TEMPERATURE

CUPRATE SUPERCONDUCTORS
N.M.Plakida1 and V.S. Oudovenko1,2

1 BLTPh, JINR, Dubna, Russia
2 Rutgers University, New Jersey, USA

Recent angle-resolved photoemission spectroscopy revealed an anomalous quasiparticle
(QP) spectra in copper oxide superconductors in comparison with conventional metals.
In particular, a pseudogap in the electronic spectrum and a �truncated� Fermi surface in
the form of arcs at low doping were revealed, a substantial renormalization of the Fermi-
velocity of QP (�kinks"in the dispersion) was observed (see, e.g., [1, 2]). These anomalous
properties are believed to be caused by strong electron correlations in cuprates [3]. Below
we report the results of electronic spectrum calculations within the Hubbard model
where for the �rst time we go beyond the mean-�eld approximation [4] or perturbation
approach [5]. We have solved the Dyson equation self-consistently for the thermodynamic
Green functions (GFs) and the self-energy derived in the noncrossing approximation
(NCA), as has been done by us for the t-J model [6]. (For details see [7]).

1. Model and Dyson equation
We consider an e�ective p-d Hubbard model for one-hole states with energy ε1 = εd − µ
and two-hole p-d singlet states with energy ε2 = 2ε1 + Ueff where µ is the chemical
potential and an e�ective Coulomb energy Ueff = ∆pd = εp − εd (see, e.g., [4]):

H = ε1

∑
i,σ

Xσσ
i + ε2

∑
i

X22
i +

∑

i6=j,σ

tij {Xσ0
i X0σ

j + X2σ
i Xσ2

j + 2σ(X2σ̄
i X0σ

j + H.c.)}, (1)

where Xnm
i = |in〉〈im| are the Hubbard operators (HOs) for 4 states n,m = |0〉, |σ〉, |2〉 =

| ↑↓〉, σ = ±1/2, σ̄ = −σ. The dispersion of holes is determined by the hopping
parameters: tij = t δj,i±ax/y

+ t′ δj,i±ax±ay ( ax/y = a - lattice constants). We take
∆pd = 8t ' 3.2 eV and t′ = − 0.3 t < 0.

By applying the Mori-type projection technique for the matrix thermodynamic GFs
Gijσ(t− t′) = 〈〈X̂iσ(t) |X̂†

jσ(t′)〉〉 in terms of the two-component HOs ( X̂†
iσ = {X2σ

i , X σ̄0
i })

an exact Dyson equation was derived as described in [4] with a self-energy (SE) as a
many-particle GF. By using NCA for the SE, a closed system of equations was obtained
for the the GFs and the SE:

G̃1(2)(q, ω) = (ω − ε̃1(2)(q)− Σ̃(q, ω))−1 , (2)

where ε̃1(2)(q) are spectra for two bands given by the matrix ε̃ij = 〈{[X̂iσ, H], X̂†
jσ}〉 ×

〈{X̂iσ, X̂
†
iσ}〉−1. The SE in (2) for the one- and two-hole Hubbard bands are equal:

Σ̃(k, ω) =
1

π2N

∑
q

|t(q)|2
∫ ∫ ∞

−∞

dνdzN(z, ν)

ω − z − ν
Imχsc(k− q, ν) Im{G̃1(q, z) + G̃2(q, z)}, (3)

where N(z, ν) = (1/2)(tanh(z/2T ) + coth(ν/2T )). In our theory, the interaction is
determined by the hopping parameter t(q) and the charge-spin susceptibility χsc(q, ν) =
(1/4)〈〈Nq|N−q〉〉ν + 〈〈Sq|S−q〉〉ν where Nq and Sq are number and spin operators.
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2. Results and discussions
The self-consistent system of equations (2), (3) was solved numerically for various hole
concentrations n = 1+δ = 2〈Xσσ

i +X22
i 〉 by using the Matsubara frequency representation

at temperature T ' 0.03t ' 140 K. Neglecting charge �uctuations, the spin susceptibility
was described by the model: Im χs(q, ν) = χ0/[1+ ξ2(1+γ(q))] tanh(ν/2T )/[1+ (ν/ωs)

2]
where ξ is an antiferromagnetic (AF) correlation length (in units of a), ωs ' J = 0.4t
is spin-�uctuation energy, and γ(q) = (1/2)(cos qx + cos qy). The constant χ0 = [3(1 −
|δ|)/2ωs]{(1/N)

∑
q[1+ξ2[1+γ(q)]−1}−1 is de�ned by the equation 〈SiSi〉 = (3/4)(1−|δ|).
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Ðèñ. 1: Dispersion curves along the symmetry directions Γ(0, 0) → M(π, π) → X(π, 0) →
Γ(0, 0) for δ = 0.05 (left panel) and δ = 0.3 (central panel), and electronic density of
states (right panel).

