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WELCOME ADDRESS
by JINR Vice-Director R. Lednicky

Dear Colleagues,
Ladies and Gentlemen,

On behalf of the Directorate of Joint Institute for Nuclear Research it is a pleasure to
welcome you at the 12-th International Workshop on High Energy Spin Physics.

This workshop is devoted to the 80-th anniversary of the birth of Lev Lapidus who or-
ganized in Dubna the first Workshop of this series already 26 years ago, in 1981. Starting
in the middle of fifties, Professor Lev Lapidus contributed significantly to the development
of High Energy Spin Physics for about three decades. The well known examples of his
achievements are the prediction of the analyzing power in the Coulomb-Nuclear Inter-
ference region and the first approach to the sum rule for the nucleon magnetic moment.
Besides his own research, he supported spin activities in many laboratories and helped a
lot to very fruitful and extensive participation of physicists from former USSR and from
Eastern Europe in the important international projects devoted to this difficult field of
physics.

I think there is no need to stress the importance of the spin phenomena for deeper
understanding of particle physics. There will be opportunity to hear about the achieve-
ments, the goals and the yet unresolved problems at this Workshop. The JINR labo-
ratories are largely involved in this important field of physics including both theoretical
and experimental studies. The latter are carried out with unique polarized beams at
JINR Nuclotron as well as in the outside experiments within collaborations HERMES,
COMPASS and STAR.

You probably know that there are plans to built up here in Dubna the ion collider
(so called project NICA) which will cover the energy range up to center-of-mass nucleon-
nucleon energy of about 10 GeV. Besides the search for the mixed phase, there are foreseen
experiments with polarized beams. I would like to stress that JINR directorate is very
much interested in the assistance and recommendations of the international spin com-
munity in preparation of the ambitious and competitive program of polarization studies
on this new facility. It is important that this program would be attractive and realized
within a wide international collaboration.

Besides JINR, this Workshop is supported by Russian Foundation for Basic Research
and by the International Committee of Spin Physics Symposia. In particular, thanks to
this support there are many young scientists from Russia and other JINR Member States
participating in the Workshop.

I would like to thank the Workshop organizers for their not easy work and express my
hope that you will benefit from the traditional friendly and fruitful atmosphere of this
meeting.

I wish you a productive work and a pleasant stay here in Dubna.
Thank you for the attention.
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THEORY OF SPIN PHYSICS





SINGLE SPIN EFFECTS IN COLLISIONS OF HADRONS
AND HEAVY IONS AT HIGH ENERGY

V.V. Abramov†

Institute for High Energy Physics, 142281 Protvino, Moscow region, Russia
† E-mail: Victor.Abramov@ihep.ru

Abstract

Experimental data on transverse single-spin asymmetry, hyperon polarization
and vector meson alignment in h+h, h+A and A+A-collisions have been analyzed.
A new mechanism for the origin of single spin effects is proposed, which takes into
account the interaction of massive constituent quarks via their chromomagnetic
moment with an effective inhomogeneous chromomagnetic field of strings, produced
after the initial color exchange. Quark spin precession in the color field is taken into
account, which can be the reason for an oscillation of the single spin observables
as a function of Feynman xF and its energy dependence. The model predictions
are compared with the experimental data, in particular with the heavy ion collision
data. The data are consistent with a large negative anomalous chromomagnetic
moment of the constituent quarks which is predicted in the instanton model.

It is assumed in the model, that each quark or antiquark, which is not a constituent
of the observed hadron C in the reaction A ↑ +B → C + X contributes, with some
probability, to the effective color field, which acts on the hadron C quarks. As is shown
in [1], a string arises between the receding quark and antiquark, which has a longitudinal
chromoelectric field Ea and a circular chromomagnetic field Ba. The field Ba spreads
around the string like an ordinary magnetic field surrounds a conductor with a current:

B(2)
ϕ = −2αsr/ρ

3exp(−r2/ρ2), (1)

where r is a distance from the string axis, ρ = 1.25Rc = 2.08 GeV−1, and Rc is the
confinement radius, the index (2) in B

(2)
ϕ means a color, and ϕ is the azimuthal angle.

This inhomogeneous field Ba acts on a color magnetic moment µ = sgqs/2MQ of the
quark Q, where qs =

√
4παs is the color coupling constant, g is the color gyromagnetic

number, MQ is the constituent quark (valon) mass. The Stern-Gerlach-like force given by

fx = µx∂Ba
x/∂x + µy∂Ba

y/∂x, (2)

can be the reason of the large single spin asymmetry (SSA) [2].
We assume a Larmore precession [3] of the mean quark spin ξ in the color field Ba,

which depends on the quark energy EQ:

dξ/dt = a[ξBa], (3)

a = qs(g − 2 + 2MQ/EQ)/2MQ. (4)

A large negative value of the anomalous quark chromomagnetic moment µa = (g−2)/2
is predicted in the framework of the instanton model: µa = −0.744 (Diakonov, [4]).
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At high quark energies EQ À 2MQ/|g−2| the quark spin precession frequency Ωs = aB
is almost energy independent due to the high |g−2| value and the energy-dependent term
in (4) can be considered as a correction and estimated experimentally.

The Stern-Gerlach-like force (2) produces an additional transverse momentum:

δpx ≈ gv[1− cos(kS)]

2ρkS(g − 2 + 2MQ/EQ)
, (5)

where kS = aB/v is the precession angle, dS = vdt, v is the quark velocity, and S is
a quark path length in the string field. We assume that kS = ωAxA in the hadron A
fragmentation region, or kS = ωBxB in the hadron B fragmentation region, where ωA

and ωB are dimensionless values and the scaling variables are defined as xA = (xR +xF )/2
and xB = (xR − xF )/2.

The analyzing power is related with the additional pT by eq. (6), (M.Ryskin, [2]):

AN ≈ δpx∂/∂pT ln(d3σ/d3p). (6)

The final expression for the SSA or hadron polarization in pp, pA or AA collisions is:

AN = C(
√

s)V (Ecm)F (pT , A)[G(ωAyA)− σ(θcm)G(ωByB)]; (7)

G(ω · y) = [1− cos(ω · y)]/(ω · y); (8)

σ(θcm) = ξ sin θcm + ε ; F (pT , A) = 1− exp[−(pT /pmin
T )3](1− η ln A) ; (9)

yA = xA − (E0/
√

s + fA)[1 + cos θcm] + a0[1− cos θcm]; (10)

yB = xB − (E0/
√

s + fB)[1− cos θcm] + a0[1 + cos θcm]; (11)

C(
√

s) = C0/(1− ER/
√

s). (12)

The Heaviside step function V (Ecm) ≈ ±Θ(Ecm−Emin
cm ) takes into account the threshold

behavior of the SSA as a function of hadron C c.m. energy [5]. The eqs. (7) - (12)
describe not only the SSA, but also the hyperon polarization in the unpolarized hadron
collisions. The model has 8 phenomenological parameters in the case of identical particle
collision (ωA = ωB, fA = fB, ε = 1, ξ = 0) and 12 parameters in a general case.

Due to the quark spin precession (3)-(4) the effective value of E0 is given by

E0 ≈ 2MQ[1 +
2

2− g
], (13)

where it is assumed that the constituent quark mass for u- and d-quarks is the same:
MU = MD = 0.35 GeV. The relation (13) and the estimated values of the E0 =
1.640 ± 0.040 GeV (π+) and E0 = 2.02 ± 0.21 GeV (π−) allow to extract the quark
anomalous chromo-magnetic moment for u- and d-quarks: µU

a = −0.74 ± 0.03(stat) and
µD

a = −0.53+0.10
−0.07(stat). These values of µa are compatible with the instanton model

prediction [4].
The hyperon polarization arises due to the Stern-Gerlach-like forces, which separate

the spin up and down quark states by adding a transverse momentum to the left or to
the right in the scattering plane. The eq. (7) predicts an oscillation of AN or PN with
the frequency ωA (ωB) as a function of yA (yB) and its energy dependence, eq. (12).
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Figure 2: The transverse polarization vs
xF for the reaction Au + Au → Λ↑ +X.

The following figures show examples of the oscillation of the SSA or hadron polarization
in a wide range of energies and other kinematical variables. The curves in the figures show
the fit result using the model function (7) discussed above. A direct evidence of the proton
AN oscillation as a function of pT (Fig. 1) is obtained in the FODS-2 (IHEP) experiment
using the 40 GeV/c polarized proton beam [6]. Recently the AN oscillation with a smaller
magnitude was observed in the BRAHMS (BNL) experiment at

√
s = 200 GeV [7]. The

frequency ωA is −10.7 ± 1.0 for
√

s = 8.77 GeV and −64 ± 14 for
√

s = 200 GeV. The
rise of the ωA is expected in the model due to additional sea quarks-spectators produced
at high energy.

The transverse Λ polarization in Au+Au-collisions is measured at
√

s = 4.86 GeV
(Fig. 2) [8]. The fit gives positive ωA = +18.61±0.54, as expected in the model. Recently

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 1 2 3 4 5 6
pT, GeV/c

 PN

Au+Au→Λ

_
√s, GeV
200

Figure 3: The global Λ polarization vs pT

for reaction Au + Au → Λ↑ +X.

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8
pT, GeV/c

 PN
_

Au+Au→Λ

_
√s, GeV
200

Figure 4: The global Λ̄ polarization vs pT

for reaction Au + Au → Λ̄↑ +X.

very interesting data on the global hyperon polarization in Au+Au collisions were reported
by the STAR experiment [19]. These data show examples of polarization oscillation with
negative and very high frequency ωA. This is exactly what is expected in the model
due many spectator quarks NQ ∝ A1/3 exp(−w/

√
s), whose number is proportional to

the number of nucleons inside the tube of a transverse radius about the confinement
radius, where w = 236 ± 16 GeV. At high reaction energy many new spectator quarks
and antiquarks are produced by each nucleon that increases the field B. The Λ-hyperon
data fit gives ωA = −374± 51 for 200 GeV (Fig. 3) and ωA = −58± 38 for 62 GeV. The
Λ̄-hyperon data fit gives ωA = −648± 46 and ωA = −359± 15 for 200 GeV (Fig. 4) and
62 GeV, respectively.

The quark counting rule (QCR, Fig. 5) is designed to explain the dependence of
the ωA frequency on hadron quantum numbers, reaction energy and a projectile atomic
weight. The quark counting rule for the ωA assumes that each projectile spectator quark
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contribute to the quark precession frequency with a weight ν = λ and each antiquark
with a unity weight. For the target quarks or antiquarks an additional factor −τ should
be used. The factor RQ = (MS/MQ)µQ

a /µS
a takes into account the fact that the ωA is

proportional to (g−2)Q/MQ. The model QCR parameters are obtained from a global fit of
26 reactions: ω0 = −3.23±0.30; λ = −0.106±0.018; τ = −0.016±0.027; RU = 1.60±0.24;
RD = 1.95± 0.41; RS = 1; RC = 0.78± 0.29.
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Figure 5. Quark counting for the
reaction pp → Ξ0 ↑ +X.

Conclusion: A new mechanism is proposed which ex-
plains the origin of the transverse single spin asymmetries
and the hyperon polarization. The origin of the single
spin effects can be related with the Stern-Gerlach-like
forces between chromomagnetic moment of the massive
constituent quark and the effective color field created by
the quarks-spectators.

The AN and PN oscillation due to the quark spin
precession in the effective color field is predicted and
confirmed for proton, Λ, Λ̄, J/ψ, K∗−(892), Ξ0 and Ξ−

production in the inclusive reactions. The polarization
oscillation is the main signature of the model.

The estimated color anomalous magnetic moment is
−0.74 ± 0.03 and −0.53+0.10

−0.07 for u and d quark, respec-
tively, in agreement with the instanton model prediction µa = −0.744.

Acknowledgments: We are grateful to R.Bellwied, J.C.Dunlop and I.Selyuzhenkov
for useful discussions and access to the E896 and STAR preliminary data.
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Discussion

Q. (S.Belostotsky, PNPI, St.Petersburg) How many free parameters are involved in
your model? Have you fitted them to the data?

A. There are 12 phenomenological parameters in the model in a general case. The
number of parameters is reduced to 8 in the case of identical particle collision due to an
additional symmetry of the model equations. The model parameters were fitted to the
data.

16



TRANSVERSE Λ0 POLARIZATION IN INCLUSIVE
PHOTOPRODUCTION:

QUARK RECOMBINATION MODEL

I. I. Alikhanov1† and O. Grebenyuk2

(1) Saint Petersburg State University, Saint Petersburg, 198904, Russia
(2) Petersburg Nuclear Physics Institute, Gatchina, 188350, Russia

† E-mail: ialspbu@mail.ru

Abstract
The transverse polarization of Λ0 hyperons in inclusive photoproduction at

xF > 0 is tackled within the framework of the quark recombination model, which
has been successfully applied to the polarization of different hyperons in a vari-
ety of unpolarized hadron-hadron reactions. The results are compared with recent
experimental data of HERMES.

The problem of the Λ0 polarization in hadron-hadron reactions at high energies remains
still vital even in spite of the thirty years have passed since it was discovered [1]. Being
produced in pN collisions at 300 GeV proton beam energy, the Λ0 hyperons were found to
be highly polarized while neither the beam nor the Beryllium target possessed any initial
polarization. This phenomenon turned out to be quite surprising for the widely spread
belief that spin flip processes would not take any significant place at such high energies
as the helicity is conserved in the limit of massless quarks. Certainly, it has induced
much attention to be focused as well on studies of the polarization experimentally, using
a variety of projectiles and targets at different kinematic regimes, as on its theoretical
explanations (see, e.g., [2–4] and the references therein).

We present here calculations of the transverse Λ0 polarization in inclusive photopro-
duction at the current fragmentation (xF > 0) carried out in the framework of the quark
recombination model (QRM) [5]. The model has been shown to be successful in describing
the polarizations of different hyperons in a variety of high energy hadron-hadron reactions.
Let us briefly recall some key ingredients of QRM. Following the original notations, we will
also abbreviate the collision HiN → HfX (e.g., K−N → ΛX) as Hi → Hf (K− → Λ).

The quantity proportional to the reaction probability of the transition Hi → Hf in
the projectile infinite momentum frame (IMF) is written as

|〈Mf |S|Mi〉|2 =
∑
sk,µk

G
Mf

4s4µ4
(r4)⊗G

Mf

3s3µ3
(r3)⊗ |M(rk; sk, µk)|2

⊗GMi
2s2µ2

(r2)⊗GMi
1s1µ1

(r1)⊗∆3 ⊗∆4, (1)

where Mi and Mf are the spin projections of the hadrons Hi and Hf on the z axis,
which is defined by the vector [ pHi

× pHf
], here pHi

and pHf
are the momentum

vectors of Hi and Hf ; the x axis is chosen to be parallel to pHi
; rk = (xk, yk, zk)

are the momentum fractions carried by the partons with respect to the three indepen-

dent directions (x, y, z); G
Mi,f

kskµk
are the parton distribution functions, the index k de-

notes all the partons (k=1,2,3,4); the summations are performed over the parton spins
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sk and their z components µk; ∆3 and ∆4 are the delta-functions providing energy-
momentum conservation; |M(rk; sk, µk)|2 is the squared amplitude of a parton-parton
scattering subprocess; the sign ⊗ denotes the convolution in Bjorken rk-space defined as

a⊗ b =
∫ [

4∏
m=1

dxmdymdzm/xm

]
ab (rk). For details of the calculations see [6].

The QRM can be straightforwardly extended to the Λ0 photoproduction at xF > 0 [7]
provided one regards the photon as a hadron in the sense of its well known quark degrees of
freedom [8]. A corresponding diagram is shown in Fig. 1. To produce the final Λ0, a quark
q with the quantum numbers (r1,s1,µ1) coming directly from the photon recombines with
an appropriate diquark (qq) of the proton with the numbers (r2,s2,µ2). Unlike a hadron-
hadron reaction (say p → Λ), which is mostly contributed by a single dominant subprocess
((ud)0+s), the situation for the γ → Λ0 transition can be fairly expected to be rather
rich. The most probable scenarios we have assumed for this case are presented in Fig. 2,
the pictures (a), (b) and (c) concern the recombinations of quarks with scalar diquarks
(scalar case), u+(ds)0, d+(us)0 and s+(ud)0, respectively, while the (d) and (e) refer to
the recombinations of quarks with vector diquarks, u+(ds)1 and d+(us)1 (vector case).

One can find the following formula for the polarization [7]

P =

∑
i,j,k

∑
l

RlJ
lijk
D

∑
i,j,k

∑
l

J lijk
I

, (2)

where Rl are free parameters, so that the corresponding sum runs over the scalar (l = 0)
and vector (l = 1) cases,

J lijk
D(I) = G2

Λ ⊗ σl
D(I) ⊗ f p

(qiqj)l
⊗ fγ

qk
⊗∆3 ⊗∆4. (3)

Here, GΛ is the light cone wave function of Λ0; σl
D is the spin dependent term ap-

pearing due to the interference between the leading and next-to-leading amplitudes; σl
I is

the quantity proportional to the total probability; f p
(qiqj)l

is the momentum distribution

function of the (qiqj)l diquark in the proton (see Fig. 3); fγ
qk

is the structure function of
the photon (see Fig 3). The sum over i, j, k is rather symbolic and includes only the ap-
propriate combinations of quarks and diquarks to form the final Λ0 (see Fig. 2). Explicit
expressions for σl

D(I) as well as the parameter values were taken from Ref. [5].

1. 2.

Figure 1. A diagram corresponding to the Λ0 photoproduction in the QRM.
Figure 2. Subprocesses of the Λ0 photoproduction in the QRM.
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The calculated pT dependence of the polarization in the
range 0.1 GeV ≤ pT ≤ 1.0 GeV in comparison with the
HERMES measurements on the Λ0 polarization in quasi-
real photoproduction [10] is shown in Fig. 4.

In Fig. 5, we demonstrated the calculations of the xF

dependence in comparison with the HERMES data. How-
ever, we should make at this point a few comments. For
some peculiarities of the HERMES experiment, the data
are collected not as the traditional xF dependence but as
the dependence on ζ = (EΛ +pLΛ)/(Eb +pLb) averaged over
pT (Eb and pLb are the energy and longitudinal momentum
of the beam particle). Unlike xF , the variable ζ is, thus,
just an approximate measure of whether the hyperons were
produced in the current or target fragmentation regions.
Hence there is some ambiguity in the correlation between xF and ζ, which causes an
arbitrariness in the comparison of the HERMES data with results expressed in terms of
xF . Additionally, the intermediate quasi-real photons of HERMES were not, certainly,
monoenergetic, though this problem could be omitted by exploiting the fact that the
polarization is incident particle energy independent.

To make the comparison with the experiment more correct, we have also averaged the
calculated xF dependence of the polarization over a typical pT distribution of Λ0 hyperons
produced at HERMES [11]. We show thus obtained results in the lower panel of Fig. 5
in comparison with the experimental ζ dependence of the Λ0 polarization. We used only
the HERMES events at ζ > 0.25 because they more adequately relate to the xF > 0
region. One can see that the calculations sufficiently reproduce the experiment. Similar
calculations have been carried out in [12].

We thank Professor A. Efremov and the Organizing Committee for inviting us to
present the report at this Workshop, for the financial support I.A. and warm hospitality.
We would also like to acknowledge K. Suzuki for providing useful information on the
quark recombination model.
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Figure 4. The calculated Λ0 polarization versus pT in comparison with the HERMES
data [10] taken at ζ > 0.25 (solid points).

Figure 5. Upper: the calculated Λ0 polarization versus xF . Lower: the calculated Λ0

polarization versus xF after averaging over pT in comparison with the HERMES data.
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Abstract

Positivity restrains the allowed domains for pairs or triples of spin observables in
polarised reactions. Various domain shapes in 1

2 + 1
2 → 1

2 + 1
2 reactions are displayed.

Some methods to determine these domains are mentioned and a new one based on
the anticommutation between two observables is presented.

1 The spin observables

We consider the polarised 2× 2 reaction

A + B → C + D , (1)

where A, B, C and D are spin one-half particles. An example is

p̄p → ΛΛ. (2)

The fully polarised differential cross section of (1) can be expressed as

dσ

dΩ
= I0 F

(
SA,SB, ŠC , ŠD

)
, (3)

where F contains the spin dependence. SA and SB are the polarisation vectors of the
initial particles (|S| ≤ 1). ŠC and ŠD are pure polarisations (|Š| = 1) accepted by an
ideal spin-filtering detector. They must be distinguished from the emitted polarisations
SC and SD of the final particles. The latter ones depend on the polarisations of the
incoming particles, e.g.,

SC = ∇ŠC
F

(
SA, SB, ŠC , ŠD = 0

)
/F

(
SA,SB, ŠC = 0, ŠD = 0

)
(4)

F is given in terms of the Cartesian reaction parameters [3] by

F
(
SA,SB, ŠC , ŠD

)
= Cλµντ Sλ

A Sµ
B Šν

C Šτ
D . (5)
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In the right-hand side the S ’s are promoted to four-vectors with S0 = 1. The indices
λ, µ, ν, τ , run from 0 to 3, whereas latin indices i, j, k, l, take the values 1, 2, 3, or x,
y, z. A summation is understood over each repeated index. Sx, Sy, Sz are measured in a
triad of unit vectors {x̂, ŷ, ẑ} which may differ from one particle to the other. A standard
choice is to take ẑ along the particle momentum and ŷ common to all particles and normal
to the scattering plane. For example, C0000 ≡ 1, Cxy00 ≡ Axy is an initial double-spin
asymmetry, C000y is the spontaneous polarisation of particle D along ŷ, C0y0y ≡ Dyy is a
spin transmission coefficient from B to D and C00xy ≡ Cxy is a final spin correlation.

