
1.1 Fields and Particles

Theoretical research in Fields and Particles division in 2003-2004 was carried out in accor-
dance with he following projects:

• The Standard Model and its extensions

• QCD: spin effects and sum rules

• Nonperturbative methods in QFT

• Effective theories and Hadron Physics

• Low-energy Quark Models of Light hadrons

• Symmetries and Gauge Theories

In recent years, following the main tendencies in high energy physics we have started a new
activity in neutrino physics and astroparticle physics related to these intensively developing
fields. Below one can find a collection of mini reports on various topics which contain a detailed
description of the results obtained at BLTP during the last two years. The main ones include:

– Calculation of the anomalous dimensions of the so-called Wilson operators in N=4 super-
symmetric gauge theory in higher orders of perturbation theory (A. Kotikov et al). This
very advanced calculation allows one to check a hypothesis on the structure of supersym-
metric theory.

– Investigation of properties of the QCD vacuum, in particular, the domain model related
to the long-standing problem of confinement in QCD (S. Nedelko et al). This model
reproduces several main features of QCD vacuum in particular quark condensates.

– The rigorous analysis of QCD nonperturbative coupling in coordinate space is performed
(D.V. Shirkov).

– Discussion of the possibility for SUSY searches in space, and investigation of the hypo-
thetical dark matter halo of the Milky way (D. Kazakov, A. Gladyshev et al). This is the
first evidence for the indirect manifestation of the dark matter interpreted as SUSY dark
matter maid from heavy neutral particle - neutralino.

– Investigation of the spin properties of the proton in semi-inclusive deep inelastic scatter-
ing (A. Efremov). A probabilistic model is developed that includes transversity distribu-
tion which is the subject of HERMES and COMPASS experiments.

– Elaborative QCD analysis of the pion structure, electromagnetic formfactor and differen-
tial pion characteristics (A. Bakulev, S. Mikhailov). Detailed description of the pion is
obtained on the basis of the pion distribution amplitude which perfectly explains experi-
mental data.

– Investigation of distribution amplitudes of exotic mesons and meson pairs ( I. Anikin,
O. Teryaev). The QCD description ofρ0-meson pair production in L3 experiment and
predictions for hard electroproduction of quark-gluon hybrids are obtained.

– Investigation of nonperturbative properties of the QCD vacuum in the instanton liquid
model (A. Dorokhov). The transition from perturbative to nonperturbative regime is de-
scribed which can be used in description of dynamics at intermediate momenta.
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– Application of the nonlinear chiral model with nonlocal kernel to the description of meson
properties (M. Volkov et al).

– Investigation of cooling of neutron stars on the basis of the nonlocal chiral quark model
(D. Blaschke et. al).

– Application of perturbative QCD to the analysis of semi-inclusive deep inelastic scatter-
ing data from HERMES and COMPASS experiments (A. Sissakian et al). The method
allows one to extract the polarized strangeness content of the nucleon.

– Calculation of the radiative corrections to high energy QED processes at modern collid-
ers (E. Kuraev, A. Arbuzov et al). These corrections, which include electron-positron,
electron-photon and electron-proton processes, are vitally important for the calibration of
colliders and extracting experimental data.

– Investigation of neutrino interactions with nucleons (V. Naumov). The developed model
allows one to describe the processes of neutrino interaction with the target and production
of the secondary pion essential for all modern neutrino experiments.

– Investigation of polarization of the electron-positron vacuum by a strong magnetic field in
a theory with fundamental mass as a possible option of the physics beyond the Standard
Model (V. Kadyshevsky et al).

– High precision calculation of the properties of three-body atoms and molecules (V. Ko-
robov). Record precision is achieved in the calculation of the ground state energies, tran-
sition energies and QED radiative corrections in helium atom and hydrogen molecules.

There are also several topics that are not included in this report, but are present in the list of
references. They reflect a wide diversity of fields of research in Fields and Particles division of
BLTP following the main directions of activity in modern particle physics.

D.I. Kazakov
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ANOMALOUS DIMENSIONS OF THE WILSON OPERATORS IN THE
N=4 SUPERSYMMETRIC GAUGE THEORY

A.V. Kotikov, L.N. Lipatov1, A.I. Onishchenko1, V.N. Velizhanin1
1 PNPI, Gatchina, St. Petersburg, Russia

The anomalous dimensions (AD) of the twist-two Wilson operators govern the Bjorken scal-
ing violation for parton distributions in the framework of Quantum Chromodynamics (QCD).
expressed through the Mellin transformation

γab( j) =
∫ 1

0
dx xj−1Wb→a(x)

of the splitting kernelsWb→a(x) for the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equation which relates the parton densitiesfa(x,Q2) (hereaftera= λ , g, φ for the spinor, vector,
and scalar particles, respectively) with different values ofQ2 as follows:

d
d lnQ2 fa(x,Q2) =

∫ 1

x

dy
y ∑

b

Wb→a(x/y) fb(y,Q2) .

The anomalous dimensions and splitting kernels in QCD are now well known up to the next-to-
next-to-leading order (NNLO) of perturbation theory.

The QCD expressions for AD can be transformed to the case of theN = 1 Supersymmet-
ric gauge theory (SUSY) if one uses for the Casimir operatorsCA,CF ,Tf the following values
CA = CF = Nc, Tf = Nc/2 (the last substitution follows from the fact that each gluinoλi being a
Majorana particle gives half of the contribution for the Dirac spinor). For extended supersym-
metric theories the anomalous dimensions cannot be obtained in this simple way, because ad-
ditional contributions coming from scalar particles should also be taken into account. Recently
these anomalous dimensions were calculated in the next-to-leading (NLO) approximation [1]
for theN = 4 Supersymmetric Yang-Mills theory.

However, it turns out, that the expressions for eigenvalues of the AD matrix in theN = 4
SUSY can be derived directly from the QCD anomalous dimensions without tedious calcula-
tions by using a number of plausible arguments. The method elaborated in Ref. [2] for this pur-
pose is based on special properties of solutions of the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
equation in this model (see [3]). In the NLO approximation this method gives the correct results
for AD eigenvalues, which were checked by direct calculations in [1].

The NNLO corrections to AD in QCD were calculated recently [4]. Using these results and
the above method we derived in [5] the eigenvalues of the AD anomalous dimension matrix for
theN = 4 SUSY in the NNLO approximation.

[1] A. V. Kotikov, L. N. Lipatov and V. N. Velizhanin,Phys. Lett.B557, 114 (2003).
[2] A. V. Kotikov and L. N. Lipatov,Nucl. Phys.B661, 19 (2003).
[3] A.V. Kotikov and L.N. Lipatov,Nucl. Phys.B582, 19 (2000).
[4] S. Moch, J. A. M. Vermaseren and A. Vogt,Nucl. Phys.B688, 101 (2003).
[5] A. V. Kotikov, L. N. Lipatov, A.I. Onishchenko and V. N. Velizhanin,Phys. Lett.B595,

521 (2004).
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DOMAIN MODEL OF THE QCD VACUUM

S.N. Nedelko

A mechanism which simultaneously provides for confinement of colour, spontaneously bro-
ken chiral symmetry, and a resolution of theUA(1) problem is still to be understood in QCD
today. Partial solutions based on specific semi-classical or topologically stable configurations
(like instantons, abelian monopoles, center vortices) can go some way to manifest this triplet of
phenomena [1] but founder either on generating all three or in allowing for an effective, phe-
nomenologically valuable, hadronization model. The purpose of identifying the typical features
of nonperturbative gluonic configurations which can provide for as many gross features of non-
perturbative QCD as possible, and preserving simultaneously the well-studied short distance
regime can be achieved by studying various models of QCD vacuum and hadronization.

The “domain model”, originally proposed in [2], belongs to the class of background field
models, shared, for instance, with instanton liquid model. In order to define the QCD func-
tional integral in these approaches one represents general gluon fields asA = B+ Q with the
backgroundB from the class of fields dominating the integral andQ being small localised
fluctuations in this background. The integral over fieldsB has to be performed exactly, while
fluctuationsQ can be treated perturbatively. In the domain model the dominating fieldsBa

µ(x)
are required to satisfy the conditionFa

µν(x)Fa
µν(x) = B2 almost everywhere in Euclidean space-

time (B = const) , which, and this is important, neither forbids space-time variation of the
strength tensor and the fieldsBa

µ(x) nor devalues the importance of topological (singular) pure
gauge field defects of various dimensions. The role of these defects in the model is to generate
boundary conditions for the fluctuations of gluon and quark fieldsQ andψ inside domains [2].
In a sense, the model represents a “step-function” approximation to a class of fields with infi-
nite classical action which are assumed to dominate the QCD partition function. The building
blocks of this approximation are domains with mean sizeRand mean action densityB2, whose
values are determined from the phenomenological string tension in [2]. The field in domains
is taken to be (anti)-self-dual, a mean absolute valueq of the integral of the topological charge
density over the domain volume is expressed through the mean domain sizeR and mean action
density. This quantity can take any real values. The partition function of the model describes
a statistical system of domain-like structures of finite density. Each domain is characterised
by a set of internal parameters associated with the covariantly constant abelian mean fieldBa

µ
(e.g., space and colour orientations, (anti-)self-duality) and with internal dynamics represented
by fluctuation gluonQ and quarkψ fields. It relates to the symmetries of QCD since the sta-
tistical ensemble is invariant under space-time, colour gauge and chiral symmetries. The model
involves two free parameters: the mean field strengthB related to the lowest gluon condensate
and the mean domain radiusR which can be associated with the topological succeptibility of
the pure gluodynamics.