The dispersion curves given by maxima of spectral functions A(k, ω) = B1(k) Ã1(k, ω)+
B2(k) Ã2(k, ω), where Ã1(2)(k, ω) = −(1/π)ImG̃1(2)(k, ω) and B1,2(k) are weights of the
bands, were calculated for hole doping δ = 0.05 − 0.3. The dispersion curves and the
spectral function for δ = 0.05 (ξ = 3.4) reveal a rather �at hole-doped band at the Fermi
energy (FE) (ω = 0) (Fig. 1, 2, left panels). In the overdoped region, δ = 0.3 (ξ = 1.4)
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Ðèñ. 2: Spectral functions along the symmetry directions Γ(0, 0) → M(π, π) → X(π, 0) →
Γ(0, 0) for δ = 0.05 (left panel) and δ = 0.3 (central panel), and A(k, ω) in the M → X
direction at the Fermi level crossing (right panel).

(Fig. 1, 2, central panels) or at high temperature T = 0.3t the dispersion becomes
much larger which proves a strong in�uence of AF spin-�uctuations on the the electronic
spectrum. With doping, the density of states (DOS) shows a weight transfer from the
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Ðèñ. 3: A(k, ω = 0) on the FS for δ = 0.1, 0.2 and δ = 0.3 (from left to right).

upper to the lower band as shown in Fig. 1, right panel. The self-energy Σ̃(k, ω) reveals
an appreciable variation with k and doping close to the Fermi level. Figure 2 (right panel)
shows a change of the dispersion (kink) in the M → X direction at the Fermi level crossing
for δ = 0.1. For the coupling constant we get an estimation λ = vF/v0 − 1 ' 2.4 (λ ' 0.7
for δ = 0.3). The FS changes from a hole arc-type at δ = 0.1 to an electron-like one at
δ = 0.3 (Fig. 3).

To conclude, the microscopic theory based on HO technique for the e�ective Hubbard
p-d model (1) provides an explanation for doping and temperature dependence of
electronic spectrum in cuprates which is controlled by the AF spin correlations. Therefore,
the electron-phonon interaction may be not important in cuprates. Superconducting
pairing in the model beyond the weak coupling approximation [8] will be considered
elsewhere.
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CROSSOVER PHENOMENON
IN

SELF-ORGANIZING ACTIVE WALK.
Vl. V. Papoyan

The active walk is a paradigm for self-organization and pattern formation in simple
and complex systems, investigated since 1992. In the active walk, a walker (an agent)
changes the deformable landscape as it walks and is in�uenced by the changed landscape
in choosing its next step. Active walk models have been applied successfully to various
biological, chemical and physical systems from the natural sciences to economics and many
other topics from the social sciences [1].

The recent studies of the special important issue, the non-equilibrium behavior of a
medium with long memory have shown that the dynamics can be represented as a sort of
random walk on an e�ective graph. The vivid examples are the so-called Eulerian Walk
Model (EWM) [2] and the Relaxing Self-Avoiding Walk (RSAW) [3] which demonstrate
this phenomenon: self-organization of the walker motion as well as the medium.

For �nite lattices, during the evolution EWM and RSAW settle into the limit cycles,
Eulerian and Hamiltonian, respectively. The underlying medium tends in both cases to
the self-organized state which is characterized by long-range correlations.

Studding the mean square distance R2 ∼ T 2ν travelled by a walker for time T on
the in�nite lattice, an interesting fact emerged. Namely, the Eulerian walk on the square
two-dimensional lattice calls up the di�usion law ν ' 1

3
[2] while on the chessboard lattice

ν ' 4
7
[3] which coincides with the exponent for θ-polymers [4].

Our investigation shows that the exponent ν can be sensitive not only to dynamics
of walker but also to the length of characteristic time interval where this exponent is
determined.

In order to demonstrate di�erent types of behavior of an active walker at di�erent
time scales, one can complicate the Eulerian walker rules in the following way. Visiting
some lattice site i the walker re�ects the arrow at i, and moves in the opposite direction.
Visiting this site next time, it re�ects the arrow again and moving this new direction.
After the third return to this site it �ips the arrow by 90o and repeats the procedure
it performed being at this site the �rst and second times. Denoting by N, E, S,W four
possible directions of arrows, we can write the sequential orientations of arrows at site
i after a series of visits as ...N, S, N, S, E,W,E, W,N, S, N, S... The resulting pattern at
each site is the cross drawn by the arrow twice.