The Cartesian reaction parameters are given by

Cλµντ = Tr{M [σλ(A)⊗ σµ(B)] M† [σν(C)⊗ στ (D)] } / Tr{MM† } , (6)

which will be symbolically abbreviated as a sort of expectation value:

(λµ|ντ) ≡ Cλµντ = 〈σλ(A) σµ(B) σν(C) στ (D)〉 , (7)

with σ0 = 1 ≡
(

1 0
0 1

)
.

2 The positivity constraints

The cross section (2) is positive for arbitrary independent polarisations of the external
particles, that is to say

F
(
SA,SB, ŠC , ŠD

) ≤ 1 for SA, SB, ŠC , ŠD ∈ unit ball |S| ≤ 1 . (8)

However there are positivity conditions which are stronger than (14). The full positivity
condition can be obtained from the positivity of the cross section matrix R defined by

〈c, d|M|a, b〉 〈a′, b′|M†|c′, d′〉 = 〈a′, b′; c′, d′|R|a, b ; c, d〉
= 〈a′, b′; c, d|R̃|a, b ; c′, d′〉 (9)

in terms of the helicity or transversity amplitudes 〈c, d|M|a, b〉. R̃ is the partial transpose
R, the transposition R → R̃ bearing on the final particles1. All spin observables of reaction
(1) can be encoded in R or R̃. The diagonal elements of R or R̃ are the fully polarised
cross sections when the particles are in the basic spin states. By construction, R (but not
necessarily R̃) is semi-positive definite, that is to say 〈Ψ|R|Ψ〉 ≥ 0 for any Ψ.

Equations (2), (4) and (5) can be rewritten as:

dσ

dΩ
(ρA, ρB, ρ̌C , ρ̌D) = Tr{R̃ [ρA ⊗ ρB ⊗ ρ̌C ⊗ ρ̌D] } ,

Cλµντ = Tr{R̃ [σλ(A)⊗ σµ(B)⊗ σν(C)⊗ στ (D)]} / Tr R̃ ,

= Tr{R [
σλ(A)⊗ σµ(B)⊗ σt

ν(C)⊗ σt
τ (D)

]} / Tr R ,

(10)

1Alternatively, keeping the same R̃, one may define R as the full transpose of that given by (9). Then
the partial transposition between R̃ and R would bear on the initial particles. This choice was done in
Ref. [5], where R is called “grand density matrix”.
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with ρ = 1
2
(1+S ·σ), ρ̌ = 1

2
(1+ Š ·σ). The last two equations of (18) can be inverted as

R̃1 ≡ (24/ Tr R̃) R̃ = Cλµντ σλ(A)⊗ σµ(B)⊗ σν(C)⊗ στ (D) ,

or R1 ≡ (24/ Tr R) R = Cλµντ σλ(A)⊗ σµ(B)⊗ σt
ν(C)⊗ σt

τ (D) .
(11)

The matrix R̃1 is normalized to have the same trace as the unit matrix and is directly
obtained from F replacing the Sµ’s by σµ’s.

3 Various domains for pairs of observables

For one observable, for example O = C0µ0ν ≡ 〈σµ(B) σν(D)〉 we have the trivial positivity
condition O ∈ [−1, +1]. For a pair {O1,O2} of such observables we have therefore
{O1,O2} ∈ [−1, +1]2. However, in many cases the allowed domain is more restricted
than the square. An empirical but systematic method [2, 3] to find the domain simply
consists of generating random, fictitious helicity or transversity amplitudes, computing the
observables and plotting the results the one against the other. Once the contours revealed,
it is an algebraic exercise to demonstrate rigorously the corresponding inequalities. Table 1
summarises the shapes of the domains for the sixteen independent observables of the
reaction (2). These domains are either the full square [−1, +1]2 or the unit disk or a
triangle.

Table 1: Domain allowed for pairs of observables: the entire square (2), the unit disk (©), the
triangle |2O1| ≤ O2 + 1 (∇), or |2O2| ≤ O1 + 1

(

∆

)
, where O1 is horizontal and O2 vertical.

The symbol ⊗indicates that the pair of observables is constrained in the unit disk, but the
corresponding operators do not anticommute.
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∆ 2 2 2 © 2 2 © © © 2 2 2 © © © © An

2 2 ∇ © 2 2 © © © 2 2 ∇ © © © © Cnn

2 © 2 © © 2 © © © © © 2 © 2 © Dnn

© © © © © 2 2 © © © © 2 © 2 Knn

© © © ⊗ ⊗ © 2 2 © © © © © Cml
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© 2 ⊗ © © © © Kml

2 © © 2 2 © Cnlm

© 2 © © 2 Cnml

© © ⊗ ⊗ Cnmm

2 © ⊗ Cmnl⊗ © Cmln

2 Cmnm

3.1 Anticommutation method

Disk-shaped domains are, in many cases, straightforward results of anticommutation of the
observables of the pair. From the last equation of (18), one can consider the observables
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as expectation values of operators. Since each σ2
µ is equal to the identity, we have O2 = 1.

Furthermore two such operators O and O′ differing by at least one index (λ, µ, ν or τ)
either commute or anticommute.

For pairs of anticommuting observables, disk domains result from the following theo-
rem:

If O2 = O′2 = 1 and O and O′ are anticommuting, then 〈O〉2 + 〈O′〉2 ≤ 1 . (12)

Proof: set x =
√
〈O〉2 + 〈O′〉2, 〈O〉 = ax, 〈O′〉 = bx. Then a2+b2 = 1 and 〈aO+bO′〉 = x.

From O2 = O′2 = 1 and OO′ + O′O = 0 one gets (aO + bO′)2 = 1 which means that
aO + bO′ has eigenvalues ±1. Its expectation value x has to be within these eigenvalues,
therefore x2 ≤ 1.

Note that a disk can occur even if the observables commute, for instance if, due to some
symmetry, O2 has the same expectation value as another operator O′

2 which anticommutes
with O1 and O3. Examples of this situation are indicated by crossed circles of Table 1.

4 Various domains for triples of observables

The empirical and anticommutation methods generalize straightforwardly to triple of ob-
servables. Figure 1 shows the boundary of the domains that we have identified for the
observables of the reaction (2): the unit sphere, a pyramid, an upside-down tent, a cone,
a cylinder, the intersection of two orthogonal cylinders or a double cone which is slightly
smaller than this intersection, a combination of the disk, square and triangle projections
delimiting a volume similar to a “coffee filter”, the intersection of three orthogonal cylin-
ders (larger than the unit sphere!), a tetrahedron, the intersection of two cylinders and
two planes, an octahedron, or figures deduced by mirror symmetry.

Can the domain of a triple be the whole cube? Suppose now that for instance 3
observables O1, O2, and O3, each of which has +1 and −1 as extreme eigenvalues, are
commuting and that no symmetry relates a pair of them to a non-commuting pair. Does
it means that their joint positivity domain D{O1,O2,O3} is the whole cube? A partial
negative answer is the following: If the reaction depend on N independent amplitudes,
D{O1,O2,O3} can reach at most N corners of the cube [2]. The domains shown in Figure
1 are those of the reaction (2), which has N = 6 and indeed none of them reaches more
than 6 corners, this number being obtained for the domain (i). More generally, if N < 8,
all triple observables are restricted in domains smaller than the cube.

5 Outlook

We have seen that the positivity restricts the pairs or triples of observables to subdomains
of the square or the cube, some of which having non-trivial shapes. Here we have presented
only two methods for determining these domains. Other methods use the Cauchy-Schwarz
inequality or the positivity of the subdeterminants of R whose diagonal elements are on
the diagonal of R. For exclusive reactions, R is of rank one, therefore all diagonal 2 × 2
subdeterminants vanish. This links the observables by a large number of quadratic iden-
tities, from which inequalities can be obtained straightforwardly. We must tell, however,
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Figure 1: Some allowed domains encountered in simulating randomly three observables: the
unit sphere (a), the intersection of three orthogonal cylinders of unit radius (b), the intersection
of two cylinders (c), or a slightly smaller double cone (d), a cylinder (e), a cone (f), a pyramid
(g), a tetrahedron (h), an octahedron (i), a “coffee filter” (j), an inverted tent (k), and the
intersection of two cylinders and a dihedral (l). For clarity, part of the limiting surface is
sometimes removed. Some figures transformed by parity with respect to the centre of the cube
or by interchange of the axes are also obtained.

that inequalities expressing the positivity of R define joint domains for many observables
and it is sometimes a straightforward but lenghty task to obtain the projected domain for
two or three observables.

We thank M. Elchikh and O.V. Teryaev for help, useful discussions and comments.

References

[1] C. Bourrely, J. Soffer and E. Leader, Phys. Rept. 59 (1980) 95.

[2] J.M. Richard, Phys. Lett. B 369 (1996) 035205.

[3] M. Elchikh and J.M. Richard, Phys. Rev. C 61 (2000) 358.

[4] X. Artru, M. Elchikh, J.M. Richard, J. Soffer and O. V. Teryaev, submitted to Phys.
Reports.

[5] X. Artru and J.M. Richard, Phys. Part. Nucl. 35 (2004) S126, Proc. Dubna Spin
Workshop.

25



CLASSICAL AND QUANTUM CONSTRAINTS IN SPIN PHYSICS

X. Artru
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Abstract

Constraints on spin observables coming from discrete symmetries such as P, C,
T and identical particles may be divided in two types: 1) classical ones, which insure
the invariance of the cross sections under the symmetry operation; 2) non-classical
ones, which can only be obtained at the level of amplitudes. Similarly, positivity
constraints can be divided into classical and non-classical constraints. The former
insure the positivity of the cross section for arbitrary individual polarisations of
the external particles, the latter extend this requirement to the case of entangled
external spins. The domain of classical positivity is shown to be dual to the domain
of separability.

1 The spin observables

We consider the polarised 2× 2 reaction

A + B → C + D , (1)

where A, B, C and D are spin one-half particles. Let us recall some of the formalism
presented in [1, 2]. The fully polarised differential cross section of (1) reads

dσ

dΩ
= I0 F

(
SA,SB, ŠC , ŠD

)
, (2)

where F contains the spin dependence. SA and SB are the polarisation vectors of the
initial particles (|S| ≤ 1). ŠC and ŠD are pure polarisations (|Š| = 1) accepted by an
ideal spin-filtering detector. They must be distinguished from the emitted polarisations
SC and SD of the final particles. These ones depend on the polarisations of the incoming
particles, e.g.,

SC = ∇ŠC
F (SA,SB, ŠC , ŠD = 0) /F (SA, SB, ŠC = 0, ŠD = 0) (3)

F is given in terms of the Cartesian reaction parameters [3] by

F
(
SA,SB, ŠC , ŠD

)
= Cλµντ Sλ

A Sµ
B Šν

C Šτ
D . (4)

In the right-hand side the S ’s are promoted to four-vectors with S0 = 1. The indices
λ, µ, ν, τ , run from 0 to 3, whereas latin indices i, j, k, l, take the values 1, 2, 3, or
x, y, z. A summation is understood over each repeated index. Sx, Sy, Sz are measured
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in a triad of unit vectors {x̂, ŷ, ẑ} which may differ from one particle to the other. A
standard choice is to take ẑ along the particle momentum and ŷ common to all particles
and normal to the scattering plane. Conversely we have

Cλµντ = Tr{M [σλ(A)⊗ σµ(B)] M† [σν(C)⊗ στ (D)] } / Tr{MM† } , (5)

which will be symbolically abbreviated as a sort of expectation value:

(λµ|ντ) ≡ Cλµντ = 〈σλ(A) σµ(B) σν(C) στ (D)〉 , (6)

with σ0 = 1 ≡
(

1 0
0 1

)
.

3. Classical and quantum constraints for parity

The scattering plane is a symmetry plane for the reaction (1), which is therefore
symmetric under under the mirror reflection

Π = P exp(−iπJy) . (7)

If parity is conserved the matrix amplitude M of A + B → C + D fulfils:

M = (ΠC ⊗ ΠD)−1M (ΠA ⊗ ΠB) . (8)

For one fermion, Π = −iη σy, where η is the intrinsic parity of the fermion. Applying this
equation to both M and M† in (5) one obtains the classical parity rule

〈σλ(A) σµ(B) σν(C)στ (D) 〉 =
〈
σΠ

λ (A) σΠ
µ (B) σΠ

ν (C) σΠ
τ (D)

〉
, (9)

where OΠ denotes the reflected operator Π O Π−1. For the Pauli matrices, the reflection
reads

(σ0, σx, σy, σz) → (σ0, −σx, σu, σz) . (10)

The multi-spin observable Oλµντ = Oλ(A)⊗Oµ(B)⊗Oν(C)⊗Oτ (D) is Π-odd if it contains
an odd number of Π-odd Pauli matrices, otherwise it is Π-even. The “classical” rule reads:

If parity is conserved, all Π-odd observables vanish.

For instance, (z0|y0) = 0, but (00|y0) 6= 0. This rule roughly reduces by a factor 2 the
number of observables. It does not depend on the intrinsic parity of the particles. It just
expresses a classical requirement of reflection symmetry at the level of polarised cross
sections.

Applying (8) only toM or toM† in (5) one obtains the non-classical parity constraint

〈
σλ

A σµ
B σν

C στ
D

〉
=

〈(
ΠA σλ

A

)
(ΠB σµ

B)
(
σν

C Π−1
C

) (
στ

D Π−1
D

)〉
, (11)

with Π = −iη σy. For the 1
2

+
baryons one can choose η = i so that Π = Π−1 = σy and

Π ( σ0, σx, σy, σz ) = (σy, −iσz, σ0, i σx ) . (12)

For a pseudoscalar meson, Π = −1. For example in π + N → K + Λ on gets

(y|y) = (0|0) , (0|y) = (y|0) . (13)
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Clearly the first of these constraints, which relates a polarised cross section to an unpo-
larised one, cannot be obtained by classical parity arguments. The non-classical parity
constraints in the case of spin one-half particles are known as the Bohr identities [4].
Non-classical parity rules depend on the intrinsic parities. They yield linear identities
between the Π-even observables and reduce the number of independent correlation pa-
rameters roughly by another factor 2. For instance, in π0 decay, the classical parity rule
tells that the linear polarisations of the two gamma’s are either parallel or orthogonal
(not, e.g. at π/4). The analogue of (11) for photons selects the orthogonal solution.

The subdivision in constraints of the (9) and (11) types, both for parity and time-
reversal, has already been made in literature (see Appendix 3.D. of [3]). Here we point
out the “classical” versus “non-classical” or “quantum” characters of these two types.
Inclusive reactions have only “classical” parity constraints, since the intrinsic parity of
the undetected particles can take both signatures.

Similar divisions in classical versus non-classical constraints can be made for other
symmetries like charge conjugation, time reversal and permutation of identical particles.

4. Classical positivity constraints

The cross section (2) has to be positive for arbitrary independent polarisations of the
external particles, that is to say

F
(
SA,SB, ŠC , ŠD

) ≤ 1 for SA, SB, ŠC , ŠD ∈ unit ball |S| ≤ 1 . (14)

An equivalent condition is that the polarisation of, for instance, outgoing particle C for
given SA, SB, and imposed ŠD,

SC(SA, SB, ŠD) = ∇ŠC
F (SA, SB, ŠC , ŠD) /F (SA,SB, ŠC = 0, ŠD) (15)

lies in the unit ball |SC | ≤ 1 for any SA, SB and ŠD. For instance in π + N → K + Λ
the inequalities

(C0x ± Czx)
2 + (C0y ± Czy)

2 + (C0z ± Czz)
2 ≤ (C00 ± Cz0)

2 (16)

insure that the Λ polarisation does not exceed 1 when the nucleon polarisation is longi-
tudinal.

The condition (14) defines a convex classical positivity domain C in the space of the
Cartesian reaction parameters. As we shall see, it is a necessary but not sufficient posi-
tivity condition.

5. Quantum positivity constraints

All spin observables of reaction (1) can be encoded in the cross section matrix R, or
its partial transpose R̃, defined by

〈c, d|M|a, b〉 〈a′, b′|M†|c′, d′〉 = 〈a′, b′; c′, d′|R|a, b ; c, d〉
= 〈a′, b′; c, d|R̃|a, b ; c′, d′〉 . (17)

The transposition linking R̃ to R bears on the final particles. The diagonal elements
of R or R̃ are the fully polarised cross sections when the particles are in the basic spin
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states. By construction, R (but not necessarily R̃) is semi-positive definite, that is to say
〈Ψ|R|Ψ〉 ≥ 0 for any Ψ.

Equations (2), (4) and (5) can be rewritten as:

dσ

dΩ
(ρA, ρB, ρ̌C , ρ̌D) = Tr{R̃ [ρA ⊗ ρB ⊗ ρ̌C ⊗ ρ̌D] } ,

Cλµντ = Tr{R̃ [σλ(A)⊗ σµ(B)⊗ σν(C)⊗ στ (D)]} / Tr R̃ ,

(18)

with ρ = 1
2
(1+ S · σ), ρ̌ = 1

2
(1+ Š · σ). The last equation of (18) can be inverted as

R̃1 ≡ (24/ Tr R̃) R̃ = Cλµντ σλ(A)⊗ σµ(B)⊗ σν(C)⊗ στ (D) ,

or R1 ≡ (24/(Tr R) R = Cλµντ σλ(A)⊗ σµ(B)⊗ σt
ν(C)⊗ σt

τ (D) .
(19)

The matrix R̃1 is normalised to have the same trace as the unit matrix and is directly
obtained from F replacing the Sµ’s by σµ’s. It allows to calculate the cross section for
entangled initial states, replacing ρA ⊗ ρB by ρA+B in (18), as well as the joint density
matrix of C and D:

ρC+D = TrA,B{ R̃ [ρA ⊗ ρB] }/ Tr{R̃ [ρA ⊗ ρB] } . (20)

The single polarisation of particle C can then be obtained by ρC = TrD{ρC+D}, in place
of (3).

The semi-positivity of R leads to quantum positivity constraints on the Cartesian
reaction parameters which are stronger than the classical ones. Suppose, for instance,
that

F (SA,SB, 0, 0) = 1 + c SA · SB . (21)

The initially polarised cross section is then

dσ

dΩ
(ρA+B) = Tr{R̃ [ρA+B ⊗ 1C+D] } ∝ Tr{(1+ c σA · σB) ρA+B } , (22)

where σA · σB ≡
∑3

i=1 σi
A ⊗ σi

B. For uncorrelated SA and SB one has dσ/dΩ ∝ 1 + c SA ·
SB ≥ 0, therefore classical positivity is fulfilled for c ∈ [−1, +1]. However, if A and B
form a singlet spin state, of density matrix ρA+B = 1

4
(1−σA ·σB), then dσ/dΩ is positive

only for c ∈ [−1, +1/3].
The occurrence of a negative cross section for c > 1/3 comes from the non-positivity

of 1 + σA · σB, therefore of R. This non-positivity was revealed by an entangled initial
state (the spin singlet state). This example shows that positivity has to be tested not
only with factorised (or separable states), but also with entangled ones.

Similarly, a final spin correlation of the form F (0, 0, ŠC , ŠD) = 1 + c ŠC · ŠD is
classically allowed for c ∈ [−1, +1], but quantum-mechanically for c ∈ [−1, +1/3] only.
As a check rule, “quantum mechanics does not allow fully parallel spins”. These examples
have a crossed symmetric counterpart: a spin transmission between A and C of the form

F (SA, 0, ŠC , 0) = 1 + cSA · ŠC (23)

is classically allowed for c ∈ [−1, +1], but quantum-mechanically for c ∈ [−1/3, +1] only.
For c < −1/3 the cross section matrix is non-positive and this can be revealed by an
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“entangled state in the t-channel”. The corresponding check rule is “quantum mechanics
does not allow full spin reversal”. The lesson of these examples is that positivity has to
be tested with classical and entangled states in the direct and crossed channels.

An example of non-classical positivity constraint is the the Soffer inequality [6]:

2δq(x) ≤ q(x) + ∆q(x)

between the quark helicity- and transversity distributions ∆q(x) and δq(x).