Without further tuning the model this setup for the background fieldB provides for con-
finement of both static (area law) and dynamic (propagators are entire functions of momentum)
quarks [2], spontaneous breaking of the flavourSUL(Nf )×SUR(Nf ) chiral symmetry [3], and a
resolution ofUA(1) problem without introducing the strong CP problem [4, 5]. These features
are seen both at the quark-gluon level and in terms of colourless hadrons. The hadronization
procedure of [6] adopted (so far – partially) in the case of the domain model leads to the ef-
fective hadron Lagrangian [3] with the spectrum of mesons describing experimental data with
good accuracy. Static characteristics of the vacuum (quark and gluon condensates, string con-
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stant, and topological succeptibility) are in quantitative agreement with the generally accepted
values.

These results are consequences of several qualitatively important aspects of the model. An
area law appears due to finite range correlations of the background fieldBa

µ [2]. Strong mean
field inside domains and boundary effects lead to the nonlocal character of dynamics of the
quarkψ and gluonQ fluctuations providing for entire quark and gluon propagators [2]. Chiral
symmetry realization is due to the specific chiral properties of quark eigenmodes: the discrete
spectrumλn of the Dirac operator is asymmetric with respect toλn→−λn and zero quark modes
are absent, but the local chirality of all nonzero modes at the centre of domains is correlated with
the duality of the background field. This asymmetry results in the nonzero quark condensate
responsible for the spontaneous breaking of flavour chiral symmetry and for the specific form
of the axial anomaly providing for the non-Goldstone character ofUA(1) realisation [3]. The
same specific form of the anomaly simultaneously resolves the strong CP-problem in the model
if mean value of the unit ”topological charge”q takes an irrational value [4, 5]. Nonlocality can
potentially lead to the unphysical exponential growth of hadronic amplitudes at high energies.
This problem was preliminary studied in [7] within the exactly solvable nonlocal model with
confined fundamental fields and Regge spectrum of relativistic bound states. It was found that
proper taking into account the finite width of resonances can suppress unphysical growth of
observable quantities at high energies.

In conclusion, it should be stressed that being quite a rough approximation of the genuine
QCD vacuum the above-described model cannot reproduce certain subtle features of QCD like,
for instance, Casimir scaling. The status of approximations and assumptions made in the model
requires a further careful investigation.

[1] For example, vortices. Some references are: P. de Forcrand, M. D’Elia, Phys.Rev.Lett. 82,
4582 (1999); J. Greensite, S. Olejnik, hep-lat/0302018; H. Reinhardt, Nucl.Phys. B628,
133 (2002); M. Engelhardt, Nucl.Phys. B638, 81 (2002); P. de Forcrand, L. v. Smekal,
Phys.Rev. D66, 011504 (2002); P. van Baal, At the frontier of particle physics, vol. 2, 760-
821, ed. by M. Shifman, World Scientific, 2001 (hep-ph/0008206); Th. Shafer, E. Shuryak,
Rev. Mod. Phys. 70 (1998) 323.

[2] A.C. Kalloniatis, S. N. Nedelko, Phys. Rev. D 64 (2001) 114025;ibid Phys. Rev. D 66
(2002) 074020.

[3] A.C. Kalloniatis and S.N. Nedelko, Phys.Rev. D69, 074029 (2004);Erratum: ibid 70,
119903 (2004).

[4] A. C. Kalloniatis and S. N. Nedelko, Phys.Rev. D71, 054002 (2005).
[5] A. C. Kalloniatis and S. N. Nedelko, hep-ph/0503168 (2005), submitted to Phys. Rev. D.
[6] G.V. Efimov, S.N. Nedelko, Phys. Rev. D 51, 174 (1995).
[7] A. C. Kalloniatis, S. N. Nedelko and L. von Smekal, Phys.Rev.D70, 094037 (2004).
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TAUBERIAN THEOREM AND QCD EFFECTIVE
COUPLING IN THE DISTANCE REPRESENTATION

D.V. Shirkov

We discuss the correlation of some singular long–range asymptotic behaviors to the IR
momentum region. This correlation is popular in quantum physics where, one uses the so–called
“quantum–mechanical correspondence relation”r → 1/Q which in the IR case is equivalent to

F(Q)∼ f (Q−1) as Q→ 0. (1)

Heuristically, this last feature could be simply understood by a change of the integration variable
r → x = rQ in the general linear transformation

F(Q) =
∫ ∞

0

d x
x

K(x) f

(
x
Q

)
. (2)

However, for a more rigorous derivation of (1) one needs to specify some asymptotic prop-
erty of the functionf (r) asr →∞ . In short, this can be formulated as theTauberian theorem1:
( Here, the symbol“ ∼ ” means “behaves like”.)

If function f (r) asymptotically satisfies “the separability condition”

f (kr)∼Cφ(r)ρ(k) as k→ ∞ with C 6= 0, (S)

then, under some additional conditions, its Fourier image obeys the property

F(Q)∼ ρ(1/Q) as Q→ 0, (T)

— that, with some reservation, follows from eq.(2).
Now, for a definite class of functionsρ(k) entering into the condition (S), e.g., of power

and/or logarithmic type

f (r)∼ ρ(r)∼ rβ (ln r)γ (ln ln r)δ . . . as r → ∞ , (3)

it is possible to obtain from (T) the correspondence rule (1). Meanwhile, this class of functions
is rather narrow. For instance, it does not contain trigonometric functions and exponentials.

In particular, this concerns recent ALPHA collaboration results on the asymptotic behavior
of the QCD effective coupling obtained by lattice simulation. There, numerically calculated
behavior of effective QCD coupling defined via Schroedinger functional has an exponential
form

ᾱSF(L)' emL.

D.V. Shirkov, “On the Fourier transformation of Renormalization Invariant Coupling”,TMP
136(2003) 893-907; hep-ph/0210113.

1Originally, under the name of Tauberian theorems one implied statements concerning the relation between
summabilityandconvergenceof series. More recently, in the middle of XX century, this term started to be used
in the context of asymptotic properties of integral transformations. Here, we give only a crude outline of this
important theorem for the Fourier transformation, the sketch that is sufficient for our application.
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SEARCH FOR SUSY MANIFESTATION IN SPACE

D. Kazakov, A. Gladyshev,
W. de Boer1, C. Sander1, M. Herold1, V. Zhukov1

1 IEKP, Univ. Karlsruhe

1. Search for various manifestations of supersymmetry in Nature was one of the main aims
of numerous experiments at colliders and non-accelerator facilities in the previous decade. The-
oretical investigation of the Minimal Supersymmetric Standard Model (MSSM) has shown that
it is possible to meet different requirements such as a) unification of the strong and electroweak
forces, thus providing a prototype theory for a Grand Unified Theory (GUT); b) spontaneous
electroweak symmetry breaking (EWSB) by radiative corrections through the heavyt-quark; c)
unification of Yukawa couplings resulting in the correct values of the masses of the third gener-
ation quarks and leptons; d) small corrections to the rare meson decays allowing one to fill the
gap between the SM and experiment; e) data on the muon anomalous magnetic moment, the
observed deviation from the SM may be described by additional SUSY contributions and fixes
the sign of the Higgs mixing parameterµ , killing half of the parameter space; f) right amount
of the Dark matter in the Universe due to the presence of a light stable particle – neutralino, etc.