It is worth to note that the suggested �double cross� dynamics in a certain sense is
intermediate between the clockwise Eulerian walk on a square lattice and the Eulerian
walk model on the chessboard lattice. Indeed, each site allows all possible walk directions
and in this respect it is similar to the clockwise Eulerian model on a square lattice. On
the other hand the �double cross� model has common features with the Eulerian walk on
chessboard lattice, since at local time intervals the motion is re�ective.

This modi�cation of the Eulerian walk dynamics leads to crossover phenomena at the
di�erent time scales (Fig.1). At the initial stage (up to 105 steps) the scaling behavior
is consistent with ν ' 1

2
, speci�c to the RSAW model. Then it passes through the

intermediate regime and �nally achieves the scaling law ν ' 1
3
at large number of steps

(t = 150× 106). The last exponent corresponds to the Eulerian walk on a square lattice.
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Ðèñ. 1: Log-log plot of the di�usion law for the �double cross� dynamics. Simulations of
150 × 106 steps averaged over 2 · 104 runs (bold curve). The thin line correspond to the
�t with incline ν ' 1

3
and dash one with ν ' 1

2
respectively.

Moreover understanding of the underlining phenomenon will shed light on the problem
of universality for various classes of walks.

[1] For a recent rewiew with related references, see L. Lam, Int. J. Bifurcation and Chaos
15, 2317 (2005); ibid. 16, 239 (2006).
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(1996).

[3] N.Sh. Izmailian, Vl.V. Papoyan , V.B. Priezzhev and Chin-Kun Hu, Phys. Rev. E
(2007 in press).
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SPHEROIDAL GEOMETRY APPROACH
TO FULLERENE MOLECULES

R. Pincak

Graphite is an example of a layered material that can be bent to form fullerenes
which promise important applications in electronic nanodevices. The spheroidal geometry
of a slightly elliptically deformed sphere was used as a possible approach to fullerenes.
We assumed that for a small deformation the eccentricity of the spheroid e ¿ 1.
We are interested in the elliptically deformed fullerenes C70 as well as in C60 and its
spherical generalizations like big C240 and C540 molecules. The low-lying electronic levels
are described by the Dirac equation in (2+1) dimensions. In the report [1] we show how a
small deformation of spherical geometry evokes a shift of the electronic spectra compared
to the sphere and both the electronic spectrum of spherical and the shift of spheroidal
fullerenes were derived.

Bz

Ðèñ. 1: The schematic picture of the spheroidal fullerene in a weak uniform magnetic �eld
pointed in the z direction.

E
0

jn +E
δ
jn +E

0Bz

jn

Ðèñ. 2: The schematic picture of the �rst positive electronic level Eδ
jn for spheroidal

fullerenes in a weak uniform magnetic �eld pointed in the z direction.

In the next study the expanded �eld-theory model was proposed to study the electronic
states near the Fermi energy in spheroidal fullerenes. The low energy electronic wave
functions obey a two-dimensional Dirac equation on a spheroid with two kinds of gauge
�uxes taken into account. The �rst one is so-called K spin �ux which describes the
exchange of two di�erent Dirac spinors in the presence of a conical singularity. The second
�ux (included in a form of the Dirac monopole �eld) is a variant of the e�ective �eld
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Ðèñ. 3: The schematic picture of the second positive electronic level Eδ
jn for spheroidal

fullerenes in a weak uniform magnetic �eld pointed in the z direction.

approximation for elastic �ow due to twelve disclination defects through the surface of a
spheroid. We consider the case of a slightly elliptically deformed sphere which allows us to
apply the perturbation scheme. We shown exactly how a small deformation of spherical
fullerenes provokes an appearance of �ne structure in the electronic energy spectrum Eδ

jn

as compared to the spherical case E0
jn. In particular, two quasi-zero modes in addition

to the true zero mode are predicted to emerge in spheroidal fullerenes. An additional
'hyper�ne' splitting of the levels (except the quasi-zero-mode states) was found [2].

The e�ect of a weak uniform magnetic �eld on the electronic structure of slightly
deformed fullerene molecules was also studied. In the report [3] was shown how the
existing due to spheroidal deformation �ne structure of the electronic energy spectrum
splitted in the presence of the magnetic �eld. Exact analytical solutions for zero-energy
modes was also found and compare with HOMO (highest occupied molecular orbital)
and LUMO (lowest unoccupied molecular orbital) gap calculated in density-functional
methods approaches of fullerenes. As an illustration, Figs. 1,2,3 schematically show with
accuracy at about one percent of E0

jn, how the electronic spectra of spheroidal fullerenes
are splitted E0Bz

jn in the presence of weak magnetic �eld pointed in the z directions.