6. Domains of quantum positivity, classical positivity and separability

As we have seen one can distinguish a classical positivity domain which is larger than
the true or quantum positivity domain. To have a more precise idea about the differences
between these two domains, let us study the constraints on the initial spin observables
only. For this purpose we introduce the matrix

ηA+B = TrC,D [R/(Tr R)] (24)

obtained by taking the partial trace over the final particles and renormalising to unit
trace. Like R, ηA+B has to be (semi-)positive. The initially polarised cross section reads

dσ

dΩ
(ρA+B) = Tr{ηA+B ρA+B} , (25)

Classical positivity requires Tr{ηA+B (ρA ⊗ ρB)} ≥ 0 for any individual density matrices
ρA and ρB. More generally

Tr{ηA+B ρA+B} ≥ 0 for any separable ρA+B , (26)

whereas quantum positivity requires

Tr{ηA+B ρA+B} ≥ 0 for any separable or entangled ρA+B . (27)

One can say that the classical positivity domain C is dual to the separability domain S
in the sense that Tr{η ρ} ≥ 0 for any pair {η ∈ C , ρ ∈ S}. As for the quantum positivity
domain D, it is dual to itself. We have

S ⊂ D ⊂ C , (28)

these three domains being convex.
Let us take the traceless part ρ⊥ = ρ− 1/N of ρ, where N = Tr(1) is the dimension

of the A + B spin space, and introduce the Euclidian scalar product η⊥ · ρ⊥ = Tr(η⊥ρ⊥)
where ρ⊥ is considered as a N2− 1 dimensional vector. The duality between C and S can
be expressed as

ρ⊥ · η⊥ ≥ −1/N , ρ ∈ C , η ∈ S . (29)

Figure 1 schematises the properties (28) and (29) in the ρ⊥ space. Equation (29) means
that the boundaries ∂C and ∂S of the two domains are polar reciprocal of each other: when
η⊥ moves on ∂S, the reciprocal plane in ρ⊥ space defined by ρ⊥.η⊥ = −1/N envelops ∂C,
as shown in Fig. 1. Also shown in this figure is the symmetry between D and the domain

D√t
where the partial transform ρpt

A+B of ρA+B is positive, the transposition concerning
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Figure 1: Schematic shapes of the
classical positivity domain in the ρ⊥
space. (C ≡ Cla∫∫ .), the separability
domain (S ≡ Se√.) and the true pos-

itivity domain D. The dashed con-
tour indicates the domain D√t where
the partial transform is positive. A
matrix η of the boundary ∂S is rep-
resented together with its reciprocal
polar line ρ⊥ · η⊥ = 1/N , which is
tangent to ∂C.

either A or B. Indeed separability [7,8] and classical positivity are preserved under partial
transposition and we have

S ⊂ D√t ⊂ C . (30)

The duality between C and S may still be visible with a subset of observables. For
instance, for a two-fermion system of density matrix ρA+B = 1

4
Cµν σµ(A) ⊗ σν(B), the

classical positivity domain of the triple {Cxx , Cyy , Czz} is the whole cube [−1, +1]3, the
quantum positivity domain is the tetrahedron defined by

Cxx − Cyy − Czz ≤ 1 and circular permutations, Cxx + Cyy + Czz ≤ 1 , (31)

and the separability domain, an octahedron, is the intersection of the tetrahedron with
its mirror figure. One can see on Fig. 2 the polar reciprocity (edge ↔ edge) and (summit
↔ face) between the cube and the octahedron. Related results are found in [9].

Figure 2: Classical positivity do-
main (cube), true positivity do-
main (tetrahedron) and separabil-
ity domain (octahedron) for the
triple {Cxx , Cyy , Czz} of observ-
ables.

7. Outlook

We have qualified as classical the symmetry and positivity constraints which can
be derived by classical arguments concerning the polarised cross sections for separate
polarisations of the external particles. Working at the level of amplitudes, or of the cross
section matrix, one obtains quantum constraints which in many cases are stronger than
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the classical ones, therefore called non-classical. The number of non-classical constraints is
expected to decrease when only part of the external particles are polarised or analysed, and
in fact, there is no non-classical parity constraint for inclusive reactions. The weakening
of non-classical constraints when part of the information is lost or discarded has some
similarity with decoherence. Nevertheless some non-classical positivity constraints, for
instance the Soffer inequality, still remain in the inclusive case.

A duality has been established between the domains of separability S and classical
positivity C . In the space of the traceless components ρ⊥, the boundary ∂S and ∂C of
these domains are polar reciprocal of each other. The boundary of C can be determined
by algebraic equations using (14). This may offer a method for the long-standing problem
of determining S.

Acknowledgements The author thanks M. Elchikh, O.V. Teryaev, J.M. Richard and
J. Soffer for help, useful discussions and comments.
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Abstract

We study the longitudinal polarization of anti-hyperons in polarized high energy
pp collisions at large transverse momenta. Using the Monte-Carlo event generator
PYTHIA, we make a detailed analysis of the different contributions to the anti-
hyperons in the final states. We calculate the anti-hyperon polarization using the
different parameterizations of polarized parton densities and models for polarized
fragmentation functions. We found out that the polarization of Λ̄ and Ξ̄ are quite
sensitive to the polarization of the anti-strange sea of the nucleon while the polariza-
tion of Σ̄− and Σ̄+ show sensitivities to the light sea quarks’ polarized distribution.
Our results show that, by measuring the polarization of those anti-hyperons, we
should be able to obtain useful information on the anti-sea polarization of nucleon.

Hyperon polarization provides us a useful tool in studying the spin structure of nucleon
and the spin effects in fragmentation. The following two reasons lead us to study the anti-
hyperons’ polarization: [1]

(I) HERMES did flavor decomposition of the sea quark helicity distribution in the
nucleon. They found that the polarization of the strangeness quark consists with zero [2].
It is different from the earlier results derived from the inclusive DIS data. Studying the
polarization of anti-hyperon in pp collision may help us to know more about the sea
quarks’ polarization in the nucleon.

(II) COMPASS’s data indicate a difference between Λ and Λ̄’s polarization in polar-
ized DIS [3]. So further study on the polarization of anti-hyperon via other processes is
necessary. The spin program at RHIC is also an ideal place to measure the anti-hyperon
polarization for its high luminosity and high polarized beams.

This talk summarizes our recent studies on the longitudinal polarization of inclusive
anti-hyperons Λ̄, Σ̄−, Σ̄+, Ξ̄0 and Ξ̄+ at large transverse momenta in singly longitudinally
polarized pp collision [1].

We consider the inclusive production of high pT anti-hyperons (H̄) in pp collisions with
one of the beams longitudinally polarized. The longitudinal polarization of H̄ is defined
as,

PH̄ ≡ dσ(p+p → H̄+X)− dσ(p+p → H̄−X)

dσ(p+p → H̄+X) + dσ(p+p → H̄−X)
=

d∆σ(pp → H̄X)

dσ(pp → H̄X)
, (1)

where ∆σ and σ are the polarized and unpolarized inclusive production cross section
respectively. At high pT region, the factorization theorem works. In that case, the cross
section of the final anti-hyperons can be written as a convolution integral of the three
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parts,

d∆σ

dη
(pp →H̄X)=

∫

pmin
T

dpT

∑

abcd

∫
dxadxb∆fa(xa)fb(xb)D

ab→cd
L

dσ̂

dt̂
(ab → cd)∆DH̄

c (z), (2)

where ∆fa(xa) and fb(xb) are the polarized and unpolarized parton distribution func-
tions in the protons, with xa and xb the momentum fractions carried by partons a and
b. Dab→cd is the spin transfer factor in the elementary hard scattering process ab → cd.
It can be calculated by pQCD and at leading order it is a function of the four momenta
of the partons a–d. ∆DH̄

c (z) is the polarized fragmentation function of H̄. The H̄ trans-
verse momentum is integrated above pmin

T ; the summation concerns all elementary hard
scattering processes.

The factors in Eq. (2) with less certainty are the polarized parton distribution function
and the polarized fragmentation function. There are several parameterizations for the
polarized parton distribution functions ∆f(x). However, large differences exist in different
sets particularly for the anti-sea quarks’ distributions.

And for the polarized fragmentation function, the anti-hyperons’ production can be
sorted into two classes according to their fragmentation originality. One is the polarized
fragmentation function for the directly produced anti-hyperon; the other is the polarized
fragmentation function for the anti-hyperon which is decayed from a heavier one. For the
decayed anti-hyperon, the polarized fragmentation function can be written as,

∆DH̄
c (z; decay) =

∑
j

∫
dz′tD

H̄,H̄j
KH̄,H̄j

(z, z′)∆DH̄j
c (z′, direct). (3)

tD
H̄,H̄j

is the spin transfer factor in decay process. KH̄,H̄j
(z, z′) is the probability of pro-

ducing an H̄ with a fractional momentum z in decay of H̄j with z′. The unknown part is

thus the polarized fragmentation for directly produced anti-hyperon ∆D
H̄j
c (z′, direct). It

cannot be calculated by pQCD and we have to model it [4].
The directly produced anti-hyperons were further divided into two classes. Class A

is the anti-hyperon which contains the fragmenting quark with flavor f; class B is the
anti-hyperon that does not contain the fragmenting quark. For class B, the polarized
fragmentation function is approximately equal to zero, and therefore the polarized frag-
mentation function for directly produced anti-hyperon is only that of class A. It can

be written as ∆D
H̄(A)
f (z) = tF

H̄,f
D

H̄(A)
f (z). Two pictures called SU(6) picture and DIS

picture are adopted when calculating the spin transfer factor tF
H̄,f

[4]. We also evaluate
the fractional contributions to final anti-hyperons for different flavor compositions by a
Monte-Carlo event generator PYTHIA [5].

With the calculation method we mentioned above, we can finally get the polarization
of different anti-hyperons. We use different parameterizations for the polarized parton
distributions and use the SU(6) and DIS pictures for spin transfer in fragmentation. Fig.
1 shows the polarization for transverse momenta pT > 8 GeV range versus pseudo-rapidity
η. The parameterizations set GRSV2000 [6] for polarized parton distributions are taken.
The main characteristics of the results are [1]:

(I)the size of the polarization increases in the forward direction with respect to the
polarized proton beam and can be as large as 10% (Ξ̄0, Ξ̄+) at η = 2.
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Fig. 1 Longitudinal polarization for anti-
hyperons with transverse momentum pT ≥ 8
GeV/c in pp collisions at

√
s = 200 GeV

with one longitudinally polarized beam versus
pseudo-rapidity η. Positive η is taken along the
direction of the polarized beam.

(II)the differences between the H̄ po-
larization obtained for different parameter-
izations of the polarized parton distribu-
tion functions are generally larger than the
differences between the results for different
models for the spin transfer in fragmenta-
tion.

(III)the Ξ̄0 and Ξ̄+ polarization are sim-
ilar to each other because of the domi-
nance of s̄-fragmentation; they are some-
what larger than the Λ̄ polarization be-
cause of the smaller decay contributions
and their sensitivity to ∆s̄ is thus more di-
rect.

(IV)the results for Σ̄− and Σ̄+ for the
GRSV2000 valence distributions differ in
sign because of the sign difference in ∆ū(x)
and ∆d̄(x), and in size and shape because
of flavor-symmetry breaking in the unpolarized and this polarized parton distribution
scenario.

In summary, we have evaluated the longitudinal polarization of the Σ̄−, Σ̄+, Ξ̄0, and
Ξ̄+ anti-hyperons in singly longitudinally polarized pp collision. The results show sensi-
tivity to the anti-sea quarks’ polarization in the nucleon. In particular, the Ξ̄0 and Ξ̄+

polarization are sensitive to strange anti-quark’s polarization ∆s̄(x) and the Σ̄− and Σ̄+

polarization are sensitive to the light sea quarks’ polarization. Precision measurements
at the RHIC polarized pp-collider should be able to provide more information on the sea
quarks’ polarization in the nucleon.
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Discussion

Q. (O.Teryaev, JINR) Have you fitted the anti-hyperons’ production in high pT re-
gion when you do the Monte Carlo calculations using PYTHIA for unpolarized pp
collision?

A. It is right that the production rates, in particular the contributions from different
sub-processes, play a very important role in the calculations of the polarization in
reactions using polarized beams. That is in fact why we have, unlike many of the
authors in the studies of the similar problems, used PYTHIA to calculate them for
the following reasons:

– High pT jet cross section can be calculated using pQCD and PYTHIA provides
a good fit in particular in pp collisions.

– PYTHIA provides a good fit to the ratios of different types of hadrons in a jet
in e.g. e+e− annihilation.

Considering the universality of the hadronization mechanism, we think that this
means that the generator can provide us a good fit to hadron production in high
pT jet in unpolarized pp reactions. Since there is no published data for high pT

anti-hyperon production available yet, we think PYTHIA provides us one of the
best choice to make such estimations. That is why we used it in our calculations.

Q. (M. Sapozhnikov, JINR) Is the sensitivity to ∆s̄ large enough to be measured at
RHIC?

A. We have estimated the precision with which H̄ polarization measurements could be
made at RHIC. For an analyzed integrated luminosity of L ' 300 pb−1 and a proton
beam polarization of P ' 70%, we anticipate that e.g. PΞ̄ could be measured to
within ∼0.02 uncertainty. See ref. [1] for details.

36



GAUGE INVARIANCE AND RENORMALIZATION-GROUP EFFECTS
IN TRANSVERSE-MOMENTUM DEPENDENT PARTON

DISTRIBUTION FUNCTIONS

I. O. Cherednikov1,2?, N. G. Stefanis2†

(1) Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia
(2) Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany

? E-mail: igor.cherednikov@tp2.ruhr-uni-bochum.de
† E-mail: stefanis@tp2.ruhr-uni-bochum.de

Abstract

A range of issues pertaining to the use of Wilson lines in integrated and transverse-
momentum dependent (TMD) parton distribution functions (PDF) is discussed.
The relation between gauge invariance and the renormalization properties of the
Wilson-line integrals is given particular attention. Using an anomalous-dimensions
based analysis in the light-cone gauge, a generalized definition of the TMD PDFs is
proposed, which employs a cusped Wilson line, and contains an intrinsic “Coulomb-
like” phase.

Introduction. Various calculations in the last few years have addressed TMD PDFs,
among others those in which a previously overlooked transverse gauge link was pro-
posed [1–3]. The sustained interest in integrated and unintegrated (TMD) PDFs lies
in the fact that they encapsulate the nonperturbative quark dynamics of confinement
and hence in their potential use in phenomenological applications to be compared with
experimental data. But while integrated PDFs can be defined in a gauge-invariant way
that is compatible with factorization theorems, the definition of TMD PDFs faces seri-
ous problems related to specific light-cone divergences (see, e.g., [4, 5]). These so-called
rapidity divergences [6] are related to lightlike Wilson lines (or the use of the light-cone
gauge A+ = 0) [7, 8] and cannot be cured by ordinary ultraviolet (UV) renormalization
alone. In addition, in order to recover the result found in the Feynman gauge, the ad-
vanced boundary condition has to be adopted to make the transverse gauge link reduce
to unity [2].

The basic statement of the presented work [9] is this: In order to define an uninte-
grated PDF that preserves gauge invariance under the proviso of collinear factorization
and multiplicative renormalizability, we shift our attention from the Wilson lines to their
anomalous dimensions within the MS scheme. We will provide concrete arguments that
the appropriate contour which goes through light-cone infinity is a cusped one. To com-
pensate the associated anomalous dimension, we introduce into the definition of the TMD
PDF a soft counter term (in the sense of Collins and Hautmann [10–12]) which gener-
ates the same anomalous dimension but with opposite sign. Hence, the total TMD PDF
expression has the same one-loop anomalous dimension as the one that would involve a
straight lightlike line between the quark operators. Note, however, that such a gauge con-
tour cannot be adopted because the gluons originating from this would not be collinear
with the struck quark and hence they would cause a mismatch in the gluon rapidities.
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(a)
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(b)

~l⊥

+ (h.c.)

(d)(c)

Figure 1: One-loop gluon contributions to the UV-divergences of the TMD PDF. Double lines
denote gauge links. Diagrams (b) and (c) are absent in the light-cone gauge.

To substantiate our arguments, we write the standard expression for the TMD PDF [6]
for a quark-to-quark distribution, supplemented by a transverse gauge link [2]:

fq/q(x, k⊥) =
1

2

∫
dξ−d2ξ⊥
2π(2π)2

e−ik+ξ−+ik⊥·ξ⊥ 〈
q(p)|ψ̄(ξ−, ξ⊥)[ξ−, ξ⊥;∞−, ξ⊥]†

× [∞−, ξ⊥;∞−, ∞⊥]†γ+[∞−,∞⊥;∞−,0⊥][∞−,0⊥; 0−,0⊥]

× ψ(0−,0⊥)|q(p)
〉 |ξ+=0 , (1)

where the gauge links are defined according to

[∞−, z⊥; z−, z⊥] ≡ Peig
∫∞
0 dτ nµÂµ(z+nτ) , [∞−, ∞⊥;∞−, ξ⊥] ≡ Peig

∫∞
0 dτ liÂi(ξ⊥+liτ) (2)

with analogous expressions for the other gauge links and where li represents an arbitrary
vector in the transverse direction and P denotes path ordering.

Within the Collins-Soper approach [6] (n2 6= 0), the anomalous dimension of fq/q(x, k⊥)
is [13]

γCS =
1

2
µ

d

dµ
ln Zf (µ, αs; ε) =

3

4

αs

π
CF + O(α2

s) = γsmooth , (3)

where Zf is the renormalization constant of fq/q(x, k⊥) in the MS scheme. Recall that
all smooth contours off the light cone in the transverse direction give rise to the same
anomalous dimension due to the endpoints of the so-called connector insertion [14].

Figure 1 shows the one-loop diagrams, contributing to fq/q(x, k⊥) in the light-cone

(LC) gauge (A · n−) = 0, (n−)
2

= 0. The poles 1/q+ of the gluon propagator

DLC
µν (q) =

1

q2

(
gµν −

qµn
−
ν + qνn

−
µ

[q+]

)
, (4)

are regularized by 1/[q+] = 1/(q+ ± i∆), where ∆ is small but finite.
In addition to the standard UV renormalization terms, one has UV divergent contri-

butions from diagrams (a) and (d) stemming from the p+-dependent term in

ΣUV
LC (αs, ε) =

αs

π
CF2

[
1

ε

(
3

4
+ ln

∆

p+

)
− γE + ln 4π

]
. (5)

Noting that the contribution associated with the transverse gauge link at infinity (diagram
Fig. 1(d)) exactly cancels against the term entailed by the adopted pole prescription in
the gluon propagator, we find for the corresponding anomalous dimension

γLC =
αs

π
CF

(
3

4
+ ln

∆

p+

)
= γsmooth − δγ . (6)
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Figure 2: The integration contour associated with the additional soft counter term.

Here δγ is the term induced by the additional divergence that has to be compensated by a
suitable redefinition of the TMD PDF. It is important to realize that p+ = (p·n−) ∼ cosh χ
defines an angle χ between the direction of the quark momentum pµ and the lightlike
vector n− with ln p+ → χ, χ →∞. Hence, the “defect” of the anomalous dimension, δγ,
can be identified with the well-known cusp anomalous dimension [15]

γcusp(αs, χ) =
αs

π
CF (χ coth χ− 1) ,

d

d ln p+
δγ = lim

χ→∞
d

dχ
γcusp(αs, χ) =

αs

π
CF . (7)

Applying renormalization techniques for contour-dependent composite operators [16,
15, 17] in order to treat angle-dependent singularities, we introduce a compensatory soft
term

R ≡ Φ(p+, n−|0)Φ†(p+, n−|ξ), Φ(p+, n−|ξ) =

〈
0

∣∣∣∣∣P exp
[
ig

∫

Γcusp

dζµ taAa
µ(ξ + ζ)

]∣∣∣∣∣ 0

〉

(8)
and evaluate it along the cusped integration contour Γcusp, illustrated in Fig. 2, which is
defined by (n−µ is the minus light-cone vector)

Γcusp : ζµ = {[p+
µ s , −∞ < s < 0] ∪ [n−µ s′ , 0 < s′ < ∞] ∪ [l⊥τ, 0 < τ < ∞]} . (9)

The one-loop gluon virtual corrections contributing to the UV divergences of R are given
by

ΣUV
R = −αs

π
CF 2

(
1

ε
ln

∆

p+
− γE + ln 4π

)
. (10)

This expression is equal, but with opposite sign, to the unwanted term in the UV singu-
larity, related to the cusped contour, calculated before. This result enables us to redefine
the conventional TMD PDF as follows:

fmod
q/q (x, k⊥)=

1

2

∫
dξ−d2ξ⊥
2π(2π)2

e−ik+ξ−+ik⊥·ξ⊥ 〈
q(p)|ψ̄(ξ−, ξ⊥)[ξ−, ξ⊥;∞−, ξ⊥; ]†

× [∞−, ξ⊥;∞−,∞⊥; ]†γ+[∞−,∞⊥;∞−,0⊥][∞−,0⊥; 0−,0⊥]

× ψ(0−,0⊥)|q(p)
〉 · [Φ(p+, n−|0−,0⊥)Φ†(p+, n−|ξ−, ξ⊥)

]
, (11)

The renormalization of fmod
ren (x, k⊥) = Zmod

f (αs, ε)f
mod(x, k⊥, ε) yields the renormalization

constant

Zmod
f = 1 +

αs

4π
CF

2

ε

(
−3− 4 ln

∆

p+
+ 4 ln

∆

p+

)
= 1− 3αs

4π
CF

2

ε
. (12)
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which in turn provides the anomalous dimension

γmod
f =

1

2
µ

d

dµ
ln Zmod

f (µ, αs, ε) =
3

4

αs

π
CF + O(α2

s) = γsmooth . (13)

To conclude, the soft counter term can be considered [9] as that part of the TMD PDF
which accumulates the residual effects of the primordial separation of two oppositely color-
charged particles, created at light-cone infinity and being unrelated to the existence of
external color sources, thus corresponding to an “intrinsic Coulomb phase” that keeps
track of the full gauge history of the colored quarks [18, 19].