The constrained MSSM which simultaneously fulfills all the requirements happens to be a
very predictive theory. Within the allowed regions in the parameter space it gives the spectrum
of superpartners and the Higgs bosons, thus providing the pattern for experimental search. Two
main scenarios selected by the above- mentioned requirements are usually referred to as low
and hightanβ ones,tanβ being the ratio of the v.e.v.s of the two Higgs bosons. The first
scenario typically predicts relatively light superpartners and the lightest Higgs boson below 100
GeV, and is practically excluded by modern collider data. Search for the light charginos and
neutralinos and the Higgs boson at LEP II collider gave no results and increased the bound for
tanβ up to 4.3. On the contrary, hightanβ scenario predicts relatively heavier particles and
is under test now. Moreover, the hightanβ scenario (tanβ ∼ 50) is favoured by the recent
astrophysical data [1, 3].
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Figure 1: Allowed regions of the
parameter space in the Constrained
MSSM

2. Among the recent nonaccelerator experimental
data which attracted much attention are the very pre-
cise data on the thermal fluctuations of the Cosmic Mi-
crowave Background Radiation provided by the Wilkin-
son Microwave Anisotropy Probe (WMAP) [2]. The
analysis of the data implies the amount of the dark matter
in the Universe to be23±4%.

Supersymmetry provides us with an excellent candi-
date for the cold nonbaryonic Dark matter, usually as-
sumed to be formed from Weakly Interacting Massive
Particles (WIMP). The lightest neutralino (the mixture
of superpartners of photon,Z-boson and neutral Higgs
bosons) being the lightest supersymmetric particle (LSP)
is stable ifR-parity is conserved.

The cross sections for the neutralino annihilation are
typically of the order of the weak ones, so the LSP is
“neutrinolike”, i.e. it would form halos around the galax-
ies and, consequently, it is an excellent candidate for dark matter. Having this in mind one gets
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very severe constraints on the parameter space shown by a narrow blue line in Fig. 1.
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3. Galactic gamma rays have been extensively
studied during the nine years of data taking by
the EGRET satellite on the Compton Gamma Ray
Observatory. These data show a clear excess of
diffuse gamma rays above the background from
conventional galactic sources for energies above
1 GeV [4].

Of course, there are also many sources of dif-
fuse gamma rays in the galaxy, so disentangling
the annihilation signal is at first glance not easy.
The main sources of conventional background are:
a) decays fromπ0 mesons produced in nuclear in-
teractions (mainly inelastic proton-proton or p-He
collisions); b) inverse Compton scattering of elec-
trons on photons (e.g. from star light or cosmic
microwave background); c) Bremsstrahlung from
electrons. WIMP’s are expected to annihilate in
fermion-antifermion pairs, so a large fraction will
annihilate into quark pairs, which produce typically 30-40 photons per annihilation in the frag-
mentation process (mainly fromπ0 decays as in nuclear interactions).

However, the photons from the dark matter annihilation (DMA) are expected to have a
significantly different spectrum than the ones from nuclear interactions. This can be easily seen
as follows: the WIMP’s are strongly nonrelativistic, so they annihilate almost at rest. Therefore,
quarks from DMA are almost monoenergetic with an energy approximately equal to the WIMP
mass. This results in a rather energetic spectrum with a sharp cut-off of the photons at twice
the WIMP mass. Fig. 2 shows the diffuse gamma ray data together with the data from the
background processes which are shown by the yellow area and clearly fails to describe the
EGRET data shown by the points with vertical error bars. The fit to the EGRET data including
DMA is shown by red area for a WIMP mass of 90 GeV [3]. Data on positron or antiproton
fluxes can also be described in the same framework [5].
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4. The neutralino with a mass of around 90 GeV also
allows one to describe the rotation curves of the Milky
Way (Fig. 3) [3]. The rotation curve of our galaxy shows
a peculiar nonflat structure near our solar system, namely
at R= 1.1R0 kpc the slope changes the sign, the data are
from Refs. [6]. We suggest a model of the dark matter dis-
tribution in the Milky Way, assuming that besides the halo
surrounding the galaxy, there are two rings with larger
dark matter density atR= 4.3 and 14 kpc. This two ring
model describes the structure of the rotation curve very
well, as shown in Fig. 3.

The contributions from each of the mass terms is
shown separately. The basic explanation for the negative
contribution from the outer ring is that a tracer star at the
inside of the ring at 14 kpc feels an outward force from
the ring, thus a negative contribution to the rotation velocity. In order to calculate this more
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quantitatively, one needs the complete distribution of both the visible and DM mass.
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5. The regions consistent with the WMAP con-
straint are: the first one aroundm0 = 600 GeV,
m1/2 = 400GeV and the second one aroundm0 =
1400GeV,m1/2 = 180GeV.

The latter region is strongly preferred by the
EGRET diffuse galactic gamma ray spectrum. The
evolution of the sparticle masses for it from the
GUT scale values towards lower energies is shown
in Fig. 4 [3].

The large value ofm0 yields squark and slepton
masses around 1 TeV, but the gluinos and charginos
are relatively light, which would have interesting
consequences for searches at future colliders. The
compatibility with Supersymmetry implies the pos-
sibility that the Dark Matter is the supersymmetric
partner of the Cosmic Microwave Background. Fu-
ture experiments from 2007 onwards at the Large
Hadron Collider under construction at CERN will tell, since the predicted sparticle masses
from the present analysis are within the range of this accelerator with a center of mass energy
of 14000 GeV.

[1] D.I. Kazakov, Beyond the Standard Model, hep-ph/0411064.
[2] D.N. Spergel, et al., Astrophys. J. Suppl. 148 (2003) 175;

C.L. Bennett, et al., Astrophys. J. Suppl. 148 (2003) 1.
[3] W. de Boer, M. Herold, C. Sander, V. Zhukov, Eur. Phys. J. C33 (2004) 981;

W. de Boer, M. Herold, C. Sander, V. Zhukov, A.V. Gladyshev, D.I. Kazakov, Excess of
EGRET Galactic Gamma Ray Data Interpreted as Dark Matter Annihilation, IEKP-KA-
2004-15, astro-ph/0408272.

[4] A.W. Strong, I.V. Moskalenko, O. Reimer, astro-ph/0406254.
[5] W. de Boer, C. Sander, M. Horn, D. Kazakov, Nucl. Phys. Proc. Suppl. 113 (2002) 221.
[6] M. Honma, Y. Sofue, Publ. Astr. Soc. Japan 49 (1997) 453;

J. Brand, L. Blitz, A&A. 275 (1993) 67.
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PROTON TRANSVERSITY AND AZIMUTHAL ASYMMETRIES IN SIDIS

A.V. Efremov

It is well known that three most important (twist-2) Parton Distribution Functions (PDF) in
a nucleon are the nonpolarized distribution functionf1(x), helicity distributiong1(x) and the
transverse spin (transversity) distributionh1(x). The first two have been more or less success-
fully measured experimentally in classical Deep Inelastic Scattering (DIS) experiments but the
measurement of the last one is especially difficult since it corresponds to interference of helicity
amplitudes, belongs to the class of the so-called chiral-odd structure functions, and can not be
seen in DIS. That is why it was completely unknown experimentally till recent time. The only
information comes from the Soffer inequality|h1(x)| ≤ 1

2[ f1(x) + g1(x)] which follows from
density matrix positivity and theoretical models.

To access the transversity, one needs either to scatter two polarized hadrons and measure the
transversal spin correlationATT in the Drell-Yan process or to know the transverse polarization
of the quark scattered from transversely polarized target. This could be done using a new spin
dependent T-odd parton fragmentation function (PFF) responsible for the left-right asymmetry
in one particle fragmentation of transversely polarized quark with respect to quark momentum–
spin plane. (The so-called ”Collins effect”.)
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Figure 1:The Collins effect transverse target SSAAsin(φ+φs)
0T in the production ofπ+, π0 andπ− from a proton

target.Preliminarydata are from HERMES.

Using the parton distribution functions from the chiral quark-soliton model predictions were
made [1] forx-dependence of the Single Spin azimuthal Asymmetries (SSA) due to the Collins
effect in pion production from Semi-Inclusive Deeply Inelastic Scattering (SIDIS) off trans-
versely polarized targets for the HERMES and COMPASS experiments. The overall normal-
ization of the predicted asymmetries is determined by the information on the Collins PFF ex-
tracted from the previous HERMES data on azimuthal asymmetriesAsinφ

UL from alongitudinally
polarized target where the Sivers effect is shown [2] to be strongly suppressed. The SSA from
thetransverselypolarized proton target are found to be about10%for positive and neutral pions
at both HERMES and COMPASS. For alongitudinallypolarized target for COMPASS the SSA
were also predicted:Asinφ

UL ∼ 0.5% andAsin2φ
UL ∼ 1.5%. The preliminary data from HERMES

more or less agree with predictions forπ− (see Fig.1) but some disagreement is seen forπ+

and especially forπ0. The reason for this could be the clear absence of thex andz factorization

in HERMES data, which demandsA(π0) = σ(π+)
σ(π+)+σ(π−) A(π+) + σ(π−)

σ(π+)+σ(π−) A(π−), where
σ(π) is unpolarized SIDIS cross section (σ(π+)/σ(π)≈ 1/2).
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The Drell-Yan process remains up to now the theoretically cleanest and safest way to access
the nucleon transversityha

1(x). The first attempt to studyha
1(x) by means of the Drell-Yan

process is planned at RHIC. Dedicated estimates, however, indicate that at RHIC the access
of ha

1(x) is very difficult since the observable double spin asymmetryATT is proportional to a
product of transversity quark and antiquark. The latter are small even if they were saturated the
Soffer upper limit.