[1] R. Pincak, Phys. Lett. A 340, 267 (2005).

[2] M. Pudlak, R. Pincak and V.A. Osipov, Phys. Rev. B 74, 235435 (2006).

[3] M. Pudlak, R. Pincak and V.A. Osipov, Phys. Rev. A 75, xxxxx (2007).
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BREAKPOINT PHENOMENON

IN INTRINSIC JOSEPHSON JUNCTIONS
Yu.M.Shukrinov1 and F.Mahfouzi2

1 BLTP, JINR, Dubna, Russia
2 IASBS, Zanjan, Iran

Creating new materials with given properties is an actual problem of physics,
chemistry, and material science. This is related to the system of Josephson junctions, too,
which is a perspective object for superconducting electronics and is being investigated
intensively now. A simulation of the current-voltage characteristics (IVC) of a stacks of
intrinsic Josephson junctions (IJJ) at di�erent values of the model parameters such as
the coupling α and dissipation β parameters is a way to predict the properties of the IJJ.
McCumber and Steward have investigated the return current as a function of dissipation
parameter in a single Josephson junction a long time ago.[1] In the case of the system
of junctions, the situation is cardinally di�erent. The IVC of IJJ is characterized by a
multiple branch structure and branches have a breakpoint region with its breakpoint
current (BPC) and transition current to another branch. [2, 3] The BPC is determined
by the creation of the longitudinal plasma waves (LPW) with a de�nite wave number k,
which depends on the parameters α and β, the number of junctions in the stack, and
boundary conditions. [4]

β
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α = 1

α = 0

α = 5

Ibp

(a)

Ðèñ. 1: (Color online) (a) - The β-dependence of the BPC Ibp of the outermost branch in
the IVC at di�erent values of coupling parameter α; (b) - The αβ-dependence of the Ibp

for a stack of 10 IJJ. From Ref.[5].

We generalized the McCumber-Steward dependence of the return current for the case
of IJJ in the HTSC.[5] We investigate the BPC Ibp on the outermost branch as a function
of the coupling α and dissipation β parameters for the stacks with a di�erent number of
IJJ and demonstrate a plateau with BPC oscillation, which is shown in Fig. 1 Based on
the idea of the parametric resonance in the stack of IJJ, a modeling of the αβ-dependence
of the BPC has been done, and good qualitative agreement with the results of simulation
has been obtained. We show that the αβ-dependence of the BPC is an instrument to
determine the mode of LPW created at the breakpoint in the stacks with a di�erent
number of junctions.

Fig. 2(left) shows the result of simulation of the outermost branch in the IVC near the
breakpoint for a stack with α = 3, β = 0.3 and N from N = 3 to N = 15. We can see that
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Ðèñ. 2: (Color online) Left: The simulated IVC of the outermost branch in the stacks with
a di�erent number of junctions at α = 3, β = 0.3; Right: a) - The simulated β-dependence
of the Ibp for the stacks with 3, 6, 9 and 12 IJJ at α = 3. The region corresponding to the
creation of the LPW mode with wave number k = 5π/6 is shown by arrows . b) - The
simulated α-dependence of the Ibp for the stacks with 5, 10 and 15 IJJ at β = 0.3. From
Ref.[5].

the value of Ibp depends on the number N of IJJ in the stack, excluding the stack with
N = 3n, where n is an integer number. We explain these results using the idea of LPW
creation at the breakpoint. We predict also a di�erent commensurability manifestation in
the IVC of stacks with a di�erent number of IJJ.[4, 5]

Comparison of the α- or β-dependence of the Ibp for stacks with a di�erent number of
IJJ give us a simple method to determine the wave numbers k of the LPW. Fig. 2(right)
shows the β- and α-dependence of the Ibp. It demonstrates that, in some intervals of β and
α, the stacks with di�erent N have the equal value of the Ibp. Using these data, we can
determine all modes of LPW, which might be created in stacks with di�erent parameters
α and β and a di�erent number of IJJ.

[1] D. E. McCumber, J.Appl.Phys. 39, 3113 (1968); W. C. Steward, Appl.Phys.Lett. 12,
277 (1968).

[2] Yu. M. Shukrinov, F. Mahfouzi, P. Seidel. Physica C 449, 62 (2006).

[3] Yu. M. Shukrinov, F. Mahfouzi, Supercond. Sci.Technol. 19, S38-S42 (2007).

[4] Yu. M. Shukrinov, F. Mahfouzi, N. F. Pedersen, Phys. Rev. B 75, 104508 (2007).

[5] Yu. M. Shukrinov, F. Mahfouzi, Phys.Rev.Lett. 98, 157001 (2007).
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