I.O.C. is supported by the Alexander von Humboldt Foundation. This work was supported
in part by the Deutsche Forschungsgemeinschaft under grant 436 RUS 113/881/0, Russian
Federation President’s grant 1450-2003-2, and the Heisenberg–Landau Program 2007.
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Abstract

Two subjects are mainly discussed: first one is relevant to the Lorentz trans-
formation of the polarization vector for particle with non zero mass. The relation
connecting the angle between proton polarization and its momentum in Laboratory
system with the one in Λ rest frame was derived and it differs form the formula
given by O. Overseth. The second subject is to study the possibility of producing
the polarized proton (antiproton) beam through hyperon (antihyperon) decay using
the internal production target in the accelerators/colliders. Rough estimates of the
polarized beam parameters are made for U70 and LHC. The conclusion: there is
a possibility to obtain the polarized beam on the internal production target of the
same quality as on the external target but avoiding several problems peculiar to the
external production target scheme.

1. Introduction. The acceleration of the polarized proton beam is very complicated
and expensive technic. Though theoretically it is possible to accelerate the polarized
protons in the LHC [1] and U-70 [2], it’s doubtful, that it will be done in the nearest
future. In such situation was decided to analyze more simple method proposed by O.
Overseth in 1969 [3]: producing the proton (antiproton) polarized beam through hyperon
(antihyperon) decay [3, 4].

The paper is organized in the following way: Section 1 describes relativistic trans-
formation of polarization vector. Next section is devoted to the review of the polarized
beams obtained by using the external production target (EPT) and the estimation of the
polarized beam parameters produced on the internal production target (IPT) at U70 and
LHC.

2. Lorentz transformations of the polarization vector. The goal of the following
transformations is to find the relation between ε and θcm (for notations see Fig.1).

Since for tagging the proton polarization in Λ-decay it’s necessary to know the angle ε
between proton polarization and its momentum in lab. system Overseth gave the following
formula (without derivation):

tan ε =
sin θcm

γ0(cos θcm + β0/βf )
. (1)

Here θcm is the proton emission angle in c.m.s. (Λ rest frame) and since the proton
polarization aligned along its momentum in c.m.s (in case of Λ-decay), this angle presents
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also the polarization angle in c.m.s., though in general case we introduce the additional
angle η. β0, γ0 are velocity and Lorentz factor of proton in c.m.s. respectively, βf=vΛ/c
is the Λ-velocity in lab. system. In order to check this relation, the following formulae
[7] could be used:

s = s′ + βγ(
γ

γ + 1
β · s′ + s′

0), s0 = γ(s′0 + β · s′), (2)

where primed symbols stand for spin in moving system with velocity β. The polarization
and spin of the proton in lab. frame could be found by using the formulae (2) twice:
firstly, to find these vectors in c.m.s and then to find them in lab. frame. The final

formula for ∠ε is obtained using the relation tan ε = [−→sl×−→pl ]y
(−→sl ·−→pl )

, in numerator y-component
of vector product is taken. The final formula for ∠ε looks like

tan ε =
βf sin θcm

γfγ2
0(β0 + βf cos θcm)(1 + βfβ0 cos θcm)

, (3)

here βf and γf are relevant to Λ particle in lab. system.

Figure 1. Notations of the angles in Λ-rest
frame and Laboratory frame. Double line ar-
rows mean polarization vector, single line arrows
label momentum. Z-axis is Λ direction in lab.
system.

The main difference with the Over-
seth’s formula is the presence of γf factor
in the denominator of formula (4) which
means that if the energy is increasing the
polarization and momentum vectors be-
come collinear.

3. Production of the polarized proton
beam on the EPT and IPT. Polarized
protons with equal polarizations produced
in Λ-decay come from the same point of
the plane of the virtual source, this means
there is a correlation between the average
particle polarization and its horizontal (or
vertical) position at the intermediate focus [5].

This idea was used in E581/704 Experiment at FNAL [5]. Similar scheme was used in
the experiment FODS at U-70 [6]. The parameters of these two polarized proton beams
produced at the EPTs are presented in Table I.

The goal of using the IPT is to obtain the polarized beam with the same or better
parameters like on the EPT and to get the possibility of running several experiments
simultaneously.

The sketch of such IPT-scheme for U-70 is shown on Fig.2. The circulating proton
beam of 70 GeV/c strikes the IPT. The thickness of IPT (carbon) was taken 0,7 µm in
order to keep the beam life-time at the level of 2 sec. After IPT the charged particles are
bent away by the accelerator’s field and neutral particles go straightforward through the Λ-
collimator(brass). Then there is the decay region (about 9 m) which is assumed to be out
of reach of accelerator’s magnetic field. In this region the polarized protons are produced
through Λ-decay. The decay protons are captured by bending magnet. The collimator
of special form inserted in bending magnet selects the vertically polarized decay protons
and deflect them to the momentum collimator. Then they reach the standard beam
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channel. The bending magnet and momentum collimator should furnish the momentum
selection with precision much better than 20% in order to separate the forward and
backward protons in the Λ-rest frame which have the opposite but equal polarizations.
The properties of the polarized proton beam are shown in Table I.

Table I. Polarized proton beam parameters produced on the EPT and IPT.

Parameters External target Internal target
TeVatron
(Be, 30cm)

U-70
(Al, 30cm)

U-70
(C, 0.7 µm)

Luminosity at production target,cm−2s−1 6.3 · 1034 3.6 · 1036 3.2 · 1036

Intensity of the polarized beam for polar-
ization > 35%,(duty-factor) p/sec

5 · 104 3.7 · 106 2.8 · 106

Polarized beam momentum, GeV/c 200 40 50
Momentum band, % ± 10 ± 4.5 ± 10
Average beam polarization,% 40 ± 2% 40 ± 2% ¿ 35%
Beam profile at final focus, X, Y mm
(max)

±15,±15 ±10.6,±8.1 ±4,±4

Beam divergence, X’, Y’ mrad (max) ±0.8,±0.6 ±6.5,±6.0 ± 2, ±2

Polarized proton beam could be obtained at LHC using the same idea. The circulating
proton beam of 4 TeV/c strikes the IPT located in front of the dipole 1, D1 (Fig.3). The
forward produced neutral particles pass D1 straightforward and hyperons decay in the
region of 33 m. Then the decay charged particles are captured by dipole 2 (D2) and go
straight to the external beam channel. The estimations of beam parameters are made for
two types of IPTs in order to get different beam life-time (Table II).

Table II. The main parameter of LHC and its polarized beams from the EPT and IPT.

Parameters External target Internal target
(C, 30cm) Gas target

(H2)
Carbon
target

Luminosity at production target,cm−2s−1 1.1 · 1039 1.1 · 1035 2.7 · 1037

Intensity, p/sec 3.23 · 1014 3.23 · 1014 3.23 ·1014

Polarized beam momentum, GeV/c 3765 3765 3765
Momentum band, % ±5 ±5 ±5.7
Average beam polarization,% 32 32 32
Beam life-time - 22 hrs 34.5 sec
Number of polarized protons, pol.p/sec 5.7 · 108 6 · 106 6.6 · 109

Number of polarized anti-protons, pol.p̄/sec 5.7 · 106 6 · 104 6.6 · 107

There are several advantages of using very thin IPT: 1) The multiple Coulomb scat-
tering angle will be small. 2) The absorption of the produced Λ by the production
target would be negligible. 3) Possibility of producing simultaneously several polar-
ized beam lines. 4) The IPT can operate simultaneously with slow extracted proton
beam. For LHC we do not know several beam parameters. Nevertheless LHC might
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be the source of high energy polarized antiproton beam of highest energy at present.

Figure 2. Sketch of
obtaining the polarized
proton beam from In-
ternal Target (IT) at U-
70 (top view). Inser-
tion: the front view of
the bending magnet and
internal special collima-
tor.

Figure 3. Layout of
the left part of the low-
β insertion at IP2. The
proposed sketch of pro-
ducing polarized proton
beam from Λ-decay is
presented.
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Abstract

We consider semi-inclusive unpolarized DIS for the production of charged Kaons
and the different possibilities, both in LO and NLO, to test the conventionally used
assumptions s − s̄ = 0, ∆s − ∆s̄ = 0 and DK+−K−

d = 0. The considered tests
have the advantage that they do not require any knowledge of the fragmentation
functions.

1. Introduction

Inclusive deep inelastic scattering (DIS) gives information about the parton densities
(PD) q + q̄ and ∆q +∆q̄. Analogously, e+e− → hX gives information about the fragmen-
tation functions (FF) Dh+h̄

q . However, the new generation of semi-inclusive DIS (SIDIS)
experiments performed with increasing precision and variety during the last years, present
a new powerful instrument to reveal in more details the spin and flavour structure of the
nucleon. However, as data is still not enough and not precise enough, it has become con-
ventional to make certain reasonable sounding assumptions in analyzing the data. The
usually made assumptions are:

s(x) = s̄(x), ∆s(x) = ∆s̄(x), DK+

d (z) = DK−
d (z). (1)

In this paper we discuss to what extent these assumptions can be justified and tested
experimentally, in both, LO and NLO in QCD. We suggest possible tests for the reliability
of the leading order (LO) treatment of the considered processes. The considered tests do
not require any knowledge of the (FFs). In more details these results are published in [1].

2. Positivity constraints

Here we discuss what we can learn about the strange quark densities from positivity
conditions. If s+ (s̄+) and s− (s̄−) denote the s(s̄)-quarks with helicities along and opposite
the helicity of the nucleon, the unpolarized and polarized parton densities are defined as
follows:

s = s+ + s−, s̄ = s̄+ + s̄−, ∆s = s+ − s−, ∆s̄ = s̄+ − s̄−. (2)

Then from s± ≥ 0 and s̄± ≥ 0 the following positivity constraints follow:

|s− s̄| ≤ s + s̄, |∆s±∆s̄| ≤ s + s̄. (3)
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i.e. all parton densities are constrained only by s + s̄, our knowledge of the sum ∆s + ∆s̄
does not put any additional limits. Note that s− s̄ ≶ 0 and ∆s±∆s̄ ≶ 0.

From experiment, it is known with a good accuracy that s + s̄ is different from zero
only for small x . 0.4. Then (3) implies that only in this same interval, x . 0.4, the

combinations s− s̄ and ∆s±∆s̄ can be different from zero. Also, as
∫ 1

0
dx(s− s̄) = 0, it

follows that (s− s̄) changes sign in x = [0, 0.4].

3. SIDIS e + N → e + K± + X

Further we shall work with the difference cross sections in SIDIS. As shown in [2], the
general expression for K± production in SIDIS is:

σ̃K+−K−
p (x, z) =

1

9
[4uV ⊗Du + dV ⊗Dd + (s− s̄)⊗Ds]

K+−K− ⊗ σ̂qq(γq → qX) (4)

σ̃K+−K−
n (x, z) =

1

9
[4dV ⊗Du + uV ⊗Dd + (s− s̄)⊗Ds]

K+−K− ⊗ σ̂qq(γq → qX). (5)

Here DK+−K−
q ≡ DK+

q − DK−
q , σ̂qq is the perturbatively calculable, hard partonic cross

section qγ∗ → q + X:

σ̂qq = σ̂(0)
qq +

αs

2π
σ̂(1)

qq , (6)

normalized so that the LO contribution is σ̂
(0)
qq = 1. For simplicity, we use σ̃K±

N and σ̃DIS
N

in which common kinematic factors have been removed [3].
As shown in [3], the advantage of the difference cross sections is that all terms in

σK+−K−
N are non-singlets both in PD and FF. This implies that 1) gluons do not enter –

neither g(x) nor Dh
g (z) – and 2) their Q2-evolution is rather simple.

As DK+−K−
s is a favoured transition and thus expected to be big, eqs. (4) and (5)

show that σK+−K−
N are sensitive to the combination (s − s̄) which we are interested in.

Up to now all analyses of data assume s = s̄.

4. s− s̄ and DK+−K−
d , LO

We consider (σ̃p + σ̃n)K+−K−
and (σ̃p − σ̃n)K+−K−

. In LO we have:

σ̃K+−K−
d = (σ̃p + σ̃n)K+−K−

=
1

9
[(uV + dV ) (4Du + Dd)

K+−K−
+ 2(s− s̄)DK+−K−

s ] (7)

(σ̃p − σ̃n)K+−K−
=

1

9
[(uV − dV ) (4Du −Dd)

K+−K−
] (8)

We define the following measurable quantities:

R+(x, z) =
σK+

d − σK−
d

uV + dV

= (4Du + Dd)(z)

[
1 +

(s− s̄)

2(uV + dV )

(
Ds

Du

)K+−K−

(z)

]
(9)

and

R−(x, z) =
(σp − σn)K+−K−

uV − dV

= (4 Du −Dd)
K+−K−

(z) (10)
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Note that the x-dependence in (9) is induced solely by the difference s − s̄, while in R−
there is no x-dependence in LO. This result is independent of the FF. Then examining
the x-dependence of R±(x, z0) at some z0, we can deduce the following:

1) if in some x-interval R+(x, z0) is independent on x then, we can conclude that
(s − s̄) = 0 in this x-interval. Recall that since DK+−K−

s is a favoured transition
(Ds/Du)

K+−K−
> 1.

2) if R−(x, z0) is also independent of x , then this suggests that the LO approximation
is reasonable.

3) if R+(x, z0) and R−(x, z0) are both independent of x, and if in addition, R+(x, z0) =

R−(x, z0), then both s− s̄ = 0 in the considered x-interval and DK+−K−
d (z0) = 0.

4) if R+(x, z0) and R−(x, z0) are both independent of x, but they are not equal,
R+(x, z0) 6= R−(x, z0), we conclude that s − s̄ = 0 in the considered x-interval, but

DK+−K−
d (z0) 6= 0.

The above results 1) – 4) are independent of our knowledge of the FFs.
5) if DK±

d are known at some z0, limits on s− s̄ can be obtained. We have:

| (s− s̄)

2(uV + dV )

(
Ds

Du

)K+−K−

(z0)| ≤ δr+

|r+| (11)

where δr+/r+ is the precision of the measurement: R+(x, z0) = r+(z0)± δr+(z0).
6) if R−(x, z) is not a function of z only, then NLO corrections are needed, which we

consider below.
The above tests for s− s̄ = 0 and DK+−K−

d = 0 can be spoilt either by s− s̄ 6= 0 and/or

DK+−K−
d 6= 0, or by NLO corrections, which are both complementary in size. That’s why

it is important to formulate tests sensitive to s − s̄ = 0 and/or DK+−K−
d = 0 solely, i.e.

to consider NLO.

5. s− s̄ and DK+−K−
d , NLO

If an NLO treatment is necessary it is still possible to reach some conclusions, though
less detailed than in the LO case. We now have:

σ̃K+−K−
d =

1

9

[
(uV + dV )⊗ (4Du + Dd)

K+−K−
+ 2(s− s̄)⊗DK+−K−

s

]
⊗(1+αs Cqq) (12)

(σ̃p − σ̃n)K+−K−
=

1

9
(uV − dV )⊗ (1 + αs Cqq)⊗ (4Du −Dd)

K+−K−
(13)

If instead of using (12) and (13), we succeed to obtain an acceptable fit for the x and
z-dependence of both p− n and p + n data with the same fragmentation function D(z):

(σ̃p − σ̃n)K+−K− ≈ 4

9
(uV − dV ) ⊗ (1 + αs Cqq)⊗ D(z), (14)

(σ̃p + σ̃n)K+−K− ≈ 4

9
(uV + dV ) ⊗ (1 + αs Cqq)⊗ D(z). (15)

than we can conclude that both s− s̄ ≈ 0 and DK+−K−
d ≈ 0, and that D(z) = DK+−K−

u .
Note that for all above tests, both in LO and NLO approximation, we don’t require a

knowledge of DK+−K−
q .
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6. ∆s−∆s̄ in K± production in SIDIS

Recently the COMPASS collaboration measured [4] the difference asymmetry in SIDIS
with longitudinally polarized muons and protons:

Ah−h̄
d =

∆σ̃h−h̄

σ̃h−h̄
. (16)

and singled out the polarized valence quarks. Here we draw attention that if the same
asymmetry is measured with final Kaons, information on ∆s−∆s̄ can be obtained:

AK+−K−
d (x, z) ' ∆uV + ∆dV

uV + dV

{
1+

(
∆s−∆s̄

∆uV + ∆dV

− s− s̄

uV + dV

)(
Ds

2Du

)K+−K−}
(17)

The z-dependence of AK+−K−
d is present only if ∆s−∆s̄ and/or s− s̄ are non-zero. Thus,

studying the z-dependence of AK+−K−
d one can obtain information about ∆s −∆s̄ ' 0,

suppose we already have the information about s− s̄ ' 0, as discussed above.

At the end a few remarks on the measurability of the discussed asymmetries. In
general, these are difference asymmetries and high precision measurements are required.
In addition, the data should be presented in bins in both x and z. Quite recently such
binning was done in [14] for the very precise data of the HERMES collaboration on K±-
production in SIDIS on proton and deuterium. These results show that for 0, 350 ≤ z ≤
0, 450 and for 0, 450 ≤ z ≤ 0, 600 in the x-interval 0, 023 ≤ x ≤ 0, 300 the accuracy of the
data allows to form the differences (σd)

K+−K−
and (σp−σn)K+−K−

with errors not bigger
than 7-13% and 10-15% respectively. Then one can form the ratios R+ and R− with
these precisions and perform the above tests.
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Abstract

Based on the model of instanton vacuum the nonperturbative photon and ρ
meson light-cone distributions are constructed. We discuss the transverse size de-
pendence of the photon light-cone wave function and investigate effects of nonper-
turbative input in electroproduction of longitudinally polarized ρ meson.

1 Introduction

Investigations of hard exclusive processes are essential for our understanding of the in-
ternal quark-gluon dynamics of hadrons. Theoretically, such studies are based on the
assumption of factorization of dynamics at long and short distances. The short-distance
physics is well elaborated by perturbative methods of QCD and depends on particu-
lar hard subprocesses. The long-distance dynamics is essentially nonperturbative and
within the factorization formalism becomes parametrized in terms of hadronic distribu-
tion amplitudes (DAs). These nonperturbative quantities are universal and are defined as
vacuum-to-hadron matrix elements of particular nonlocal light-cone quark or quark-gluon
operators. The evolution of DAs at sufficiently large virtuality q2 is controlled by the
renormalization scale dependence of the quark bilinear operators within the QCD per-
turbation theory. For leading-order DAs this dependence is governed by QCD evolution
equations. When the normalization scale goes to infinity the DAs reach an ultraviolet
fixed point and are uniquely determined by perturbative QCD. However, the derivation
of the DAs themselves at an initial scale µ2

0 from first principles is a nonperturbative
problem and remains a serious challenge.

Here we present the results [1] of study of the ρ-meson and photon DAs in the lead-
ing and higher twists at a low-momentum renormalization scale in the gauged non-local
chiral quark model [2–5] based on the instanton picture of QCD vacuum. The important
application of these results is the diffractive production of ρ-meson. The amplitude of
this process is represented as a convolution of the hard subprocess and the ρ-meson and
photon light-cone wave functions.

2 Definitions and notations

The distribution amplitudes of the mesons or the photon are defined via the matrix ele-
ments of quark-antiquark bilinear operators taken between the vacuum and the hadronic
state |h(q)〉 of momentum q. It is assumed that the quark and antiquark are separated
by the distance 2z and the light-like limit z2 → 0 is taken at a fixed scalar product q · z.
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We use the light-cone expansion of the matrix elements in order to define the DAs 1 (only
leading twist terms are presented)

〈0|q(z)σµν [z,−z]q(−z)|γλ(q)〉
〈0 |qq| 0〉 = ieqχmf t

⊥γ

(
q2

) (
e(λ)

µ qν − qµe
(λ)
ν

) ∫ 1

0

dxeiξq·zφ⊥γ(x, q2),

(1)

〈0|q(z)γµ[z,−z]q(−z)|γλ(q)〉 = eqf3γf
v
‖γ

(
q2

)
qµ

e(λ) · z
q · z

∫ 1

0

dxeiξq·zφ‖γ(x, q2), (2)

where χm is the magnetic susceptibility of the quark condensate 〈0 |qq| 0〉, and f3γ is
related to the first moment of the magnetic susceptibility. The symbol [−z, z] in the
matrix elements denotes the path-ordered gauge link (Wilson line) for the gluon fields
between the points −z and z. The integration variable x corresponds to the momentum
fraction carried by the quark and ξ = 2x − 1 for the short-hand notation. For a real
photon, due to condition e(λ) · z = 0, the structure corresponding to φ‖γ decouples. The
DAs φ⊥ρ(x) and φ‖ρ(x) for the ρ-meson state |ρλ(q)〉 are defined in analogy with photon
case (1) and (2) with mass-shell condition q2 = −M2

ρ .