This problem can be circumvented by using an antiproton beam. The challenging promising
program how to polarize an antiproton beam has recently been suggested in the PAX experiment
at GSI. The quantitative estimates for theATT in the kinematics of the PAX experiment were
given [3] on the basis of predictions for the transversity distribution from the chiral quark soliton
model (Fig.2a).
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Figure 2: a) The asymmetryATT(y,M2) at PAX as a function of the rapidityy for Q2 = 5GeV2 (solid) and
9GeV2 (dashed) and16GeV2 (dotted line) fors= 45GeV2. b) Comparison ofATT(y,M2) from proton-antiproton
(solid) and proton-proton (dotted line) collisions forQ2 = 5GeV2.

The advantage of using antiprotons is evident from Fig.2b. The corresponding asymmetry
from proton-proton collisions is an order of magnitude smaller. Even if this advantage is com-
pensated by a small antiproton polarization(5−10)%, the counting rates and accuracy are more
sizeable.

A probabilistic model of parton distributions, previously developed by one of the authors,
was generalized to include also the transversity distribution [4]. It was obtained that when
interference effects are attributed to the quark level only, the intrinsic quark motion produces
the transversity, which is about twice as large as the usual helicity distribution. The applicability
of such a picture is considered and possible corrections accounting for interference effects at
the parton-hadron transition stage are discussed.

[1] A.V. Efremov, K. Goeke and P. Schweitzer, Eur. Phys. J. C32, 337 (2003); [arXiv:hep-
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DEEP INSIDE THE PION: QCD THEORY VS DATA

A.P. Bakulev, S.V. Mikhailov

Light-cone sum-rule predictions for Fγ∗γπ and Fγ∗ρπ . Our description of the pion-photon
transition form factor,Fγ∗γπ , emerged from the light-cone sum-rule (LCSR) calculation, is
shown in Fig. 1 (right) in comparison with CLEO and CELLO exp. data. This description
is based on the Bakulev–Mikhailov–Stefanis (BMS) bunch of the pion distribution amplitude
(DA), Fig. 1 (left), and on a complete NLO calculation for the corresponding spectral density.
The BMS description (green strip on the right) is inside the1σ region while the predictions
for both asymptotic and Chernyak–Zhitnitsky (CZ) DAs are outside the3σ region. TheFγρπ

form factor appears as an inevitable part of theFγγ∗π transition form factor in this analysis. In
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Figure 1:Left : BMS “bunch” of the pion DAs contrasted with two extreme alternatives (asymptotic DA—dotted
line and CZ model—long-dashed line) atµ2≈ 1 GeV2. Right: Light-cone sum-rule predictions forQ2Fγ∗γ→π(Q2)
in comparison with the CELLO (diamonds) and the CLEO (triangles) experimental data, evaluated with the twist-4
parameter valueδ 2

Tw−4 = 0.19GeV2. The predictions correspond to selected pion DAs; notably, CZ (upper dashed
line), BMS-“bunch” (shaded strip), two instanton-based models (dotted and dash-dotted line), and the asymptotic
DA (lower dashed line).

this framework it depends mainly on thedifferentialpion characteristic
d
dx

ϕπ(x)|x=ε , ε ∼ sρ

Q2 ,

in the ε-neighborhood of the origin. This feature is opposite to the case of theQ2Fγγ∗π(Q2)
form factor which mainly depends on the inverse moment〈x−1〉π =

∫ 1
0 ϕπ(x; µ2)x−1dx, i.e., on

anintegralpion characteristic. ThereforeQ4Fγρπ(Q2) can provide complementary information
on the pion DA and help discriminate among different pion DA models. Our predictions for
Q4Fγρπ(Q2) are presented in Fig. 2 (left) by a shaded strip with the central line denoting the
BMS model, their thickness being a practical measure for the allowed variation of the twist-4
parameterδ 2

Tw−4 = (0.15−0.23) GeV2.

Pion electromagnetic form factor We have calculated the electromagnetic pion form factor
Fπ(Q2; µ2

R) = FLD
π (Q2) + FFact−WI

π (Q2; µ2
R), where the soft partFLD

π (Q2) is modelled via lo-
cal duality and the factorized contributionFFact−WI

π (Q2; µ2
R) is corrected via a power-behaved

pre-factor in order to respect the Ward identity atQ2 = 0. In our analysisFFact
π (Q2; µ2

R) was
computed to NLO using Analytic Perturbation Theory and trading the running coupling and its
powers for analytic expressions in the nonpower series expansion, i.e.,

[
FFact

π (Q2; µ2
R)

]
MaxAn = ᾱ(2)

s (µ2
R)F LO

π (Q2)+
1
π

A
(2)

2 (µ2
R)F NLO

π (Q2; µ2
R) ,
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Figure 2: Left: Predictions forQ4Fγρπ(Q2) for the pion DAs shown on the left. The thickness of the two
broken lines corresponds to the variation of the twist-4 parameter in the rangeδ 2

Tw−4 = (0.15− 0.23) GeV2.
Right: Predictions for the scaled pion form factor calculated with the BMS bunch (green strip) encompassing
nonperturbative uncertainties from nonlocal QCD sum rules and renormalization scheme and scale ambiguities
at the level of the NLO accuracy. The dashed lines inside the strip restrict the area of predictions accessible to
the asymptotic pion DA using the “Maximally Analytic” procedure. The experimental data are taken from JLab
(diamonds) andC. J. Bebek et al.(triangles).

with ᾱ(2)
s andA

(2)
2 (µ2

R) being the 2-loop analytic images ofαs(Q2) and
(
αs(Q2)

)2
, correspond-

ingly, whereasF LO
π (Q2) andF NLO

π (Q2; µ2
R) are the LO and NLO parts of the factorized form

factor, respectively. The phenomenological upshot of this analysis is presented in Fig. 2 (right),
where we showFπ(Q2) for the BMS “bunch” using the “Maximally Analytic” procedure which
substantially reduces the scheme and scale setting uncertainties (the width of the corresponding
strip in Fig. 2 (right) is determined by these rather small uncertainties, as well as by those due
to the BMS bunch). This new procedure replaces the running coupling and its powers by their
own analytic images and provides results in rather good agreement with the experimental data,
given also the large errors of the latter. (Let us note here that the old data due to C. J. Bebek et
al. depicted in Fig. 2 (right) are now considered by JLab groups as being underestimated). One
appreciates that the form-factor predictions are only slightly larger than those resulting with the
asymptotic DA.

For more details and complete references see:

A.P. Bakulev, S.V. Mikhailov, and N.G. Stefanis, Phys. Lett. B508, 279 (2001); Phys.
Rev. D,67, 074012 (2003); Phys. Lett. B578, 91 (2004); Ann. Phys. (Leipzig)13, 629
(2004);
A.P. Bakulev, K. Passek-Kumerički, W. Schroers, and N.G. Stefanis, Phys. Rev. D,70,
033014 (2004).

25



QCD LIGHT CONE DISTRIBUTIONS OF HADRONIC SYSTEMS AND
EXOTIC STATES

O.V. Teryaev, I.V. Anikin, B. Pire1, L. Szymanowski2, S. Wallon3
1 Ecole Polytechnique,2 Soltan institute,3 Universite Paris-Sud

1. The current development of high energy physics includes the ”renaissance” of hadron
spectroscopy (see e.g. [1] and Ref. therein). The hadrons which cannot be included in the
standard scheme ofqq̄ mesons andqqqbaryons became the object of rigorous theoretical and
experimental studies. This may be an important step in understanding the nonperturbative QCD.

A special role in relating the theory and experiment is played by the QCD factorization
for hard processes when both perturbative and nonperturbative ingredients are well-defined and
provide suitable objects for perturbative and nonperturbative calculations, respectively. The
maturity of this approach results in the variety of the nonperturbative ingredients describing
various semi-inclusive and exclusive [2] hadronic processes.

2. The simplest and known hadronic light-cone distribution is that of the pion that man-
ifested itself in the scaling behaviour of the transition form-factor studied in the collisions of
real and virtual photons. It was proved that the production of two or three mesons should be
described in a similar way [3, 4]. This prediction was confirmed when such a scaling behaviour
was found [5] in the production of twoρ−mesons. It marked the experimental discovery of the
first multimeson distribution amplitudes. The detailed theoretical analysis [6] showed that the
meson spin does not affect the resultingQ2−dependence when the average over final particles
angular distribution is performed. The good quantitative description of the data is achieved (see
Fig. 1).
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Figure 1:Cross-sectiondσ/dQ2[pb/GeV2] as a

function ofQ2[GeV2]

3. Light-cone distributions generally provide
the description of hadronic states different from the
one in terms of nonrelativistic quark wave func-
tions. This brings the problem of the lightcone dis-
tributions of exotic states, namely, to which extent
the operators on the light cone follow the content
defined by the low energy structure. The detailed
analysis of the quark-gluon hybrid state [7] shows
that the quantum numbers may be carried by glu-
ons associated with the string required by the colour
gauge invariance. This results in the leading twist
amplitude of the hybrid meson production, contrary
to the naive expectations. Hybrid production may
be studied through its interference with nonexotic
states, resulting in the angular asymmetries in production of the meson pair consisting of one
pion and oneη meson [8].

4. The specific case when low-energy and light-cone structures are intimately related -is
provided by theI = 2 four-quark state which does not have a projection to a quark-antiquark
state. Its existence was suggested [9] in order to explain the relative production of charged and
neutralρ mesons in real photon collisions. The generalization of this approach to the case of
virtual photons naturally explains the observed experimental features like a twice larger pro-
duction of charged mesons at largeQ2 due to the leading twistI = 0 state, while its interference
with the twist-4 I = 2 state should explain the intersection of cross-sections of charged and
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neutral mesons at the transition pointQ2 ∼ 1GeV2 [10]. The detailed theoretical analysis [11]
of this effect will allow a first direct study of a four-quark state via a higher twist light-cone
distribution.
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NONLOCAL SU(2)×SU(2) SYMMETRIC MODEL WITH QUARK
CONFINEMENT

A.E. Dorokhov, A.E. Radzhabov, and M.K. Volkov

Masses and interactions of light mesons are described in the framework of the model with
the chiral invariantSU(2)×SU(2) four-quark interaction [1, 2]. The nonlocal kernel of the
interaction is chosen in the form that ensures the absence of ultraviolet divergences in the Feyn-
man diagrams and poles in the quark propagator. This form of kernel is motivated by the in-
stanton interaction. This model is a nonlocal extension of the well-known Nambu–Jona-Lasinio
(NJL) model with local quark interaction. However, with nonlocal form-factors, quark loops are
free of ultraviolet divergences and it is possible to implement the quark confinement. The use of
a covariant nonlocal low-energy quark model based on a self-consistent approach to the dynam-
ics of quarks has many attractive features: it preserves gauge invariance, it is consistent with
the low-energy theorems as well as takes into account the large-distance dynamics controlled
by bound states.

The pseudoscalar, scalar, vector, and axial-vector mesons are considered in the model. The
σ , a1 meson masses and the widths of main strong decaysσ → ππ, ρ → ππ anda1→ ρπ are
estimated.

Nonlocal models, in contrast with the local NJL model, can be successfully used for the
description of the constant part of amplitudes of meson interactions as well as the momentum
dependence of amplitudes at small energies. It becomes possible to describe a set of important
meson properties: electromagnetic radii, electric and magnetic polarizabilities, meson-meson
scattering lengths, slope parameters of different processes and so on. In some cases (for exam-
ple, the pion radii [3]) the standard local NJL model may lead to incorrect results. In nonlocal
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models, the contribution of the diagrams with intermediate vector mesons is shown to be sup-
pressed and the electromagnetic radius of charged pion and the transition radius of the neutral
one are in good agreement with experimental value. At the sameρ-meson diagrams play a very
important role for description of the form-factor of the processγ∗π+π− in the time-like region.
It is shown that the pion polarizability in a nonlocal model is noticeably smaller than in the local
NJL model and is very sensitive to the form of nonlocality [4].

[1] A.E. Dorokhov, A.E. Radzhabov, M.K. Volkov, Phys. At. Nucl.67, 1029 (2004).
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CORRELATORS OF VECTOR AND AXIAL-VECTOR CURRENTS IN
THE INSTANTON LIQUID MODEL

A.E. Dorokhov

The transition from perturbative regime of QCD to nonperturbative one has yet remained
under discussion. At high momenta the fundamental degrees of freedom are almost massless
quarks. At low momenta the nonperturbative regime is adequately described in terms of con-
stituent quarks with masses dynamically generated by spontaneous breaking of chiral symmetry.
The instanton model of QCD vacuum provides the mechanism of dynamical quark dressing in
the background of instanton vacuum and leads to generation of the momentum dependent quark
mass that interpolates these two extremes. Still it is not clear how an intuitive picture of this
transition may be tested at the level of observables. In order to clarify the problem we con-
sidered the correlators of vector and axial-vector currents in channels with different quantum
numbers [1]-[4].

Figure 1: NormalizedV −A correlation
function constructed in the NχQM (solid
line) and reconstructed from the ALEPH
experimental spectral function (dashed
line).

Figure 2: Topological susceptibility ver-
susQ2 predicted by the NχQmodel.

The behavior of nonperturbative parts of the isovector-vector and isovector axial-vector cor-
relators at Euclidean momenta was studied in the framework of a covariant chiral quark model
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with instanton-like quark-quark interaction (NχQM). The gauge covariance is ensured with the
help of the P-exponents, with the corresponding modification of the quark-current interaction
vertices taken into account[1]. The low- and high-momentum behavior of the correlators is
compared with the chiral perturbation theory and with the QCD operator product expansion,
respectively. The V-A combination of the correlators obtained in the model reproduces quan-
titatively the ALEPH data on hadronicτ decays transformed into the Euclidean domain via
dispersion relations (Fig. 1). The predictions for the electromagneticπ±−π0 mass difference
and for the pion electric polarizability obtained from the chiral sum rules are also in agreement
with experimental values [2].

The topological susceptibility of QCD vacuum (the correlator of the isosinglet axial-vector
currents) was studied within the same approach as a function of momentum transferχ(Q2) [3]
(Fig. 2). Its first moment was predicted to beχ ′(0)≈ (50MeV)2 and this value is in accordance
with one of the predictions of QCD sum rule calculations. In addition, the fulfillment of the
Crewther theorem was demonstrated (χ(0) = 0). The relation of the first moment of topolog-
ical susceptibilityχ ′(0) and the ’spin crisis’ problem were briefly discussed. It was shown,
in particular, that one always gets the inequalityχ ′(0) > χ ′OZI, thus discarding the mechanism
explaining the ’spin crisis’ based on anomalous smallness ofχ ′(0).

Figure 3. The Adler function from the NχQM
contributions: dynamical quark loop (short dashed),
quark + chiral loops + vector mesons (full line)
versus the ALEPH data (dashed). The dash-dotted
line is the prediction of the constituent quark model
and the dotted line is the asymptotic freedom
prediction,1/4π2.

We demonstrated that the Adler function
depending on spacelike momenta may serve
as an appropriate quantity to show the transi-
tion from perturbative regime of QCD to non-
perturbative one. This function defined as a
logarithmic derivative of the current-current
correlator can be extracted from experimetal
data of ALEPH and OPAL collaborations on
inclusive hadronicτ decays. From a theo-
retical point of view it is well known that
in high-energy asymptotically free limit the
Adler function calculated for massless quarks
is a nonzero constant. On the other side, in
the constituent quark model (suitably regu-
larized) this function is zero at zero virtual-
ity. Thus, the transition of the Adler func-
tion from its constant asymptotic behaviour to
zero is very indicative concerning the nontriv-
ial QCD dynamics at intermediate momenta.
In [4], we showed that the instanton-like non-
local chiral quark model extended by inclu-

sion of the vector and axial-vector mesons describes this transition correctly. In particular, we
analyzed the correlator of vector currents and the corresponding Adler function in the frame-
work of NχQM that allows us to draw a precise and unambiguous comparison of experimental
data with the model calculations (Fig. 3). The use in the calculations of a covariant nonlocal
low-energy quark model based on the self-consistent approach to the dynamics of quarks has
many attractive features as it preserves the gauge invariance, is consistent with the low-energy
theorems and takes into account the large-distance dynamics controlled by the bound states.