3 The distribution amplitudes within nonlocal chiral

quark model

Figure 1: ρ-meson twist-2 dis-
tribution amplitudes: trans-
verse (solid line) and longitudi-
nal (dashed) projections. The
third line is distribution ampli-
tude at asymptotic scale.

The results of calculations of the ρ-meson and photon DAs
in the leading twist within the gauged non-local chiral
quark model based on the instanton picture of QCD vac-
uum are are shown in Figs. 1-3. The DAs are scale depen-
dent quantities. The above results correspond to the low
momentum scale µ0 typical for the instanton model, which
is estimated as µ0 = 530 MeV [7], and need to be evolved to
higher momenta scale in order to compare with experimen-
tally available information. The distribution amplitudes of
the real photon calculated in the chiral limit may be cast
in a closed form

φ⊥γ

(
x, q2 = 0

)
=

1

|〈q̄q〉|χm

Nc

4π2

[
Θ(xx)

∫ ∞

0

du
M (u)

D (u)

]

−
∫ ∞

0

du

∫ ∞

−∞

dλ

2π

M+M−
D+D−

M (1) (u+, u−)

]
(3)

φ‖γ
(
x, q2 = 0

)
= Θ(xx), (4)

where the notations (x = 1− x) are introduced

u+ = u− iλx, u− = u + iλx, M± = M (u±) ,

D(u) = u + M2(u), D± = D (u±) ,

1Our definitions of the photon and ρ-meson DAs follow closely the works of Braun, Ball and coauthors
[6].
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with the dynamical momentum dependent quark mass M(p) related to the nonlocal prop-
erties of the QCD vacuum [8]. The parameters entering normalization coefficients are

given by 〈0 |qq| 0〉inst
∣∣∣
1GeV

= −(0.24 GeV)3, χinst
m

∣∣
1GeV

= 2.73 GeV−2.

Figure 2: Dependence of the twist-2 tensor com-
ponent of the photon DA on transverse momentum
squared (q2 = 0.25 GeV2 solid line, q2 = 0 GeV2

dashed line, q2 = −0.09 GeV2 short-dashed line,
asymptotic DA - dotted line) given at the quark model
scale.

Figure 3: Same as Fig. 2 for the
twist-2 vector component of the
photon DA.

4 Discussion

In perturbative approach to the photon light-cone wave function one has the result [9]
written in mixed coordinate-momentum representation as

φp.t.
⊥,‖γ (x, r⊥) ∼ K0 (εr⊥) , ε2

p.t. = m2
q + x (1− x) Q2, (5)

where mq is the current quark mass, r⊥ ∼ ε−1 is the transverse distance. This result leads
to the problem of the large transverse size of the asymmetric quark-antiquark configura-
tion, when x or 1− x is small

r⊥ ∼ ε−1
p.t. ≈ m−1

q >> Rhadron, when x → 0. (6)

At the same time, in the nonperturbative approach one gets [1]

φ⊥,‖γ (x, r⊥) ∼ mρ

(
Q2 + m2

ρ

)
(1 + εr⊥)

ε3
e−εr⊥ , ε2

p.t. = m2
ρ + x (1− x) Q2, (7)

where mρ is the ρ-meson mass, and thus the problem of ”dangerous” configurations is
solved.

Differential cross section for ρ0
L production is given by [10]

dσ

dt

∣∣∣∣
t=0

(
γ∗N → ρ0N

)
=

1

Q6
8π4αemαs

(
Q2

)
f 2

ρ η2
ρ

[
xG

(
x,Q2

)]2
, (8)
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where fρ is the ρ → e+e− decay constant, G (x,Q2) is the gluon distribution in the
nucleon, and

ηρ =
1

2

∫
dxφ‖ρ (x) / [x (1− x)]∫

dxφ‖ρ (x)
(9)

is the inverse moment of the ρ0
L meson DA, controling the leading twist contribution

to the leptoproduction amplitude. For asymptotic DA ∼ x (1− x) one has ηAs
ρ = 3.

Phenomenolgy leads to ηExp
ρ = 3.5 − 4. By using nonperturbative DA [1] we get ηNP

ρ =
3.3− 3.5 in consistency with experimental value.

5 Conclusion

The instanton model of QCD vacuum is realistic tool to get nonperturbative properties of
hadrons in terms of parameters characterizing the vacuum. All hadron DAs are suppressed
at the boundary of kinematical interval in x variable due to localized wave function of
hadrons. At the same time the photon DAs are not zero at edge points since the photon is
not bound state object and has no own form factor. As was shown in [1], by applying the
QCD evolution, the photon DAs become immediately zero at the edge points of x-interval.
Nevertheless, the memory of the initial condition is that the leading twist photon DAs
are always wider than asymptotic distribution.
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Abstract

The Sivers and Collins asymmetries are the most prominent Single Spin Asym-
metries (SSA) in Semi-Inclusive Deeply Inelastic Scattering (SIDIS) with transverse
target polarization. In this talk we present our understanding of these phenomena.

1 Introduction

SSAs in hard reactions have a long history dating back to the 1970s when significant
polarizations of Λ-hyperons in collisions of unpolarized hadrons were observed [1], and
to the early 1990s when large asymmetries in p↑p → πX or p↑p̄ → πX were found at
Protvino [2] and FNAL [3]. No fully consistent and satisfactory unifying approach to the
theoretical description of these observations has been found so far — see the review [4].

Interestingly, the most recently observed SSA and azimuthal phenomena, namely those
in SIDIS and e+e− annihilations seem better under control. This is in particular the case
for the transverse target SSA observed at HERMES and COMPASS [23, 24, 7] and the
azimuthal correlations in hadron production in e+e− annihilations observed at BELLE [7].
On the basis of a generalized factorization approach in which transverse parton momenta
are taken into account [26] these “leading twist” asymmetries can be explained [16, 17]
in terms of the Sivers [11, 15, 14, 15] or Collins effect [6]. The former describes, loosely
speaking, the distribution of unpolarized partons in a transversely polarized proton, the
latter describes a left-right asymmetry in fragmentation of transversely polarized partons
into unpolarized hadrons. In the transverse target SSA these effects can be distinguished
by the different azimuthal angle distribution of the produced hadrons: Sivers effect ∝
sin(φ − φS), while Collins effect ∝ sin(φ + φS), where φ and φS denote respectively the
azimuthal angles of the produced hadron and the target polarization vector with respect
to the axis defined by the hard virtual photon [16]. Both effects have been subject to
intensive phenomenological studies in hadron-hadron-collisions [35] and in SIDIS [18]- [26].
In this talk our understanding of these phenomena is presented.

For the longitudinal target SSA in SIDIS, which were observed first [27, 28] but are
dominated by subleading-twist effects [29,30], the situation is less clear and their descrip-
tion (presuming factorization holds) is more involved.

2 Sivers effect

The Sivers effect [11] was originally suggested to explain the large SSAs in p↑p → πX
(and p̄↑p → πX) observed at FNAL [3] and confirmed at higher energies by RHIC [5].
It is due a correlation between (the transverse component of) the nucleon spin ST and
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intrinsic transverse parton momenta pT in the nucleon, and decribed by the Sivers function
f⊥1T (x,p2

T ) whose precise definition in QCD was worked out only recently [14,15].

2.1 Sivers effect in SIDIS. The azimuthal SSA measured by HERMES & COMPASS
in the SIDIS process lp↑ → l′hX (see Fig. 1) is defined as

N↑ −N↓

N↑ + N↓ ∝ sin(φ− φS) A
sin(φ−φS)
UT︸ ︷︷ ︸

Sivers and

+ sin(φ + φS) A
sin(φ+φS)
UT︸ ︷︷ ︸

Collins effect

(1)

Θ
� � �
� � �
� � �
� � �
� � �
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Figure 1: Kinematics of the SIDIS pro-
cess lN → l′hX.

where N↑(↓) are the event counts for the respec-
tive transverse target polarization. We assume
the distributions of transverse parton and hadron
momenta in distribution (DF) and fragmentation
function (FF) to be Gaussian with corresponding
averaged transverse momenta, p2

Siv and K2
D1

, taken
x- or z- and flavour-independent. The Sivers SSA
as measured in [23,24] is then given by [21]

A
sin(φ−φS)
UT = (−2)

aG

∑
a e2

a xf
⊥(1)a
1T (x) Da

1(z)∑
a e2

a xfa
1 (x) Da

1(z)
with aG =

√
π

2

MN√
p2

Siv + K2
D1

/z2
(2)

and f
⊥(1)a
1T (x) ≡ ∫

d2pT
p2

T

2M2
N

f⊥a
1T (x,p2

T ). In the limit a large number of colours Nc one has

f⊥u
1T (x,p2

T ) = −f⊥d
1T (x,p2

T ) modulo 1/Nc corrections, (3)

and analog for antiquarks for x of the order xNc = O(N0
c ) [32]. In the following effects of

antiquarks and heavier flavours are neglected. It was shown [21] that the large-Nc relation
(3) describes the HERMES data [23] by the following 2-parameter Ansatz and best fit

xf
⊥(1)u
1TSIDIS

(x) = −xf
⊥(1)d
1TSIDIS

(x)
Ansatz

= Axb (1− x)5 fit
= −0.17x0.66(1− x)5 . (4)

Fig. 2a shows the fit and its 1-σ uncertainty due to the statistical error of the data [23].
Fig. 2b shows that this fit very well describes the x-dependence of the HERMES data [23].
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Figure 2: a. The u-quark Sivers function vs. x at a scale of 2.5GeV2, as obtained from the HERMES
data [23]. Shown are the best fit and its 1-σ uncertainty. b. and c. The azimuthal SSA A

sin(φh−φS)
UT as

function of x and z for positive pions as obtained from the fit (4) in comparison to the data [23].
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Fig. 2c finally shows the equally good description of the z-dependence of the data [23]
that were not included in the fit, and serves here as a cross check for the Gauss Ansatz.

We have explicitly checked that effects due to Sivers ū- and d̄-distributions cannot be
resolved within the error bars of the data [23] (however, see Sec. 4). We also checked that
1/Nc-corrections are within the error bars of the data [23]. For that we assumed that the
flavour singlet Sivers distribution is suppressed by exactly a factor of 1/Nc with respect
to the flavour non-singlet combination according to Eq. (3). That is, with Nc = 3,

∣∣∣(f⊥(1)u
1T + f

⊥(1)d
1T )(x)

∣∣∣ !
= ± 1

Nc

(f
⊥(1)u
1T − f

⊥(1)d
1T )(x) , (5)
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Figure 3: The Sivers SSA for
positive hadrons from deuteron.
Data are from COMPASS [24].
The theoretical curves indicate
the magnitude of the effect on
the basis of the estimate (5).

where we use f
⊥(1)q
1T (x) from (4) on the right-hand-side.

On an isoscalar target, such as deuteron, the entire
effect is due to 1/Nc-corrections. Assuming that charged
hadrons at COMPASS are mainly pions, the rough es-
timate (5) of 1/Nc-corrections yields results compatible
with the COMPASS data [24], see Fig. 3.

Thus, the large-Nc approach works, because the pre-
cision of the first data [23,24] is comparable to the theo-
retical accuracy of the large-Nc relation (3). Our results
are in agreement with other studies [22,19,22].

We conclude that the HERMES and COMPASS data
[23, 24] are compatible with the large-Nc prediction (3)
for the Sivers function [32]. Remarkably, the sign of
the extracted Sivers function in Eq. (4) agrees with the
physical picture discussed in [33].

2.2 Sivers effect in the Drell-Yan process. Universility is a particularly interesting
aspect of the Sivers function. On the basis of time-reversal arguments it is predicted [14]
that this (and other “T-odd”) distribution(s) have opposite signs in SIDIS and DY

f⊥1T (x,p2
T )SIDIS = −f⊥1T (x,p2

T )DY . (6)

The experimental check of Eq. (6) would provide a thorough test of our understanding
of the Sivers effect within QCD. In particular, the experimental verification of (6) is a
crucial prerequisite for testing the factorization approach to the description of processes
containing pT -dependent correlators [26].

On the basis of the first information of the Sivers effect in SIDIS [23,24] it was shown
that the Sivers effect leads to sizeable SSA in p↑π− → l+l−X, which could be studied
at COMPASS, and in p↑p̄ → l+l−X or pp̄↑ → l+l−X in the planned PAX experiment
at GSI [42] making the experimental check of Eq. (6) feasible and promising [18]. Both
experiments are dominated by annihilations of valence quarks (from p) and valence an-
tiquarks (from p̄, π−). This yields sizeable counting rates, and the processes are not
sensitive to Sivers antiquarks, that are not constrained by the present data, see [18]- [21].

On a shorter term the Sivers effect in DY can be studied in p↑p → l+l−X at RHIC.
In pp-collisions inevitably antiquark distributions are involved, and the counting rates
are smaller. We have shown, however, that the Sivers SSA in DY can nevertheless be
measured at RHIC with an accuracy sufficient to unambiguously test Eq. (6) [25].
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The theoretical understanding of SSA in p↑p → πX, which originally motivated the in-
troduction of the Sivers effect, is more involved compared to SIDIS or DY. No factorization
proof is formulated for this process. The SSA can also be generated by twist-3 effects [34]
that, however, could be manifestations of the same effect in different kT regions [35].

3 Transversity and Collins effect

The transversity distribution function ha
1(x) enters the expression for the Collins SSA in

SIDIS together with the equally unknown Collins fragmentation function [6] (FF) Ha
1 (z)1

A
sin(φ+φS)
UT = 2

∑
a e2

axha
1(x)BGHa

1 (z)∑
a e2

a xfa
1 (x) Da

1(z)
. (7)

However, Ha
1 (z) is accessible in e+e− → q̄q → 2jets where the quark transverse spin

correlation induces a specific azimuthal correlation of two hadrons in opposite jets [17]

dσ = dσunp

[
1 + cos(2φ1)

sin2 θ

1 + cos2 θ
CG ×

∑
a e2

aH
a
1H ā

1∑
a e2

aD
a
1D

ā
1

]

︸ ︷︷ ︸
≡A1

(8)

where φ1 is azimuthal angle of hadron 1 around z-axis along hadron 2, and θ is electron
polar angle. Also here we assume the Gauss model and CG(z1, z2) = 16

π
z1z2/(z

2
1 + z2

2).
First experimental indications for the Collins effect were obtained from studies of

preliminary SMC data on SIDIS [36] and DELPHI data on charged hadron production
in e+e− annihilations at the Z0-pole [37]. More recently HERMES reported data on the
Collins (SSA) in SIDIS from proton target [23, 7] giving the first unambiguous evidence
that Ha

1 and ha
1(x) are non-zero, while in the COMPASS experiment [24] the Collins effect

from a deuteron target was found compatible with zero within error bars. Finally, year
ago the BELLE collaboration presented data on sizeable azimuthal correlation in e+e−

annihilations at a center of mass energy of 60 MeV below the Υ-resonance [7].
The question which arises is: Are all these data from different SIDIS and e+e− exper-

iments compatible, i.e. due to the same Collins effect?
In order to answer this question we extract Ha

1 from HERMES [7] and BELLE [7]
data, and compare the ratios Ha

1/Da
1 from these and other experiments. Such “analyzing

powers” might be expected to be weakly scale-dependent.

3.1 Collins effect in SIDIS. A simultanous extraction of ha
1(x) and H⊥a

1 (z) from SIDIS
data is presently not possible. We use therefore for ha

1(x) predictions from chiral quark-
soliton model [38] which provides a good description of fa

1 (x) and ga
1(x). The HERMES

data on the Collins SSA [7] can be described in this approach if, at 〈Q2〉 = 2.5 GeV2,

〈2BGH fav
1 〉

〈Dfav
1 〉

∣∣∣∣
HERMES

= (7.2± 1.7)% ,
〈2BGHunf

1 〉
〈Dunf

1 〉

∣∣∣∣
HERMES

= −(14.2± 2.7)% . (9)

1 We assume a factorized Gaussian dependence on parton and hadron transverse momenta [16] with
BG(z) = (1 + z2 〈p2

h1
〉/〈K2

H1
〉)−1/2 and define Ha

1 (z) ≡ H
⊥(1/2)a
1 (z) =

∫
d2KT

|KT |
2zmπ

H⊥a
1 (z,KT ). The

Gaussian widths are assumed flavor and x- or z-independent. We neglect throughout the soft factors [26].
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where “fav” (“unf”) means favored u → π+ etc. (unfavored u → π−, etc.) fragmentation,
and 〈. . .〉 denotes average over z within the HERMES cuts 0.2 ≤ z ≤ 0.7.

The absolute numbers for 〈2BGH fav
1 〉 and 〈2BGHunf

1 〉 are of similar magnitude. This
can be understood in the string fragmentation picture and the Schäfer-Teryaev sum rule
[39]. Fit (9) describes the HERMES proton target data [7] on the Collins SSA (Figs. 4a,
b) and is in agreement with COMPASS deuteron data [24] (Figs. 4c, d).
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Figure 4: Collins SSA A
sin(φ+φS)
UT as function of x vs. HERMES [7] and new COMPASS [24] data.
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needed to explain the BELLE
data [7]. The shown 1-σ error
bands are correlated.

3.2 Collins effect in e+e−. The cos 2φ dependence
of the cross section (8) could arise also from hard gluon
radiation or detector acceptance effects. These effects,
being flavor independent, cancel out from the double
ratio of AU

1 , where both hadrons h1h2 are pions of unlike
sign, to AL

1 , where h1h2 are pions of like sign, i.e.

AU
1

AL
1

≈ 1 + cos(2φ1)PU/L(z1, z2) . (10)

The BELLE data [7] can be described with the fol-
lowing Ansatz and best fit, which is shown in Fig. 5,

Ha
1 (z) = Ca z Da

1(z), Cfav = 0.15, Cunf = −0.45. (11)

Other Ansätze gave less satisfactory fits. The azimuthal observables in e+e−-annihilation
are bilinear in Ha

1 and therefore symmetric with respect to the exchange of the signs of
H fav

1 and Hunf
1 . The BELLE data [7] unambiguously indicate that H fav

1 and Hunf
1 have

opposite signs, but they cannot tell us which is positive and which is negative. The definite
signs in (11) and Fig. 5 are dictated by SIDIS data [7] and model [38] with hu

1(x) > 0. In
Fig. 6 (top) the BELLE data [7] are compared to the theoretical result for PU/L(z1, z2).

3.3 BELLE vs. HERMES. In order to compare Collins effect in SIDIS at HERMES
[23,7] and in e+e−-annihilation at BELLE [7] we consider the ratios Ha

1/Da
1 which might

be less scale dependent. The BELLE fit in Fig. 5 yields in the HERMES z-range:

〈2H fav
1 〉

〈Dfav
1 〉

∣∣∣∣
BELLE

= (5.3 · · · 20.4)%,
〈2Hunf

1 〉
〈Dunf

1 〉

∣∣∣∣
BELLE

= −(3.7 · · · 41.4)% . (12)
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Figure 7: The Collins SSA A
sin(φ+φS)
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as function of z. The theoretical curves
are based on the fit of Ha

1 (z) to the
BELLE data under the assumption (13).
The dashed lines indicate the sensitivity
of the SSA to the Gaussian widths.

The above numbers (errors are correlated!)
and the result in Eq. (9) are compatible, if one
takes into account the factor BG < 1 in Eq. (9).

Assuming a weak scale-dependence also for

Ha
1 (z)

Da
1(z)

∣∣∣∣
BELLE

≈ Ha
1 (z)

Da
1(z)

∣∣∣∣
HERMES

(13)

and considering the 1-σ uncertainty of the
BELLE fit in Fig. 5 and the sensitivity to un-
known Gaussian widths of Ha

1 (z) and ha
1(x), c.f.

Footnote 1 and Ref. [18], one obtains also a sat-
isfactory description of the z-dependence of the
HERMES data [7] as shown in Fig. 7.

These observations allow to draw the conclusion that it is, in fact, the same Collins
effect at work in SIDIS [23,24,7] and in e+e−-annihilation [7,45]. Estimates indicate that
the early preliminary DELPHI result [37] is compatible with these findings [18].
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s = 96 GeV2

Figure 8: Double spin asym-
metry ATT in DY, Eq. (14),
vs. xF for the kinematics of J-
PARC.