As an application we estimated the leading order hadronic vacuum polarization contribution
to the muon anomalous magnetic moment,ahvp,1

µ , which is expressed as a convolution integral
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over spacelike momenta of the Adler function and confront it with the recent results of the
measurements by the Muon(g−2) collaboration.
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COOLING OF NEUTRON STARS WITH COLOR SUPERCONDUCTING
QUARK CORES

David Blaschke1,2,5, Hovik Grigorian3,4, and Dmitri Voskresensky5,6

1Fakulẗat für Physik, Universiẗat Bielefeld, D-33615 Bielefeld, Germany
2Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research

3Institut für Physik, Universiẗat Rostock, D-18051 Rostock, Germany
4Department of Physics, Yerevan State University, 375025 Yerevan, Armenia

5Theory Division, GSI mbH, D–64291 Darmstadt, Germany
6Moscow Institute for Physics and Engineering, 115409 Moscow, Russia

We reinvestigated the cooling of neutron stars [1] and demonstrated that modern cooling
data in the form of temperature vs. age can be well explained within thenuclear medium cooling
scenario[2] when suppression of the3P2 neutron gap is adopted. This investigation revealed
that once the conditions for the onset of the very efficient direct Urca (DU) process were met
within a neutron star (central densitiesρc exceeding the critical oneρDU for DU onset) this led
to a very fast cooling. Therefore, we formulated as a condition to the nuclear equation of state
that the critical neutron star mass above which the DU process was allowed should be larger than
that of a typical neutron star which should be in the range of measured masses of binary radio
pulsars (BRP)MBRP= 1.35±0.04 M¯ [3]. While stars withρc slightly belowρDU still cool
rather slowly, a small increase ofρc above this threshold makes the cooling dramatically faster.
In the case of hadronic matter the onset of this process is determined by the density dependence
of the asymmetry energy. The latter dependence is an important issue for the analysis of heavy
ion collisions, especially within the new program for investigation of compressed baryon matter
(CBM experiment) to be realized at the future accelerator facility FAIR at the GSI Darmstadt.

Our assumption about the mass distribution of neutron stars can be developed into a more
quantitative test of cooling scenarios when these are combined with population synthesis models
[4].

We demonstrated [5] that within a recently developed nonlocal chiral quark model (see [6]
and Refs. therein) the critical densities for a phase transition to color superconducting quark
matter could be low enough for these phases to occur in compact star configurations with masses
below MBRP. For the choice of the Gaussian formfactor the 2SC-normal quark matter mixed
phase arises atM ' 1.21M¯. We showed that without a residual pairing the 2SC quark matter
phase could describe the cooling data only if compact stars had masses in a very narrow band
around the critical mass for which the quark core could occur. Since there are observations of
neutron stars with higher and essentially different masses, such a scenario should be disfavored.

In order to bring the hybrid star cooling scenario in accordance with the modern cooling
data, we had to assume that all quarks had to be paired. This means that also those quarks
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unpaired within the 2SC phase should be paired with a small gap∆X < 1 MeV (2SC+X pairing)
which is density dependent, according to∆X(µ) = ∆cexp[−α(µ−µc)/µc] where the parame-
ters are chosen such that at the critical chemical potentialµc = 330 MeV for the onset of the
deconfinement transition the X-gap has its maximal value of∆c = 1.0 MeV and at the highest
attainable chemical potentialµmax = 507MeV, i.e., in the center of the maximum mass hybrid
star configuration, it falls to a value of the order of 10 keV. We chose the valueα = 10for which
∆X(µmax) = 4.6 keV.

We show in Fig. 1 that the present day cooling data could be well explained by hybrid stars
though when assuming a complex pairing pattern, where the quarks are partly strongly paired
within the 2SC channel, and partly weakly paired with density dependent gaps∆X < 1 MeV.
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Figure 1:Surface temperature vs. age for different thermal X-ray sources (data points with error bars) compared

with theoretical cooling curves for hybrid star configurations with quark matter core in the 2SC+X phase with

density dependent small diquark pairing gap∆X [5]. The labels correspond to the gravitational masses of the star

configurations in units of the solar mass.

However, as was discussed in [7], the 2SC phase was most unlikely in compact stars. If 2SC
does not occur, this excludes the 2SC+X phase and other patterns of diquark pairing satisfying
color and charge neutrality can become energetically more favorable than normal quark matter.
As a viable alternative the color-spin-locking (CSL) phase [8] was suggested, for which the
pairing gaps are so small that the EoS is well described by a bag model.

This work was supported by the Virtual Institute of the Helmholtz Association under grant
No. VH-VI-041.
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NLO QCD METHOD OF SIDIS DATA ANALYSIS

A.N. Sissakian, O.Yu. Shevchenko, and O.N. Ivanov

The main points of interest for modern semi-inclusive deep inelastic scattering (SIDIS)
experiments with a longitudinally polarized beam and target are the strange quark, light sea
quark, and gluon contributions to the nucleon spin. Of special importance is also a still open
question whether the polarized light quark sea is symmetric or not, i.e., if the quantity2 ∆1ū−
∆1d̄ is equal to zero or not.

At the same time it was shown [1] that to get reliable results on such tiny quantities as
∆s and∆1ū−∆1d̄ from the data obtained at a relatively small averageQ2 available to modern
SIDIS experiments (such as HERMES and COMPASS), a simple leading order analysis is not
sufficient and a next-to- leading order analysis is necessary. A new method of∆1q extraction
in the next-to-leading (NLO) QCD order was proposed in ref. [2]. The main advantage of the
proposed method is that it is adirect extraction method. It is free of additional assumptions
which are required for all other known today NLO extraction procedures.

In ref. [2] it was shown that the proposed NLO method could be successfully applied to
solve such an important problem (for understanding the proton spin puzzle) as the symmetry
of the light quark polarized sea. To this end, using the proposed NLO procedure, one should
first extract from the special SIDIS asymmetries (so-called “difference asymmetries”) the first
moments of the polarized valence distributions∆1uV , ∆1dV and then, applying the respective
form of the Bjorken sum rule, one can get the quantity (polarized sea asymmetry)∆1ū−∆1d̄
which indicates the symmetry of the polarized sea in nucleon, broken or not. The equations [2]
for ∆1uV , ∆1dV and∆1ū−∆1d̄ obtained in ref. [2] have a very simple form

∆1uV =
1
5

Aexp
p +Aexp

d

L1−L2
; ∆1dV =

1
5

4Aexp
d −Aexp

p

L1−L2
, (1)

for valence distributions and

∆1ū−∆1d̄ =
1
2

∣∣∣∣
gA

gV

∣∣∣∣−
2Aexp

p −3Aexp
d

10(L1−L2)
(2)

for the polarized sea asymmetry. All the quantities in the right-hand sides of these equations
contain already measured unpolarized quark distributions and pion fragmentation functions (fa-
vored and unfavored, entering into the coefficientsL1 andL2, respectively), known NLO Wilson
coefficients and the experimental input, difference asymmetriesAπ+−π−

p andAπ+−π−
d (entering

into the quantitiesAexp
p andAexp

d ), extracted from the SIDIS data for the pion production on the
proton and deuteron targets. Thus, the pair of difference asymmetries is the only unknown input
which should be measured to find the quantities∆1uV , ∆1dV and∆1ū−∆1d̄ using Eqs. (1) and
( 2).

The validity of the proposed NLO procedure was confirmed by the respective simulations.
To this end the peculiarities of HERMES and COMPASS experiments were considered. The
analysis performed in [2] confirms that for both HERMES and COMPASS kinematics the pro-
posed NLO QCD extraction method meets the main requirement: to reconstruct the quark mo-
ments in the Bjorkenx region accessible to measurement.

2The notation∆1q≡ ∫ 1
0 dx∆q is used for the first moments of the local in Bjorkenx quark helicity distributions

∆q(x).
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At present, the proposed NLO QCD method is successfully applied to all types of measured
by HERMES and COMPASS semi-inclusive asymmetries. In particular, it gives the possibility
to extract such important quantity as the polarized strangeness content in nucleon. All numerical
tests performed for all used SIDIS asymmetries demonstrate that the proposed method works
very well and can be applied in the real conditions of the running and planed SIDIS experiments.

[1] A.N. Sissakian, O.Yu. Shevchenko and O.N. Ivanov, Phys. Rev.D 68 (2003) 031502(R).
[2] A.N. Sissakian, O.Yu. Shevchenko and O.N. Ivanov, Phys. Rev.D 70 (2004) 074032.

RADIATIVE CORRECTIONS TO HIGH-ENERGY QED PROCESSES AT
ELECTRON-POSITRON, ELECTRON-PROTON, ELECTRON-PHOTON
AND ION COLLIDERS. CALIBRATION PROCESSES ON COLLIDERS

E. Kuraev, V. Bytev, A. Arbuzov

Radiative corrections (RC) to the Compton scattering cross section are calculated in the
leading and next-to leading logarithmic approximation to the case of colliding high energy
photon-electron beams [1]. RC to the double Compton scattering cross section in the same
experimental set-up are calculated in the leading logarithmic approximation. We consider the
case when no pairs are created in the final state. We show that the differential cross section can
be written in the form of the Drell-Yan process cross-section. Numerical values of theK-factor
and the leading order distribution on the scattered electron energy fraction and scattering angle
are presented.

We considered RC to the virtual Compton scattering in the high-energy limit including
additional hard photon emission in the leading logarithmical approximation [2]. Our result
is consistent with the Drell-Yan picture of the process and is expressed in terms of electron
structure function. The comparison with the previous work on DVCS is made.

The process of the muon (pion) pair production with small invariant mass in the electron–
positron high–energy annihilation, accompanied by emission of hard photon at large angles, is
considered [3]. We find that the Drell–Yan picture for the differential cross section is valid in
the charge–even experimental set–up. Radiative corrections for both electron block and final
state block are taken into account.

The lowest order radiative corrections to the differential cross-section of the muon pair pro-
duction with emission of hard photon at high energy electron-positron annihilation are calcu-
lated [4]. Taking into account the emission of additional soft and hard photon the cross-section
can be put in the form of the Drell-Yan process in the leading logarithmical approximation.
Applying the crossing transformation we obtain the cross section of radiative electron-muon
high-energy scattering process. Virtual and soft photon emission contributions of the nonlead-
ing form are tabulated for several typical kinematic points. The limit of small invariant mass of
a muon pair is in agreement with our previous analysis.

The recent analysis of nuclear distortions in DIS off nuclei revealed a breaking of the con-
ventional hard factorization for a multijet observable. The related pQCD analysis of distortion
effects for jet production in nucleus-nucleus collisions is as yet lacking. As a testing ground
for such an analysis we consider the Abelian problem of higher order Coulomb distortions of
the spectrum of lepton pairs produced in peripheral nuclear collisions [5]. We report an explicit
calculation of the contribution to the lepton pair production in the collision of two photons from
one nucleus with two photons from the other nucleus,2γ +2γ → l+l−. The dependence of this
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amplitude on the transverse momenta has a highly nontrivial form the origin of which can be
traced to the mismatch of the conservation of the Sudakov components for the momentum of
leptons in the Coulomb field of the oppositely moving nuclei. The result suggests that the fa-
miliar eikonalization of Coulomb distortions breaks down for the oppositely moving Coulomb
centers which is bad news from the point of view of extensions to the pQCD treatment of
jet production in nuclear collisions. On the other hand, we notice that the amplitude for the
2γ + 2γ → l+l− process has a logarithmic enhancement for the lepton pairs with large trans-
verse momentum which is absent fornγ + mγ → l+l− processes withm,n > 2. We discussed
the general structure of multiple exchanges and showed how to deal with higher order terms
which cannot be eikonalized.

The calibration QED process cross sections for experiments on planned electron-photon and
photon-photon colliders for detecting small-angle scattered particles are calculated [6]. These
processes describe the creation of two jets moving sufficiently close to the beam axis directions.
The jets containing two and three particles including charged leptons, photons and pseudoscalar
mesons are considered explicitly. Considering the pair production subprocesses we take into
account both bremsstrahlung and double photon mechanisms. The obtained results are suitable
for further numerical calculations.

Processes with creation of pair charged particles with emission of hard photon and two pairs
of charged particles [7] are considered for colliding partially polarized photon photon beams.
The effects of circular and linear polarization of the initial photons are discussed in more detail.

[1] A.N. Ilyichev, E.A. Kuraev, V. Bytev, and Y.P. Peresun’ko, J. Exp. Theor. Phys.100, 31
(2005) [Zh. Eksp. Teor. Fiz.100, 37 (2005)] [arXiv:hep-ph/0406172].
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[4] A.B. Arbuzov, V.V. Bytev and E.A. Kuraev, JETP Lett.79, 593 (2004) [Pisma Zh. Eksp.
Teor. Fiz.79, 729 (2004)] [arXiv:hep-ph/0310192].

[5] E. Bartos, S.R. Gevorkyan, E.A. Kuraev, and N.N. Nikolaev, arXiv:hep-ph/0410263.
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NEW TRENDS IN HIGH-ENERGY COLLIDER PHYSICS

E. Kuraev, E. Bartos, S. Dubnichka1, and I. Cherednikov
1 Inst. of Phys., Slovak Academy of Sciences

Two new sum rules are derived relating Dirac radii and anomalous magnetic moments of
the considered strongly interacting fermions with the convergent integral over a difference of
the total proton and neutron, as well asHe3 andH3, photoproduction cross-sections [1].

Starting with very high energy inelastic electron-nucleon scattering with production of a
hadronic stateX to be moved closely in the direction of the initial nucleon, then utilizing analytic
properties of parts of the forward virtual Compton scattering amplitudes on proton and neutron,
one obtains the relation between nucleon form factors and a difference of proton and neutron
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differential electroproduction cross-sections [2]. In particular, in the case of small transferred
momenta, one finally derives sum rule, relating Dirac proton mean square radius and anomalous
magnetic moments of proton and neutron to the integral over a difference of the total proton and
neutron photoproduction cross-sections.

The charge asymmetry induced by interference of amplitudes withσ andρ mesons decay-
ing into theπ+π− pair created in the fragmentation region of proton suggests to be a test of
degeneration hypothesis ofρ andσ mesons [3]. Some numerical estimations are given.

Introducing such a notion as ”excitation of physical vacuum” we make an attempt to ex-
plain some strange experimental facts such as large value ofσ -term measured in pion-nucleon
low-energy scattering, the∆T = 1/2 rule in kaon-two pion decay modes, the ratio of strange
to nonstrange yield in low energy proton-antiproton annihilation, and excess of soft photons
in hadron collisions [4]. As a test of our approach we suggest that multiparticle production
processes and decays of heavy virtual objects be measured.

The effective kinematic diagram technique is applied to study inelastic form factors of elec-
tron and quark in QED and QCD [5]. The explicit expressions for these form factors in the
double-logarithmic approximation are presented. The self-consistency of the results is shown
by demonstrating the fulfillment of the Kinoshita-Lee-Nauenberg theorem.

Starting with the gauge invariant effective action in the quasi-multi-Regge kinematics
(QMRK), we obtain the effective reggeized gluon (R) – particle (P) vertices [6] of the following
types: RPP, RRP, RRPP, RPPP, RRPPP, andRPPPP, where theon-mass-shell particles are
gluons, or sets of gluons with small invariant masses. The explicit expressions satisfying the
Bose-symmetry and gauge invariance conditions are obtained. As a comment to the Feynman
rules for derivation of the amplitudes in terms of effective vertices we present a “vocabulary”
for practitioners.

[1] E. Bartos, E.A. Kuraev and S. Dubnicka, Phys. Rev. D70, 117901 (2004).
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RADIATIVE CORRECTION
TO THE RADIATIVE PION DECAY MODES

E. Kuraev, Yu. Bystritsky

We find the contribution of a constituent quark loop mechanism to the branching ratioB4γ =
Γπ0→4γ/Γπ0→2γ to be less≤ 10−16 for the reasonable choice of constituent quark massm≈
280MeV [1]. This result is in agreement with vector-dominance approach result obtained years
ago. The main contribution arises from the QED mechanismπ0 → γ(γ∗) → γ(3γ) including
light-light scattering block with an electron loop. This last one was investigated in paper of one
of us and gaveB4γ ∼ 2.6·10−11.

The lowest order radiative corrections (RC) to the width and spectra of the radiativeπe2
decay are calculated [2]. We take into account virtual photon emission contribution as well as
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soft and hard real photon emission one. The result turns out to be consistent with the standard
Drell-Yan picture for the width and spectra in the leading logarithmical approximation which
permits us to generalize it to all orders of perturbation theory. Explicit expressions of nonleading
contributions are obtained. The contribution of short distance is found to be in agreement with
the Standard Model predictions. It is presented as a general normalization factor. We check
the validity of the Kinoshita-Lee-Nauenberg theorem about cancellation in the total width of
the mass singularities at the zero limit of electron mass. We discuss the results of the previous
papers devoted to this problem. The Dalitz plot distribution is illustrated numerically.

[1] E.A. Kuraev, V.V. Bytev and Y.M. Bystritsky, arXiv:hep-ph/0311086.

[2] E.A. Kuraev and Y.M. Bystritsky, Phys. Rev. D69, 114004 (2004).

EXTENDED REIN-SEHGAL MODEL FOR SINGLE-PION
NEUTRINOPRODUCTION

V.A. Naumov

The Rein–Sehgal (RS) model [1] is undoubtedly one of the most circumstantial and ap-
proved phenomenological tools for description of single-pion production through baryon reso-
nances in neutrino and antineutrino interactions with nucleons. It is incorporated into essentially
all MC neutrino event generators developed for both accelerator and astroparticle experiments.
However, the RS model is not directly applicable to theντ andντ induced reactions since it
neglects the final lepton mass. Due to the same reason, the model is not suited for studying the
lepton polarization phenomenon. These faults were removed in the extended RS model (ExRS
hereafter) [2] which takes into account both the final lepton mass and spin and automatically
satisfies the positivity constraints (see, e.g., Ref. [3] and references therein).