3.3 Transversity in Drell-Yan process. The double-
spin asymmetry observable in Drell-Yan (DY) lepton-pair
production in proton-proton collisions is given in LO by

ATT (xF ) =

∑
a e2

ah
a
1(x1)h

ā
1(x2)∑

a e2
af

a
1 (x1)f ā

1 (x2)
(14)

where xF = x1 − x2 and x1x2 = Q2

s
. In the kinematics of

RHIC ATT is small and difficult to measure.
In the J-PARC experiment with Ebeam = 50 GeV ATT

would reach −5 % in the model [38], see Fig. 8, and could
be measured [40]. The situation is similarly promising in
proposed polarized beam U70-experiment [41].
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Finally, in the PAX-experiment proposed at GSI [42] in polarized p̄p collisions one
may expect ATT ∼ (30 · · · 50)% [4]. There ATT ∝ hu

1(x1)h
ū
1(x2) to a good approximation,

due to u-quark (ū-quark) dominance in the proton (anti-proton) [4].

4 New data and developements

Since our studies were completed [18, 21, 18] new data became available from SIDIS at
HERMES [35] and e+e−-annihilations at BELLE [45]. What is the impact of the new
experimental results? Do they confirm our current understanding of the Sivers- and
Collins-effects, or will they require a revision?

4.1 New results from BELLE. Interesting recent news are the preliminary BELLE
data [45] for the ratio of azimuthal asymmetries of unlike sign pion pairs, AU

1 , to all
charged pion pairs, AC

1 . The new observable PU/C is defined analogously to PU/L in
Eq. (10) as AU

1 /AC
1 ≈ 1 + cos(2φ) PU/C . Fig. 6 (bottom) shows that the fit (11) from [18]

ideally describes the new experimental points! Thus, the new data confirm the picture of
the Collins function in Fig. 5, but will allow to reduce the uncertainty of the extraction.

4.2 π0 Collins SSA. The (unpolarized or Collins) fragmentation functions for neutral
pions are just the average of the favoured and unfavoured fragmentation functions into
charged pions, due to isospin symmetry. Since in the HERMES kinematics the favoured
and unfavoured Collins functions are of opposite sign and nearly equal in magnitude,
〈2BGH fav

1 〉 ≈ −〈2BGHunf
1 〉 c.f. Sec. 3.1, one expects the π0 Collins SSA to be nearly

zero [18]. Most recent HERMES data confirm this prediction within error bars [35].

-0.02

0

0.02

0.04

0.06

0 0.1 0.2 0.3 0.4

 (a)AUTAsin(φ-φS)(x)  at  HERMES

x

π0

0

0.02

0.04

0.06

0 0.2 0.4 0.6

 (b)AUTAsin(φ-φS)(z)  vs. HERMES preliminary

z

π0

Figure 9: The Sivers SSA A
sin(φ+φS)
UT (z) for π0

as functions of x and z. The preliminary HER-
MES data are from [35]. The theoretical curves
are based on the extraction of the Sivers effect [21]
from the HERMES data on π± SSAs [23].

4.3 π0 Sivers SSA. Isospin symmetry ap-
plies not only to fragmenation functions but
to the entire effects. Thus, knowing the
Sivers SSAs for charged pions one is able to
predict the effect for π0. In Figs. 9a, b we
compare our predictions made on the basis
of the results from [21] discussed in Sec. 2.1
with the most recent HERMES data [35].
The agreement is satisfactory. In particular,
data on the z-dependence of the Sivers SSA
provide a direct test of the Gauss model for
transverse parton and hadron momenta [21].
As can be seen in Fig. 9b, within the present
precision of data the Gauss Ansatz is useful.

4.4 Sivers effect for kaons. In the HERMES experiment also the Sivers effect for
charged kaons was measured. For K− the effect is compatible with zero within error bars.
But for K+ in the region of x = (0.05 − 0.15) the SSA is about (2-3) times larger than
the π+ SSA [35], while for x ≥ 0.15 the K+ and π+ SSAs are of comparable size within
error bars. Can one understand this behaviour?
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The “only difference” between the π+ and K+ SSAs is the exchange d̄ ↔ s̄. Therefore,
in our approach of Sec. 2.1, where we neglect the effects of Sivers strange and antiquarks
one expects π+ and K+ SSAs of same magnitude. However, by including explicitly ū, d̄, s
and s̄ Sivers distributions one could explain the observed enhancement of the K+ Sivers
SSA with respect to the π+ SSA, provided the Sivers seaquark distributions would reach
about 50% of the magnitude of the Sivers quark distributions. At small x this could be
a reasonable scenario, see [26] for a detailed discussion. A simultaneous refitting of pion
and kaon SSAs will give us a conclusive answer (see, however, the talk by Prokudin [20]).

5 Conclusions

Within the uncertainties of our study we find that the SIDIS data from HERMES [23,7]
and COMPASS [24] on the Sivers and Collins SSA from different targets are in agreement
with each other and with BELLE data on azimuthal correlations in e+e−-annihilations.

At the present stage of art large-Nc predictions for the flavour dependence of the Sivers
function are compatible with data, and provide useful constraints for their analysis.

The favored and unfavored Collins FFs appear to be of comparable magnitude but
have opposite signs, and hu

1(x) seems close to saturating the Soffer bound, other ha
1(x) are

hardly constrained. This conclusion is supported by a simultanuous analysis of HERMES,
COMPASS and BELLE data [20] with additional conclusion on the tendency of hd

1(x) to
be negative. These findings are in agreement with old DELPHI and with the most recent
BELLE data and with independent theoretical studies [19].

New HERMES and BELLE data confirm our first understanding of these effects,
except for the HERMES data on the kaon Sivers SSA which may provide new interesting
information on Sivers seaquarks. Further data from SIDIS (COMPASS, JLAB, HERMES)
and e+e− colliders (BELLE) will help to improve this first picture.

The understanding of the novel functions f⊥a
1T , ha

1 and Ha
1 emerging from SIDIS and

e+e−-annihilations, however, will be completed only thanks to future data spin asymme-
tries in the Drell-Yan process. Experiments are in progress or planned at RHIC, J-PARC,
COMPASS, U70 and PAX at GSI.

While the Sivers and Collins effects are the most prominent effects, it is important
to keep in mind that there are further equally fascinating effects to be explored [46–48].
Preliminary COMPASS results on compatible with zero deuteron target SSAs beyond the
Sivers and Collins effects were presented in [49].
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Abstract

The explicit expressions describing the structure function g1 at arbitrary x and
Q2 are obtained. In the first place, they combine the well-known DGLAP expres-
sions for g1 with the total resummation of leading logarithms of x, which makes
possible to cover the kinematic region of arbitrary x and large Q2. In order to cover
the small-Q2 region the shift Q2 → Q2 +µ2 in the large-Q2 expressions is suggested
and values of µ are estimated. The expressions obtained do not require singular
factors x−a in the fits for initial parton densities.

1 Introduction

The goal of obtaining universal expressions describing the structure function g1 at all x
and Q2 is an attractive task from both theoretical and phenomenological point of view.
Until recently, the only theoretical instrument to describe g1 was the Standard Approach
(SA) which involves the DGLAP evolution equations [1] and standard fits [2] for the initial
parton densities δq and δg. The fits are defined from phenomenological considerations at
x ∼ 1 and Q2 = µ2 ∼ 1GeV2. The DGLAP equations are one-dimensional, they describe
the Q2 -evolution only, converting δq and δg into the evolved distributions ∆q and ∆g.
The DGLAP equations are theoretically grounded in the kinematical the region A only:

A: s > Q2 À µ2, x ≤ 1 (1)

where we have denoted s ≡ 2pq, with p and q being the momenta of the initial hadron and
photon respectively. This leaves the other kinematical regions uncovered. It is convenient
to specify those regions as follows:

The small-x region B:

B: s À Q2 À µ2, x ¿ 1 (2)

and the small-Q2 regions C and D :

C: 0 ≤ Q2 ≤ µ2, x ¿ 1, (3)

D: 0 ≤ Q2 ≤ µ2, x ≤ 1. (4)

As the matter of fact, the SA has been extended from Region A to the small-x Region
B, though without any theoretical basis. The point is that after converting δq and δg

63



into ∆q and ∆g with the DGLAP evolution equations, they should be evolved to the
small-x region as well. The x -evolution is supposed to come from convoluting ∆q and
∆g with the coefficient functions CDGLAP . However, in the leading order CLO

DGLAP = 1;
the NLO corrections account for one- or two- loop contributions and neglect higher loops.
This is the correct approximation in the region A but becomes wrong in the Region B
where contributions ∼ lnk(1/x) are large and should be accounted for to all orders in αs.
CDGLAP do no include the total resummation of the leading logarithms of x (LL), so SA
requires special fits for δq and δg. The general structure of such fits (see Refs. [2]) is as
follows:

δq = Nx−aϕ(x) (5)

where N is a normalization constant; a > 0, so x−a is singular when x → 0 and ϕ(x) is
regular in x at x → 0. In Ref. [3] we showed that the role of the factor x−a in Eq. (5)
is to mimic the total resummation of LL performed in Refs [4, 5]. Similarly to LL, the
factor x−a provides the steep rise to g1 at small x and sets the Regge asymptotics for g1

at x → 0, with the exponent a being the intercept. The presence of this factor is very
important for extrapolating DGLAP into the region B: When the factor x−a is dropped
from Eq. (5), DGLAP stops to work at x ≤ 0.05 (see Ref. [3] for detail). Accounting for
the LL resummation is beyond the DGLAP framework, because LL come from the phase
space not included in the DGLAP -ordering

µ2 < k2
1 ⊥ < k2

2 ⊥ < ... < Q2 (6)

for the ladder partons (k2i ⊥ are the transverse components of the ladder momenta ki).
LL can be accounted only when the ordering Eq. (6) is lifted and all ki ⊥ obey

µ2 < k2
i ⊥ < (p + q)2 ≈ (1− x)2pq ≈ 2pq (7)

at small x. Replacing Eq. (6) by Eq. (7) leads inevitably to the change of the DGLAP
parametrization

αDGLAP
s = αs(Q

2) (8)

by the alternative parametrization of αs given by Eq. (14). This parametrization was
obtained in Ref. [6] and was used in Refs. [4, 5] in order to find explicit expressions ac-
counting for the LL resummation for g1 in the region B. Obviously, those expressions
require the non-singular fits for the initial parton densities. Let us note that the replace-
ment of Eq. (6) by Eq. (7) brings a more involved µ -dependence of g1. Indeed, Eq. (6)
makes the contributions of gluon ladder rungs be infrared (IR) stable, with µ acting as a
IR cut-off for the lowest rung and ki ⊥ playing the role of the IR cut-off for the i+1-rung.
In contrast, Eq. (7) implies that µ acts as the IR cut-off for every rung.

The small-Q2 Regions C and D are, obviously, beyond the reach of SA because DGLAP
cannot be exploited here. Alternatively, in Refs. [7, 8] we obtained expressions for g1 in
the region C and proved that Region C can be described through the shift Q2 → Q2 + µ2

in our large-Q2 formulae. Combining these results with SA obtained in Ref. [3] makes it
possible to describe g1 in Region D. For the sake of simplicity, we present below formulae
for gNS

1 , the non-singlet component of g1 only.
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2 Description of g1 in the region B

The total resummation of the double-logarithms (DL) and single- logarithms of x in the
region B was done in Refs. [4, 5]. In particular, the non-singlet component, gNS

1 of g1 is

gNS
1 (x,Q2) = (e2

q/2)

∫ ı∞

−ı∞

dω

2πı
(1/x)ωCNS(ω)δq(ω) exp

(
HNS(ω) ln(Q2/µ2)

)
, (9)

with new coefficient functions CNS,

CNS(ω) =
ω

ω −H
(±)
NS (ω)

(10)

and anomalous dimensions HNS,

HNS = (1/2)
[
ω −

√
ω2 −B(ω)

]
(11)

where
B(ω) = (4πCF (1 + ω/2)A(ω) + D(ω))/(2π2) . (12)

D(ω) and A(ω) in Eq. (12) are expressed in terms of ρ = ln(1/x), η = ln(µ2/Λ2
QCD),

b = (33− 2nf )/12π and the color factors CF = 4/3, N = 3:

D(ω) =
2CF

b2N

∫ ∞

0

dρe−ωρ ln
(ρ + η

η

)[ ρ + η

(ρ + η)2 + π2
∓ 1

η

]
, (13)

A(ω) =
1

b

[ η

η2 + π2
−

∫ ∞

0

dρe−ωρ

(ρ + η)2 + π2

]
. (14)

HS and CNS account for DL and SL contributions to all orders in αs. Eqs. (14) and (13)
depend on the IR cut-off µ through variable η. It is shown in Refs. [4,5] that there exists
an Optimal scale for fixing µ: µ ≈ 1 Gev for gNS

1 and µ ≈ 5 GeV for gs
1. The arguments

in favor of existence of the Optimal scale were given in Ref. [8]. Eq. (9) predicts that g1

exhibits the power behavior in x and Q2 when x → 0:

gNS
1 ∼ (

Q2/x2
)∆NS/2

, gS
1 ∼

(
Q2/x2

)∆S/2
(15)

where the non-singlet and singlet intercepts are ∆NS = 0.42, ∆S = 0.86 respectively.
However the asymptotic expressions (15) should be used with great care: According to
Ref. [3], Eq. (15) should not be used at x ≥ 10−6. So, Eq. (9) should be used instead of
Eq. (15) at available small x. Expressions accounting the total resummation of LL for
the singlet g1 in the region B were obtained in Ref. [5]. They are more complicated than
Eq. (9) because involve two coefficient functions and four anomalous dimensions.

3 Unified description of Regions A and B

As was suggested in Ref. [3], the natural way to describe g1 in the Regions A and B is
to combine the small-x results with the DGLAP expressions for the coefficient functions
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and anomalous dimensions of g1. In particular, gNS
1 is again given by Eq. (9), however

with the new coefficient function C̃NS and new anomalous dimension H̃NS:

C̃NS = CNS + CDGLAP
NS −∆CNS (16)

H̃NS = HNS + γDGLAP
NS −∆HNS

where CNS and HNS are defined in Eqs. (10,11), CDGLAP
NS and γDGLAP

NS are the DGLAP
non-singlet coefficient function and anomalous dimension. The terms ∆CNS, ∆HNS

should be introduced to avoid the double counting. In the case when the DGLAP expres-
sions are used in CDGLAP

NS and γDGLAP
NS with the LO accuracy,

∆CNS = 1, ∆HNS =
A(ω)

2π

[ 1

ω
+

1

2

]
(17)

They are the first terms of expansions of Eqs. (10,11) in the series in A(ω). In order to
account for the NLO terms for CDGLAP

NS and γDGLAP
NS , the next terms of the expansions

should be included into ∆CNS and ∆HNS. When Eq. (16) is substituted into Eq. (9), we
arrive at the description of gNS

1 covering both Regions A and B. Obviously, the main

contribution to C̃NS, H̃NS at Region A comes from their DGLAP components. On the
contrary, the total resumation terms dominate at x ¿ 1. When Eq. (16) is used, the
initial parton densities should not include singular factors.

4 Description of g1 in the Regions B and C

Region C is defined in Eq. (3). It involves small Q2, so there are no large contributions
lnk(Q2/µ2) in this region. In other words, the DGLAP ordering of Eq. (6) does not make
sense in the region C , which makes impossible exploiting DGLAP here. In contrast,
Eq. (6) is not sensitive to the value of Q2 and therefore the total resummation of LL does
make sense in the region C. In Ref. [7] we suggested that the shift

Q2 → Q2 + µ2 (18)

would allow for extrapolating our previous results (obtained in Refs. [4, 5] for g1 in the
region B) into the region C. Then in Ref. [8] we proved this suggestion. Therefore,
applying Eq. (18) to gNS

1 leads to the following expression for gNS
1 valid in the regions B

and C:

gNS
1 (x+z,Q2) = (e2

q/2)

∫ ı∞

−ı∞

dω

2πı

( 1

x + z

)ω

CNS(ω)δq(ω) exp
(
HNS(ω) ln

(
(Q2 +µ2)/µ2

))
,

(19)
where z = µ2/2pq. Obviously, Eq. (19) reproduces Eq. (9) in the region B. Expression
for gS

1 looks similarly but more complicated, see Refs. [7, 8] for detail. Let us notice that
the idea of considering DIS in the small-Q2 region through the shift Eq. (18) is not new.
It was introduced by Nachtmann in Ref. [10] and used after that by many authors (see
e.g. [11]), being based on different phenomenological considerations. On the contrary, our
approach is based on the analysis of the Feynman graphs contributing to g1. We also
suggest that the following values for µ should be used: for the non-singlet component of
g1 µ = 1 GeV and µ = 5.5 GeV for the singlet g1.
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5 Generalization to the Region D

The generalization of the results of Sect. IV to the Region D can easily be done with
replacements

CNS → C̃NS, HNS → H̃NS (20)

in Eq. (19), with C̃NS, H̃NS defined in Eq. (16). So, we arrive at the final result: the
expression for g1 which can be used in the Regions A,B,C,D universally is

gNS
1 (x + z,Q2) = (e2

q/2)

∫ ı∞

−ı∞

dω

2πı

( 1

x + z

)ω

C̃NS(ω)δq(ω) exp
(
H̃NS(ω) ln

(
(Q2 + µ2)/µ2

))
.

(21)
We remind that the expressions for the initial parton densities in Eq. (21) should not con-
tain singular terms because the total resummation of leading logarithms of x is explicitly
included into C̃NS and H̃NS.

6 Prediction for the COMPASS experiments

The COMPASS collaboration now measures the singlet gS
1 at x ∼ 10−3 and Q2 ≤ 3 GeV2,

i.e. in the kinematic region beyond the reach of DGLAP. However, our formulae for gNS
1

and gS
1 obtained in Refs. [7, 8] cover this region. Although expressions for singlet and

non-singlet g1 are different, with formulae for the singlet being much more complicated,
we can explain the essence of our approach, using Eq. (19) as an illustration. According
to results of [5], µ ≈ 5 GeV for gS

1 , so in the COMPASS experiment Q2 ¿ µ2. It means,
lnk(Q2 +µ2) can be expanded into series in Q2/µ2, with the first term independent of Q2:

gS
1 (x + z, Q2, µ2) = gS

1 (z, µ2) +
∑

k=1

(Q2/µ2)kEk(z) (22)

where Ek(z) account for the total resummation of LL of z and

gS
1 (z, µ2) = (< e2

q/2 >)

∫ ı∞

−ı∞

dω

2πı

(
1/z

)ω[
Cq

S(ω)δq(ω) + Cg
S(ω)δg(ω)

]
, (23)

so that δq(ω) and δg(ω) are the initial quark and gluon densities respectively and Cq,g
S

are the singlet coefficient functions. Explicit expressions for Cq,g
S are given in Refs. [5, 7].

Therefore, we can makes the following predictions easy to be checked by COMPASS:

6.1 Prediction 1

In the whole COMPASS range 0 ≤ Q2 ≤ 3 GeV2, the singlet g1 does not depend on x
regardless of the value of x.

6.2 Prediction 2

Instead of studying experimental the x-dependence of gS
1 , it would be much more inter-

esting to investigate its dependence on 2pq because it makes possible to estimate the ratio
δg/δq (see Ref. [7] for detail).
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7 Remark on the higher twists contributions

In the region B one can expand terms ∼ (Q2 + µ2)k in Eq. (19) into series in (µ2/Q2)n

and represent gNS
1 (x + z, Q2, µ2) as follows:

gNS
1 (x + z, Q2, µ2) = gNS

1 (x,Q2/µ2) +
∑

k=1

(µ2/Q2)kTk (24)

where gNS
1 (x,Q2/µ2) is given by Eq. (9); for explicit expressions for the factors Tk see

Ref. [8]. The power terms in the rhs of Eq. (24) look like the power ∼ 1/(Q2)k -corrections
and therefore the lhs of Eq. (24) can be interpreted as the total resummation of such
corrections. These corrections are of the perturbative origin and have nothing in common
with higher twists contributions (≡ HTW ). The latter appear in the conventional analysis
of experimental date on the Polarized DIS as a discrepancy between the data and the
theoretical predictions, with gNS

1 (x,Q2/µ2) being given by the Standard Approach:

gNS exp
1 = gNSSA

1 + HTW . (25)

Confronting Eq. (25) to Eq. (24) leads to an obvious conclusion: In order estimate genuine
higher twists contributions to gNS

1 , one should account, in the first place, for the perturba-
tive power corrections predicted by Eq. (24); otherwise the estimates cannot be reliable.
It is worth mentioning that we can easily explain the empirical observation made in the
conventional analysis of experimental data: The power corrections exist for Q2 > 1 GeV2

and disappear when Q2 → 1 GeV2. Indeed, in Eq. (24) µ = 1 GeV , so the expansion in
the rhs of Eq. (24) make sense for Q2 > 1 GeV2 only; at smaller Q2 it should be replaced
by the expansion of Eq. (19) in (Q2/µ2)n.

8 Conclusion

The extrapolation of DGLAP from the standard Region A to the small-x Region B in-
volves necessarily the singular fits for the initial parton densities without any theoretical
basis. On the contrary, the resummation of the leading logarithms of x is the straight-
forward and most natural way to describe g1 at small x. Combining this resummation
with the DGLAP results leads to the expressions for g1 which can be used at large Q2

and arbitrary x (Regions A and B), leaving the initial parton densities non-singular.
Then, incorporating the shift of Eq. (18) into these expressions allows us to describe g1

in the small-Q2 regions (Regions C and D) and to write down Eq. (21) describing g1 at
the Regions A,B,C,D. We have used it for studying the g1 singlet at small Q2 which
is presently investigated by the COMPASS collaboration. It turned out that g1 in the
COMPASS kinematic region depends on z = µ2/2pq only and practically does not depend
on x, even at x ¿ 1. Numerical calculations show that the sign of g1 is positive at z close
to 1 and can remain positive or become negative at smaller z, depending on the ratio be-
tween δg and δq. To conclude, let us notice that extrapolating DGLAP into the small-x
region, although it could provide a satisfactory agreement with experimental data, leads
to various wrong statements, or misconceptions. We enlisted the most of them in Ref. [9].
Below we mention one important wrong statements not included in Ref. [9]:

Misconception: The impact of the resummation of leading logarithms of x on the
small-x behavior of g1 is small.
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This statement appears when the resummation is combined with the DGLAP expres-
sions, similarly to Eq. (16), and at the same time the fits for the initial parton densities
contain singular factors like the one in Eq. (5). Such a procedure is inconsistent and
means actually a double counting of the logarithmic contributions: the first implicitly,
through the fits, and the second in explicit way. It also affects the small-x asymptotics of
g1, leading to the incorrect values of the intercepts of g1 (see Ref. [3] for more detail).
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Discussion

Com. (D.Sivers, Portland Phys. Inst.) The idea of the talk is to complement DGLAP
with total resummation of ln(1/x), which is a natural way.

Com. (O.Teryaev, JINR, Dubna) This approach corresponds to another definitions
of non-perturbative inputs with singular terms in x subtracted. The whole procedure
of factorization should be therefore re-analyzed in order to describe other processes, like
hadron-hadron collisions at RHIC
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Q. (J.Nassalski, SINS, Warsaw) You said you can use ”simplified” initial quark dis-
tributions. But their shape is known from experiments and it is not very simple.

A. The conventional shape of ∆q is determined from experiment with using DGLAP.
DGLAP lacks the total resummation of logs of x, so they mimic it by introducing singular
factors x−a in the fits. When the resummation is account for, these factors can be dropped.
It simplifies the fits.

Q. (H.Santos, LIFEP, Lisboa) Standard QCD fits to g1 using DGLAP equations find
2 solutions for ∆G - one ∆G positive and the other ∆G negative. Do you think that your
approach could constrain the estimates of ∆G, namely the sign, and give more reliable
results on ∆Σ?

A. Yes, I think so.
Q. (A.Sidorov, JINR, Dubna) What are the arguments of the g1 structure function in

the l.h.s. of the formula.
A. Generally speaking g1 depends on 3 arguments.
Q. (A.Sidorov, JINR, Dubna) What about x, is it shifted or not?
A. Yes, it is shifted.
Q. (A.Sidorov, JINR, Dubna) So, you shift the argument x with a small value z =

µ2/2pq << x = Q2/2pq (which means µ2 << Q2) and make an expansion of g1[x(1 +
µ2/Q2)] around x. You immediately get (1/Q2)n terms on the r.h.s. of the equation, which
provides a connection between g1(x+ z,Q2) and g1(x,Q2). However, these Q2 terms have
nothing to do with the dynamical (1/Q2)n corrections to g1(x,Q2) coming from QCD,
which are corrections to g1(x,Q2)LT at the SAME x.
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Abstract

The results following from new integral finite energy sum rules (FESR) for the
nucleon and lightest nuclei total photoabsorption cross sections are presented. The
correlation between of the difference of the proton and neutron j = 0 fixed-pole
residues in the real part of respective Compton scattering amplitudes and multi-
pion photoproduction on nucleons is discussed. The integral sum rules for the total
photoabsorption on the helium-4 and deuteron serve as the measure of the nuclear
medium influence on the mean value of the scalar pion densities in respective nuclei.

1. The known specific feature of the Compton scattering amplitude, alien to pure
hadronic amplitudes, is the admission in its analytic structure of the fixed poles in the
complex angular momentum plane. The positive evidence for the presence of the j = 0-
fixed pole in proton Compton scattering amplitude was given by Damashek and Gilman
(DG) [1] via the noticing the energy independent contribution of the value Cp ' 3 µb·GeV
in the real part of the high energy forward γp-scattering amplitude Ref1(ν), ν being
the photon energy, calculated through the evaluation of the once-subtracted dispersion
relation for spin-independent γp-scattering amplitude

f(ν, θ = 0o) = f1(ν) + ıσ · [ε∗
2 × ε1]f2(ν) .

The experimental confirmation of the DG-evaluation at ν = 2.2 GeV was done via an
ingenious measuring of the interference between the pure real Bethe-Geitler amplitude
and weakly-virtual ”Compton” amplitude of the electron -positron pair production in the
γp-collision [2]. As is now known, the total photoabsorption cross-section σγN

tot (ν) is rising
with energy contrary to assumption σtot(∞) = const adopted by DG. For our further
purposes, we consider the dispersion sum rule for the difference fpn = fγp

1 (ν)− fγn
1 (ν) of

scattering amplitudes on the proton and neutron, where the difference of the corresponding
cross sections is, presumably, free of infinitely-rising ”soft-Pomeron” contributions and
dominated, in the moderately-high energy photons, by t-channel exchange of the isovector
a2-Regge trajectory.

The standard FESR techniques enable us to confine ourselves with amplitudes in the
finite region of the complex energy plane

f(ν) =
1

2πı

∮
dz

f(z)

z − ν
(26)

where f(ν) is the spin-averaged, forward Compton scattering amplitude and the integra-
tion contour along the real axis and the large circle in the complex energy-plane.
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Assumed parameterization of fpn(ν) looks as follows [3]:

Imfp(ν)− Imfn(ν) = (ν/4π)(σtot
p − σtot

n ) = ba2ν
1/2, (27)

Re(fp(ν)− fn(ν)) = (1/4π)ba2(−ν1/2) + Cp − Cn, (28)

where σtot
p (ν)− σtot

n (ν) = 24.6/ν1/2; Cp = −3.0µb ·GeV ; Cn-is a free parameter.
The energy interval considered: νmin = νthr(π) νmax = 1.64 GeV , corresponding to
s(γN) ' 2 GeV 2 The meson photoproduction cross-sections on the neutron are largely
unknown and should be extracted e.g. from the deuteron data. Of all possible photo-
meson reactions, the best known is the single pion photoproduction. Therefore we treat
the neutron cross-sections entering our sum rules as follows. The σtot

γn(ν) is split into two
parts: σtot

γn = σ(γn → πN) + σ(γn → 2πN + . . . )
The single pion production cross-section is taken according to theoretical calculation with
fairly good multipole amplitudes of the MAID Collaboration [4].

The detailed experimental study of the meson photoproduction on the deuteron target
is planned at the MAMI electron accelerator (Mainz, Germany) up to photon energies
∼ 1.5 GeV . So, anticipating the appearance of the γn-data, needed for the checking of
FESR sum rule for the difference of the γp- and γn- Compton amplitudes and extracting
the value Cp−Cn required further for definition of the nuclear sum rules, we present first
the dependence of the experimentally measurable ratios Rtot

n/p(R
non−res
n/p ), defined as:

Rtot
n/p(R

non−res
n/p ) =

σtot
0 (γn → 2π + X)

σtot
0 (γp → 2π + X)

(
σnon−res

0 (γn → 2π + X)

σnon−res
0 (γp → 2π + X)

)

as the function of several plausible values of Cn, taking Cp = −3.0 µbGeV for granted.
The results are presented in Table.

Table

Cp Cn Rtot
n/p Rnon−res

n/p

0 0 .95 .98
-3 -2 .72 .62
-3 0 .60 .39

For illustrative reasons, we indicate the results of the modelling the neutron-to-proton
ratios as following from the ratios of the electric dipole moment fluctuation in the lowest
hadronic Fock-components of the nucleon with at least one charged pion: N ↔ π+N, 2π+
N, π + ∆(1231).

〈D2(n ↔ nπ+π−)〉
〈D2(p ↔ pπ+π−)〉 ' runcorr

runcorr ' (1 + 4ε)〈r2
π+π−〉

(1 + 2ε)〈r2
π+π−〉+ 2ε〈(rπ+π− · rpπ−)〉 ≥ 1.

rcorr ' 〈D2(n ↔ π∆)〉
〈D2(p ↔ π∆)〉 ' .66 (.41)
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The first value in rcorr refers to the sum over all possible charge ππ-states produced in
the final decay stage π∆ → ππN , while the second ratio corresponds to the selection
of the π+π− final states. The numerical relevance of rcorr to the last two rows in the
Table testifies on the crucial importance of the correlation of the valence and nonvalence
partonic composites of the nucleon in producing of the ultimate characteristics of the
Compton scattering amplitude.

2. We turn now to a certain modification of the Gell-Mann, Goldberger and Thirring
(GGT) sum rule for total photonuclear cross sections [5]. Our choice of the ”supercon-
vergent” combination of Compton amplitudes fγA(p,n) is different from GGT.It includes
amplitudes of two nuclei with A1 = Z1 + N1, A2 = Z2 + N2:

1

A1

fA1 −
1

A2

fA2 =
Z1N2 −N1Z2

A1A2

(fp − fn)

where each amplitude in the above relation will be presented in the form of the FESR
with the finite large circle radius R = νmax with νmax chosen to be about the beginning
of the Regge-model relevance for representing the non-diffraction contributions to total
photoabsorption cross sections on nucleons and nuclei.

For arbitrary A1 = Z1 + N1 and A2 = Z2 + N2 our general sum rule reads

2π2[
fA1(ν = 0) + Sπ(A1)

A1

− fA2(ν = 0) + Sπ(A2)

A2

+

+
Z1N2 − Z2N1

A1A2

· (2ba2ν
1/2
max

2π2
− Cp + Cn)] =

σνmax
0 (γA1)

A1

− σνmax
0 (γA2)

A2

(29)

where fAi
(ν = 0) ' −(αZ2

i )/(Aimn) is the Thompson zero-energy amplitude,

Sπ(Ai) ' α

3

∫
d3x〈Ai|φ(x)φ(x)|Ai〉 (30)

and the energy integration in all integrals σνmax
0 over cross-sections extends from the pho-

todisintegration threshold to the upper bound νmax. It is principal point that in the
photonuclear case there appears a new ingredient Sπ(Ai) including nonadditive contribu-
tions depending on atomic numbers. Formally, the terms proportional to scalar product
of the pionic fields result naturally from the reduction formulas containing the equal-
time commutators of the spatial- and time-components of the electromagnetic current
operator [6–10]. Assuming the explicit presence of the pionic degrees of freedom in the
effective lagrangian governing both the single-nucleon and multinucleon dynamics in the
resonance region ν ≤ νmax, we obtain in particular additional constant terms entering the
parameterization of the amplitude on the large circle in the complex energy plane and
propagating into explicit expressions of our new sum rules.

The important particular case we shall concentrate thereupon for numerical estimates
is the case of nuclei with equal number of protons and neutrons, specifically, the deuteron
and He-4. Due to absence of helium-data at high energies we have to confine ourselves
with the integration of all the experimentally known cross-sections over the intervals with
ν ≤ .8 GeV [11, 12]. Thus we obtain

1

4
Sπ(4He2)− 1

2
Sπ(d) ' (180− 172 = 8) µb ·GeV, (31)
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where the contributions of Thompson amplitudes are largely compensited in (31) and
we left only with the difference of integrals over respective cross-sections. The physical
significance of the derived sum rules lies in that they present relation of the explicitly
relativistic, field-theoretic nuclear matrix elements in terms of experimentally measurable
quantities and therefore they may have bearing on the checks of presently developing
approaches of chiral Effective Field Theory (EFT) in the few-nucleon sector ( see, e.g., [13]
and references therein).

The author is grateful to Dr. S.S. Kamalov for providing some additional MAID data and
helpful discussions.
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POLARIZATION AT PHOTON COLLIDERS.
EXAMPLE: CHARGE ASYMMETRY IN γγ → µ+µ− + ν’s
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Abstract

Photon collider (PLC) will be necessary option in the future International Linear
Collider. We describe main features of PLC underlying high degree of polarization
of photon beams there. As an example we compare the momentum distributions
of positively and negatively charged leptons (`± = µ±, e±) in the reactions of type
γγ → `+`− + Nν, at

√
s > 200 GeV with polarized photons. These distribution

demonstrates a considerable charge asymmetry.

Photon collider (PLC) will be necessary option of future Linear Collider (e.g.
ILC) based on the laser photon backscattering on accelerated electrons of e-beam [1, 2].

0

.

electron
bunch

C (e). γe

α

laser

IP

b

γ(e)

Figure 1: Photon beam production for PLC

Focused laser beam meet electron beam
of ILC at collision point C, obtained
in the Compton effect photons move
in the direction of parental electrons
and collide with similar photon beam
(γγ collision) or with electron beam
(eγ collisions) in the interaction point IP
(Fig. 1). At the reasonable energy of
laser flash in few Jouls almost each elec-
tron transfer its energy to the photon so that the luminosity will be close to that of
parental e+e− ILC.
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Figure 2: Photon energy spectrum (left) and polarization (right), y = Eγ/E0

In the description of this conversion process important parameter is x = 4Eω0

m2
e

, where

E0 is electron beam energy and ω ≈ 1 eV is laser photon energy. For E0 = 250 GeV we
have x ≈ 5 (higher values are forbidden since photons can disappear in the collisions with
laser photons from the tail of flash with production of e+e− pair). Maximal photon energy
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is Eγmax = x
x + 1E, and photon spectrum is concentrated near upper bound, at the left

plot of Fig. 2 this spectrum from one eγ collision is shown at different helicities of parental
beams). In the high energy part of spectrum photon polarization reproduces that of laser
flight (the circular polarization is preferable). With decreasing of photon energy mean
photon polarization decreases depending on initial electron polarization, being very high
for high energy part of spectrum (Fig. 2, right plot). Therefore PLC will be collider for
γγ and eγ collisions of high energy with high luminosity and with high and easily variable
polarization of high energy photons.
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Figure 3: Model ”realistic” photon
beam spectrum for PLC

Due to the finite distance b between conversion
point (C) and interaction point (IP) and also due to
rescatterings of laser photons on electrons after first
collision with laser photon, photon spectra even non-
factorizable. Fortunately in the high energy part of
spectra (Eγ > Emax

γ /
√

2) these spectra are factoriz-
able with high precision and these photons have high
degree of polarization. The form of effective spectra
in this region is described with high accuracy with the
aid of one additional parameter ρ ∝ meb/E0 only in-
dependent on details of organization of experimental
set up [3]. The luminosity of Photon Collider is normalized for this very region only.

As for low energetic tail of effective photon spectrum it depends strongly on details
of experimental set-up which will vary in the process of construction of ILC. Moreover in
this part photon spectra in fact non-factotrizable in luminosity spectra.

So, in our simulations for the high energy part of the spectrum Eγ > Emax
γ /

√
2 we

used the approximation from [3] with ρ = 1 and x = 4.8 with polarization for ideal
Compton effect [1]. To imitate low energy part of spectrum we used spectra from [1] for
the case when b = 0 and consider these photons to be unpolarized (Fig. 3).

• The Photon colliders allow to study well known processes in hadron physics and
QCD at much higher energies and precision than now with polarization dependence which
is unattainable now. That are diffractive processes like γγ → ρρ, ρω, etc. at high enough
transfers, polarized structure functions (at eγ collisions), etc. (see preliminary list in [2]).

Besides, these colliders provide very effective field for the study of new effects of both
SM and New Physics. In particularly, it is naturally to expect that the charge asymmetry
of leptons, produced in the collision of neutral but highly polarized colliding particles
γγ → `+`− + neutrals (where ` = µ, e), can be a good tool for the discovery of New
Physics effects [5].

• As an example below we study most important background process of the men-
tioned type – the SM process, in which neutrals are ν’s and main mechanism is given by
γγ → W+W− process with subsequent lepton decay of W [4], [6]. The latter process (+
other SM processes) will ensure very high event rate at the anticipated luminosity of ILC.
The charge asymmetry here appears due to transformation of initial photon helicity into
distribution of final leptons via P-violating but CP-preserving leptonic decay of W .

We present most of results, applying cuts on the muons scattering angles given by
π − θ0 > θ > θ0, with θ0 = 10 mrad, and a cut on muons transverse momentum pc

⊥ > 10
GeV, both on each muon or W and on the couple of muons. These simultaneous cuts
reduce many backgrounds. We expect that the New Physics effects will be more important
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at high p⊥. How discussed SM charge asymmetry depend on cut value pc
⊥?

Our numerical results have been obtained with the CompHEP/CalcHEP packages [7],
[8] in a version which allows one to take into account the circular polarization of the initial
photons and choose different random seed numbers for Monte Carlo (MC) [8].

γγ → µ+µ−νν̄, monochromatic photons.
Figure 4 presents the distributions of muons in the p‖, p⊥ plane, ∂2σ/(∂p‖∂p⊥) at

different photon polarizations for monochromatic beams for the process γγ → µ+µ−νν̄.
These figures show explicitly strong

difference in the distributions of negative
and positive muons as well as strong depen-
dence of distributions on photon polariza-
tions. Therefore, the charge asymmetry in
the process is a strong effect.

To obtain more definite quantitative de-
scription, we consider normalized mean val-
ues of longitudinal p∓‖ and transverse p∓⊥ mo-

menta of µ− or µ+, in the forward hemisphere
(p‖ > 0, subscript +), and take their relative
difference as a measure of the longitudinal
∆L and transverse ∆T charge asymmetry:

P±
L,T+ =

∫
p±‖,⊥dσ

Emax
γ

∫
dσ

, ∆L,T =
P−

L,T+ − P+
L,T+

P−
L,T+ + P+

L,T+
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Figure 4. Muon distribution in γ−γ− →
Wµ+ν ′s (upper plots) and γ+γ− → Wµ+
ν ′s (lower plots), left – µ−, right – µ+

MC calculations simulate experiment and have statistical uncertainty similar to that in
the future experiment. We find it useful
to obtain statistical uncertainties δL,T of the
considered integral characteristics at given
expected number of events (about 106) by re-
peating our calculation 5 times with different
seed number inputs for MC (with CalcHEP
[8]). Also we consider as an independent set
of observations data obtained by simultane-
ous change λ1, λ2 → −λ1, −λ2, µ− ↔ µ+

(this change should not change distributions
due to CP conservation in SM).

Table I presents obtained average mo-
menta for the positive and negative muons
and corresponding asymmetry quantities to-
gether with their statistical uncertainties (in
percents).

γλ1γλ2 N
P−

N

δP−
N

P+
N

δP+
N

∆N

δ∆N

γ−γ−
L

T

0.606
0.29%
0.333
0.61%

0.201
0.55%
0.159
0.28%

0.501
0.57%
0.335
0.44%

γ+γ−
L

T

0.223
0.74%
0.164
0.08%

0.609
0.19%
0.262
0.31%

-0.463
0.47%
-0.231
2.76%

Table I. Charge asymmetry quantities
and statistical uncertainties for γλ1γλ2 →
Wµν process, N=T or L.

Cascade process contribution. The final state µµ (W + µ + missing p⊥)
mainly arises through the processγγ → µ+µ−νµν̄µ (γγ → Wµν). In addition, cascade
processes such as γγ → τ+µ−ντ ν̄µ (γγ → Wτν), τ → µνµντ , contribute at the level
37% (17%) relative to the leading contribution. The straightforward calculation of such
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processes is out of potential of known packages. The good way give here double-resonant
(DRD) approximation, in which one consider only diagrams γγ → W+W− (DRD dia-
grams) with subsequent decay of W to leptons. Direct calculation shows these DRD-
diagrams are responsible for about 98% of the total γγ → Wµν cross-section. The same
is valid for the momentum distributions. The detail study shows that the inaccuracy
implemented by the using of DRD approximation for cascade process contribution into
the total result is within statistical uncertainty of future experiments [6].

In the framework of DRD approximation, the polarization of τ in the rest frame of
W is collinear with the known momentum of corresponding neutrino, and the momen-
tum distribution of muons from the decay of τ in this system is calculated easily. The
distribution of final muons in our process is given by the convolution of the mentioned
accurate distribution of µ in τ decay with the CompHEP-generated distribution. Simple
analysis shows that the cascade processes change the asymmetry only weakly, and their
contribution to the asymmetry reduces even more with the growth of applied cuts.