The extension is based upon a covariant form of the charged leptonic currentjλ with definite
lepton helicityλ which allows us to express the componentsjαλ of the current in the resonance
rest frame (RRF) through the kinematic variables (andλ ) measured in the laboratory frame.
Since the leptonic currentjλ can be treated as the intermediateW boson polarization 4-vector,
it can be decomposed (in RRF) into three polarization 4-vectorseL,R,S corresponding to the
left-handed, right-handed, and scalar polarizations.

However, the vectoreS has to be modified with respect to that of the original RS model and,
consequently, its inner products with the vector and axial charged hadronic currentsFV,A has to
be recalculated. To do this, the explicit form was used for the currentsFV,A of the Feynman–
Kislinger–Ravndal (FKR) relativistic quark model [4] adopted in the original RS approach. As
a result, some structures involved into the description of the FKR dynamics are also modified.
After that, the lepton polarization density matrixρ =‖ρλλ ′ ‖ can be written as the superposition
of the partial cross sectionsσλλ ′

i (i = L,R,S),

ρλλ ′ =
Σλλ ′

Σ++ +Σ−−
, Σλλ ′ = ∑

i=L,R,S

cλ
i cλ ′

i σλλ ′
i ,

and the differential cross section for single-pion production is given by

d2σ
dQ2dW2 =

G2
F cos2θCQ2

2π2M |q|2 (Σ++ +Σ−−) .
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The partial cross sectionsσλλ ′
i are found to be bilinear combinations of the CC amplitudes re-

ferring to one single resonance in a definite state of isospin, charge and helicity. The coefficients
cλ

i are explicitly defined through the componentsjαλ written in RRF. The remaining kinematic
variables and constants in the above equation have their standard meaning.

One of the most exciting consequences of the ExRS model is an essential suppression of
the differential cross sections for single-pion production due to the finite lepton mass [5]. The
major effect is, of course, due to theτ lepton production threshold but accounting for the mass
in the lepton current (“dynamic correction”) gives rise to a significant additional decrease of the
cross section: the effect can be as large as 300% at low neutrino energies and remains important
up to rather high energies.

Note that the dynamic mass correction for theνµ andνµ induced reactions is typically at a
few per cent level or less and the purely kinematic correction for the muon mass is sufficient.

The ExRS model was tested with all available data on single-pion neutrinoproduction as
well as with the data on the totalνµN andνµN cross sections. In the latter case, the quasielas-
tic contribution was taken into account, according to the recent result of Refs. [6, 7] while the
deep-inelastic (DIS) contribution, according to the Bodek-Yang model for the nucleon struc-
ture functions [8]. In these calculations, the same set of 18 interfering baryon resonances with
the central masses below 2 GeV/c2 was used, as in Ref. [1]. However, all relevant input pa-
rameters were updated according to the most recent data [9]. The factors estimated in Ref. [1]
numerically were corrected by using the new data and a more accurate algorithm for numerical
integration. The transition form factorsGV,A

(
Q2

)
adopted in the RS model are not modified

but the today’s standard values for the axial mass and coupling constant are used. In contrast
with the original RS model prescription, the nonresonance background was assumed to be part
of the DIS contribution. Nuclear effects (most important at low energies) were taken into ac-
count within the standard relativistic Fermi gas model. The agreement with all the data is quite
satisfactory through the whole available kinematic region.
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POLARIZATION OF ELECTRON-POSITRON VACUUM BY A STRONG
MAGNETIC FIELD IN THE THEORY WITH A FUNDAMENTAL MASS

V.G. Kadyshevsky and V.N. Rodionov1

1 Moscow State Geological Prospecting University

Within the framework of the approach based on the use of exact solutions to the quantum
equations of motion of charged particles it is shown that an essential reduction of distances in
strong fields can result in effects with a new scale of a length peculiar to a formalism of the
modified quantum electrodynamics –QED with a fundamental mass. In particular, effects of
polarization of electron-positron vacuum by a strong magnetic fieldH in traditional QED ac-
counting AMM of particles and a new QED with a fundamental massM are investigated. In
the one-loop approximation, Lagrangian of an intensive constant magnetic field, which gener-
alizes Lagrangian of traditional QED, is calculated. The important difference between modified
Lagrangian and Heisenberg-Euler Lagrangian of traditional QED consists in that the general-
ized expression contains an additional field scaleF∗ = M2c3/eh̄. Within the framework of the
theory with a fundamental mass the fieldF∗ can naturally be named afundamental field. It is
established that the generalized Lagrangian and meanwhile an energy density of the polarized
vacuum are real, which confirms the stability of the vacuum in the modified theory at any values
of a magnetic field. It is also shown that in the weak field limit (H ¿ F∗) the calculated La-
grangian coincides with the known Heisenberg-Euler formula. On the other hand, for extremely
strong fields (H À F∗) the Lagrangian is completely independent of a field. In this limit the
new Lagrangian tends to a constant which is determined by the relation of fundamental and
lepton masses. It is well known that the estimation is performed of the observable difference
between theoretical calculations of a lepton AMMaµ(SM) derived within the framework of the
Standard Model and precision experimental results on measurement of AMM positive muons
amu(exp) recently obtained at the Brookhaven National Laboratory. It is shown that at values
of the fundamental massM ∼ 1 TeV in the modified theory a lepton initially possesses AMM
the value of which is about the observable difference∆µ = aµ(SM)−aµ(exp). Thus, a solution
of the muon(g−2) problem can give rise to a new theory beyond the scope of the Standard
Model, in particular –Standard Model with a fundamental mass.

1. V.G. Kadyshevsky, V.N. Rodionov, Teor. Mat. Fiz,136, 517–528 (2003).

2. V.G. Kadyshevsky, V.N. Rodionov, “Polarization of the electron-positron vacuum by a
strong magnetic field with allowance made for AMM of particles”. In: Proceedings of
Bogolubov Conference on Problems of theoretical and mathematical physics. (Dubna
2004), Ed. by A.N. Sissakian (to be published).
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NONRELATIVISTIC QED AND PRECISE SPECTROSCOPY OF
THREE–BODY ATOMS AND MOLECULES

V.I. Korobov

It is known that quantum electrodynamics is well developed for the two–body bound sys-
tems [1].

On the other hand, the major part of the proposed methods, such as the Bethe-Salpeter equa-
tion or the effective Dirac equation, do not extend well to systems of three and more particles.
It seems that the formalism of the nonrelativistic quantum electrodynamics (NRQED), as it was
formulated in [2], is the most suitable for that purpose. An energy of a bound state in NRQED
is searched for as a series expansion in terms of the coupling constantα . At present, explicit
expressions and methods for their evaluation have been obtained for the contributions up to and
including terms of an order ofα5 ln2α ·Ryd.

The three–body problem with the Coulomb pairwise interaction is one of the nonintegrable
problems in the quantum mechanics. At the same time, it allows ”arbitrarily” accurate numeri-
cal solutions at modern computers. For example, the nonrelativistic energy of the ground state
for a helium atom with infinite nuclear mass can be obtained with as much as 26 significant
digits [4]:

E(∞He) =−2.9037243770341195983111594(4) a.u.
These accurate variational solutions make feasible precise studies of different three–body

systems such as helium and helium-like atoms or molecular ions of hydrogen isotopes H+
2 ,

HD+, etc. Application of this high precision calculations is usually found in the metrology
of fundamental constants. Thus, the fine structure intervals of4He(23PJ) state may become
an alternative way for determination of the fine structure constantα. A study of vibrational
transitions in H+2 is considered as the most efficient way to improve the proton to electron mass
ratio.

Results obtained within the last few years are:

1. The ground-state ionization energy of the4He atom is found [3], this result includes all
effects of relative orderα4, α3me/mα , andα5 ln2α. The Bethe logarithm for a range
of S andP states in helium has been calculated with the highest precision of about 10
significant digits [6], this quantity has been a source of major theoretical uncertainty until
recently.

2. Transition energies between metastable states of an antiprotonic helium atom have been
obtained with about 1 ppb (part per billion) precision [5]. That uncertainty allows deter-
mination of the antiproton/electron mass ratio to a level of 0.5 ppb, which competes with
the CODATA02 recommended value for the proton/electron mass ratio.

3. The firstab initio calculation of the leading order radiative corrections for the hydrogen
molecular ions H+2 , HD+ have been performed [7].
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