Effect of photon non-monochromaticity. At the Photon Collider pho-
tons will be non-monochromatic with spectra like those shown in Fig. 3.
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Figure 5. The distributions of muons calcu-
lated with ”realistic” spectra distribution. Up-
per plots - γ−γ−. Lower plots – γ+γ−. Left –
µ−,right – µ+

The distributions of muons with this
non-monochromaticity are presented on
Figure 5. These distributions resemble
the distributions presented on Figure 4.
with additional wide peak at low ener-
gies.

Table II shows the corresponding
asymmetry quantities. These values
are slightly smaller in comparison to
monochromatic case. But they are:

γλ1γλ2 N P−
N P+

N ∆N

γ−γ− L 0.365 0.157 0.398

T 0.284 0.179 0.228
γ+γ− L 0.174 0.338 -0.321

T 0.200 0.236 -0.082

Table II. Charge asymmetry quantities
for ”realistic” photon spectra.

Dependence on pc
⊥µ cut. New Physics effects are expected to be switched

on at the relatively large transverse momenta. That is why we study the dependence of
observed effects on the cut value pc

⊥µ.

Figs. 6 and 7 show the pc
⊥µ dependence of the asymmetry quantity ∆L and the cross

section of the main γγ → W+µ−ν̄ process for various initial photon polarizations. One
can see that the asymmetry remains large even with large cuts, while the cross section
quickly reduces.

Conclusions:

• The asymmetry effect is huge and easily observable.
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Figure 6. The pc
⊥µ dependence of asymmetry.
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Figure 7. The smoothed γγ → W+µ−ν̄ cross
section dependence on pc

⊥µ .

• Cascade process weakly affect the asymmetry.
• Introduced quantities (especially ∆L) large even with large pc

⊥µ cuts (but the number
of events reduces strong at large pc

⊥µ).
• Taking into account same effects for e+ e−, e+ µ−, µ+ e− enhance statistics. This will
enhance the value of the cross section for γγ → `+`−νν̄ from 1.2 to 4.8 pb and for
γγ → W+`−ν̄, etc. to 30 pb.
• The statistical uncertainty of future experiments can be estimated from below as that of
Monte Carlo simulation with anticipated number of events. Taking this uncertainty into
account allows to develop useful approximations at the calculation of some contributions.
Besides, one can see that the statistical uncertainty is at the level of radiative corrections,
so our tree-level approximation is sufficient
• Non-monochromaticity of photon spectra decreases the considered asymmetries but re-
tain them large enough.
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Discussion

Q. (X.Artru, IPN, Lion) 1) Is it interesting linearly polarized photons? 2) What region
of x is interesting?
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A. Linearly polarized photons can be obtained as well. However in this case photon
spectra are not so sharp. The degree of linear polarization is lower than that circular. It
can be improved at lower x. If we use 70% linear + 70% circular polarization we will have
sharp enough spectrum with good linear and circular polarization. Directions of these
polarization can be changed independently and easily.

Q. (S.Belostotsky, PNPI, St.Petersburg) In what new physics can be used this charge
asymmetry?

A. 1) In the study of SUSY processes like γγ → ũũ → µ+χµ−χ (χ = LSP ). That are
our nearest plans.
2) For the study anomalous interaction of W with γ generally not, except of P -violating
terms in this interaction.
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Abstract

An analysis of light vector meson photoproduction at small Bjorken x ≤ 0.2 is
done on the basis of the generalized parton distributions (GPDs). Our results on
the cross section and spin density matrix elements (SDME) are in good agreement
with experiments.

This report is devoted to the study of the vector meson leptoproduction at Bjorken x ≤
0.2 based on our results [1–3]. At large photon virtualities the amplitude for longitudinally
polarized virtual photons and vector meson (LL amplitude) factorizes [4] into a hard meson
photoproduction off partons and GPDs. Unfortunately, in the collinear approximation
the LL cross section exceeds the data by an order of magnitude [5]. Moreover, in this
approximation the amplitude for transversally polarized photons (TT amplitude) exhibits
infrared singularities [6], which signals the factorization breakdown.

In this report, we discuss the spin effects in the vector meson leptoproduction. Our
calculations [2, 3] are based on the modified perturbative approach (MPA) [7] which in-
cludes the quark transverse degrees of freedom accompanied by Sudakov suppressions.
The contribution from the end-point region to the LL amplitude is suppressed in our
model and the cross section is close to the experiment. The TT amplitudes can be calcu-
lated in the model because the transverse quark momentum regularizes the singularities.
Within the MPA we calculate the cross sections and the spin observables in the energy
range 5GeV < W < 90GeV. Our results on the cross section and SDME are in good
agreement with experiments [8, 9, 4, 15].

The model is based on the handbag approach where the γ∗p → V p amplitude factorizes
into hard partonic subprocess and GPDs. In the region of small x ≤ 0.01 gluons give the
dominant contribution [1]. At larger x ∼ 0.2, in addition to the gluon GPD the inclusion
of quark contribution is important [2, 3]. For small t the amplitude of the vector meson
production off the proton with positive helicity reads as a convolution of the partonic
subprocess HV and GPDs H i (H̃ i)

MV
µ′+,µ+ =

e

2
CV

∑

λ

∫
dxHV i

µ′λ,µλH
i(x, ξ, t), (1)

where i denotes the gluon and quark contribution, µ (µ′) is the helicity of the photon
(meson), x is the momentum fraction of the parton with helicity λ, and the skewness ξ
is related to Bjorken-x by ξ ' x/2. The flavor factors are Cρ = 1/

√
2 and Cφ = −1/3.

In the analysis of the cross section at small x the main contribution is determined by the
unpolarized GPDs H i.
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The k- dependent wave function [12] that contains the leading and higher twist terms
describing the longitudinally and transversally polarized vector meson is used to calculate
the partonic subprocess H in (1); H is estimated within the MPA [7] where we keep the k2

⊥
terms in the denominators of the amplitudes and in the numerator of the TT amplitude.
The gluonic corrections are treated in the form of the Sudakov factors which additionally
suppress the end-point integration regions.

The GPDs are modeled using the double distribution

Hi(x, ξ, t) =

∫ 1

−1

dβ

∫ 1−|β|

−1+|β|
dαδ(β + ξ α− x) fi(β, α, t). (2)

Here the double distribution function fi(β, α, t) is connected with the corresponding par-
ton distributions (PDFs) which are taken from the CTEQ6M results [14]. The simple
Regge ansatz is used to consider t dependencies of PDFs. For details see [2, 3].
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Figure 1: Left: The cross sections of φ production at W = 75GeV with error band from
CTEQ6 PDFs uncertainties. Data are from H1 [8] -solid symbols and ZEUS [9] -open symbols.

Dashed line- LO result. Right: The cross sections of ρ production via W at different Q2.

The cross section for the γ∗p → φp production integrated over t is shown in Fig.1 (full
line). Good agreement with DESY experiments [8, 9] is observed. The shared bands in
the figures reflect uncertainties of our results caused by the errors in the CTEQ6 PDFs.
The leading twist results are also presented in Fig. 1. The k2

⊥/Q2 corrections in the hard
amplitude decrease the cross section by a factor of about 10 at Q2 ∼ 3GeV2.

Our results reproduce well the energy dependence of the ρ cross section [9] as shown
in Fig.1. The cross section at HERA energies is dominated by the gluon and sea quark
contributions.

The model describes properly spin effects determined by the TT transition amplitude.
Our results for the ratio of the longitudinal and transverse cross sections and SDME in
the energy range 5GeV < W < 75GeV can be found in [3]. In Fig.2, we present the
SDME on the ρ production at W = 5, 10, 75GeV. At HERMES energy W = 5GeV the
valence quark contribution to the amplitudes is essential. At COMPASS W = 10GeV
quark effects are not so large and they are negligible at HERA W = 75GeV. This is
the main reason of the energy dependencies of SDME shown in Fig.2. A similar energy
dependence is observed experimentally.
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Figure 2: The Q2 dependence of SDME on the ρ production and W = 75(10, 5)GeV-
solid(dash-dotted, dashed) line. Preliminary data are taken from HERMES [4] (solid circles)

and COMPASS [15] (diamonds).
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Figure 3: The ALL asymmetry for the ρ

production at W = 5 GeV (dashed line) and
W = 10 GeV (dashed-dotted line).

The ALL asymmetry for a longitudinally
polarized beam and target is sensitive to the
polarized GPD. The leading term in ALL

asymmetry integrated over the azimuthal an-
gle is determined through the interference be-
tween the H and H̃ distributions. In Fig. 3,
we show our results for the ρ production at
W = 5GeV and W = 10GeV. At HERMES
energies the valence quark contribution gen-
erates large asymmetry of the order of 0.1
which is compatible with the experimental
results [4]. At COMPASS [15], the valence
quark contribution is small and asymmetry
close to zero is predicted. Note that we ob-
serve an essential cancellation of the gluon and sea quark contributions. This leads to
small ALL asymmetry for the φ production.

In summary: Light vector meson electroproduction at small x was analyzed here
within the GPD approach. The partonic subprocesses have been calculated using the MPA
with the wave function dependent on the transverse quark momentum. The higher order
k2
⊥/Q2 corrections which are considered in the propagators of the partonic subprocess

decrease the cross section by a factor of about 10 at Q2 ∼ 3GeV2. The same higher order
effects in the denominators of the hard subprocess regularize the singularities in the TT
amplitude. This gives a possibility to calculate the TT amplitude and study spin effects
in the vector meson production in our model.

In our previous calculations [1] we analysed the low x ≤ 0.01 region where the gluon
contribution has a predominant role. In this report, we extend our analysis to x ∼ 0.2
[2, 3]. In the moderate x region we consider gluon, sea and valence quark GPDs. The
GPDs are modeled via double distribution based on the CTEQ6M distributions. In the
model we find a good description of the cross section and the spin observables from
HERMES to HERA energies [2]. It is found that the gluon and sea contributions control
the amplitude behaviour at energies W ≥ 10GeV. Valence quarks are essential only at
HERMES energies, where their contribution to the ρ(ω) cross section is about 40(65%).
This shows that the ω production at low energies is much more sensitive to valence quarks
than ρ production.
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The model describes well the ratio of the longitudinal and transverse cross sections and
SDME in the energy range 5GeV < W < 75GeV [3]. We predict large ALL asymmetry at
HERMES energies determined by the valence quark contribution which is compatible with
experiment. At COMPASS the ALL asymmetry is small, about zero. Our first results on
SDME for transversally polarized target and AUT asymmetry cans be found in [3].

Thus, we can conclude that the vector meson photoproduction at small x is a good
tool to probe the GPDs. Study of SDME gives important information on the structure
of different helicity amplitudes in the vector meson production.

This work is supported in part by the Russian Foundation for Basic Research, Grant
06-02-16215 and by the Heisenberg-Landau program.

References

[1] S.V. Goloskokov, P. Kroll, Euro. Phys. J. C42, 281 (2005).

[2] S.V. Goloskokov, P. Kroll, Euro. Phys. J. C50 829, (2007).

[3] S.V. Goloskokov, P. Kroll, arXiv:0708.3569 [hep-ph], to be publ. in Euro. Phys. J C.

[4] X. Ji, Phys. Rev. D55, 7114 (1997); A.V. Radyushkin, Phys. Lett. B380, 417 (1996);
J.C. Collins et al., Phys. Rev. D56, 2982 (1997).

[5] L. Mankiewicz, G. Piller, T. Weigl, Eur. Phys. J. C5, 119 (1998).

[6] L. Mankiewicz, G. Piller, Phys. Rev. D61, 074013 (2000);
I.V. Anikin, O.V. Teryaev, Phys. Lett. B554, 51 (2003).

[7] J. Botts, G. Sterman, Nucl. Phys. B325, 62 (1989).

[8] C. Adloff et al. [H1 Collab.], Eur. Phys. J. C13, 371 (2000);
S.Aid et al. [H1 Collab.], Nucl. Phys. B468, 3 (1996).

[9] J. Breitweg et al. [ZEUS Collab.], Eur. Phys. J. C6 603, (1999);
S. Chekanov et al. [ZEUS Collab.], Nucl.Phys. B718, 3 (2005);
S. Chekanov et al. [ZEUS Collab.], arXiv:0708.1478 [hep-ex].

[10] A. Airapetian et al. [HERMES Collab.], Eur. Phys. J. C17 389, (2000);
A. Borissov, [HERMES Collab.], ”Proc. of Diffraction 06”, PoS (DIFF2006), 014.

[11] D. Neyret [COMPASS Collab.], ”Proc. of SPIN2004”, Trieste, Italy, 2004;
V. Y. Alexakhin et al. [COMPASS Collab.], arXiv:0704.1863 [hep-ex].

[12] J. Bolz, J.G. Körner, P. Kroll, Z. Phys. A350, 145 (1994).

[13] I. V. Musatov, A. V. Radyushkin, Phys. Rev. D61, 074027 (2000)

[14] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. Nadolsky, W. K. Tung, JHEP
0207, 012 (2002).

Discussion

Q. (L.Jenkovszky, ITP, Kiev) What king of QCD evolution you have in mind when
citing Vinnikov? As far as I know, there is no evolution equation like that of DGLAP for
DVCS.

A. I mean a simple evolution equation for ordinary parton distributions multiplied by
an exponential in t.
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Abstract

Spin polarized states in nuclear matter with the effective Skyrme interaction are
studied for a wide range of isospin asymmetries and densities. Based on a Fermi
liquid theory, it is shown that there are a few possible scenarios of spin ordered phase
transitions: (a) nuclear matter undergoes at some critical density a phase transition
to a spin polarized state with the oppositely directed spins of neutrons and protons
(SLy4 interaction); (b) at some critical density, a spin polarized state with the like-
directed neutron and proton spins appears (SkI5 interaction); (c) nuclear matter
under increasing density, at first, undergoes a phase transition to the state with the
opposite directions of neutron and proton spins, which goes over at larger density
to the state with the same direction of nucleon spins (SkI3 interaction).

The issue of spontaneous appearance of spin polarized states in nuclear matter is a
topic of a great current interest due to its relevance in astrophysics. In particular, the
scenarios of supernova explosion and cooling of neutron stars are essentially different, de-
pending on whether nuclear matter is spin polarized or not. On the one hand, the models
with the effective nucleon-nucleon (NN) interaction predict the occurrence of spin instabil-
ity in nuclear matter at densities in the range from %0 to 6%0 for different parametrizations
of the NN potential [1]– [4] (%0 = 0.16 fm−3). On the other hand, for the models with the
realistic NN interaction, the ferromagnetic phase transition seems to be suppressed up to
densities well above %0 [5]– [7].

Here the issue of spin polarizability of nuclear matter is considered with the use of
an effective NN interaction. The main objective is to study the possible scenarios of spin
ordered phase transitions in nuclear matter with Skyrme forces, attracting parametriza-
tions of a NN potential being relevant for calculations at strong isospin asymmetry and
high density. In particular, we choose SLy4 effective interaction, constructed originally to
reproduce the results of microscopic neutron matter calculations [8]. We utilize SkI3 and
SkI5 parametrizations as well, giving a correct description of isotope shifts in neutron-rich
medium and heavy nuclei [4]. The basic formalism is presented in detail in Ref. [4]. We
are interested in studying spin polarized states with like-directed and oppositely directed
spins of neutrons and protons. One should solve the self-consistent equations for the co-
efficients ξ00, ξ30, ξ03, ξ33 in the expansion of the single particle energy in Pauli matrices in
spin and isospin spaces

ξ00(p) = ε0(p) + ε̃00(p)− µ00, ξ30(p) = ε̃30(p), (1)

ξ03(p) = ε̃03(p)− µ03, ξ33(p) = ε̃33(p).

Here ε0(p) is the free single particle spectrum, and ε̃00, ε̃30, ε̃03, ε̃33 are the Fermi liquid
(FL) corrections to the free single particle spectrum, related to the normal FL amplitudes
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U0(k), ..., U3(k) by formulas

ε̃00(p) =
1

2V
∑
q

U0(k)f00(q), ε̃30(p) =
1

2V
∑
q

U1(k)f30(q), k =
p− q

2
, (2)

ε̃03(p) =
1

2V
∑
q

U2(k)f03(q), ε̃33(p) =
1

2V
∑
q

U3(k)f33(q).

Figure 1. Neutron and proton spin polarization
parameters as functions of density at zero temper-
ature for (a) SLy4 force and (b) SkI5 force (color
online at http://theor.jinr.ru/∼spin).

The distribution functions f00, f03, f30, f33,
in turn, can be expressed in terms of
the components ξ of the single parti-
cle energy and satisfy the normaliza-
tion conditions for the total density
%n + %p = %, excess of neutrons over
protons %n − %p ≡ α%, ferromagnetic
(FM) %↑ − %↓ ≡ ∆%↑↑ and antiferro-
magnetic (AFM) (%n↑ + %p↓) − (%n↓ +
%p↑) ≡ ∆%↑↓ spin order parameters, re-
spectively (α being the isospin asym-
metry parameter, %↑ = %n↑ + %p↑ and
%↓ = %n↓+%p↓, with %n↑, %n↓ and %p↑, %p↓
being the neutron and proton number
densities with spin up and spin down).
The quantities of interest are the neu-
tron and proton spin polarization pa-
rameters Πn =

%n↑−%n↓
%n

, Πp =
%p↑−%p↓

%p
,

characterizing spin ordering in neutron
and proton subsystems.

Fig. 1a shows the density depen-
dence of the neutron and proton spin
polarization parameters at zero temper-
ature for SLy4 force. The main qual-
itative feature is that for SLy4 force
there are only solutions corresponding
to the oppositely directed spins of neu-
trons and protons in a spin polarized
state. The reason is that for SLy4 force
the FL amplitude U1, determining spin–
spin correlations, is repulsive for all rel-
evant densities, while the FL amplitude
U3, describing spin–isospin correlations,
becomes quite attractive at high densi-
ties. The critical density of spin instability in symmetric nuclear matter (α = 0), cor-
responding to AFM spin ordering (∆%↑↓ 6= 0, ∆%↑↑ = 0), is %c ≈ 0.33 fm−3. It is less
than the critical density of FM instability in neutron matter, %c ≈ 0.59 fm−3. Even small
admixture of protons to neutron matter leads to the appearance of long tails in the den-
sity profiles of the neutron spin polarization parameter near the transition point to a spin
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ordered state. As a consequence, a spin polarized state is formed much earlier in density
than in pure neutron matter.

As seen from Fig. 1b, for SkI5 force, oppositely to SLy4 force, there are only solutions
corresponding to the same direction of neutron and proton spins in a polarized state. In
the case under consideration the FL amplitude U3 is repulsive for all relevant densities,
while the FL amplitude U1 becomes quite attractive at high densities. For SkI5 force, a
phase transition to the FM spin state in neutron matter takes place at the critical density
%c ≈ 0.28 fm−3. It is less than the critical density of spin instability in symmetric nuclear
matter %c ≈ 0.43 fm−3, corresponding to FM spin ordering (∆%↑↑ 6= 0, ∆%↑↓ = 0). There
are no long tails in the density profiles of the neutron spin polarization parameter at large
isospin asymmetry. In the given case, a small admixture of protons to neutron matter
even leads to the increase of the critical density of spin instability.

Figure 2. Same as in Fig. 1, but for SkI3 force.
Also the curves, corresponding to FM and AFM
ordering in symmetric nuclear matter, are shown
(color online at http://theor.jinr.ru/∼spin ).

Fig. 2 shows the neutron and proton
spin polarization parameters as func-
tions of density at zero temperature for
SkI3 force. There are two types of solu-
tions of the self-consistent equations in
symmetric nuclear matter, correspond-
ing to FM and AFM ordering of neu-
tron and proton spins. Due to proxim-
ity of FL amplitudes U1 and U3, the re-
spective critical densities are very close
to each other (%c ≈ 0.910 fm−3 for FM
ordering and %c ≈ 0.917 fm−3 for AFM
ordering) and larger than the critical
density of spin instability in neutron
matter (%c ≈ 0.37 fm−3). When some
admixture of protons is added to neu-
tron matter, the last critical density is
shifted to larger densities and a spin
polarized state with the oppositely di-
rected spins of neutrons and protons ap-
pears. Under increasing density of nu-
clear matter, the neutron spin polariza-
tion continuously increases till all neutron spins will be aligned in the same direction.
Protons, at first, become more polarized with density and their spin polarization is oppo-
site to the spin polarization of neutrons. But, after reaching the maximum, spin polariza-
tion of protons decreases and at some critical density spins of protons change direction,
so that the spin ordered phase with the like-directed spins of neutrons and protons is
formed. Then, beyond the critical density, the spin polarization of protons is continuing
to increase until the totally polarized state with parallel ordering of neutron and proton
spins will be formed. Thus, for SkI3 force nuclear matter undergoes at some critical den-
sity a phase transition from the state with antiparallel ordering of neutron and proton
spins to the state with parallel ordering of spins. With increasing isospin asymmetry, this
critical density increases as well. Note that there are no long tails in the density profiles
of the neutron spin polarization parameter at large asymmetries.
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It is necessary to emphasize that different behavior at high densities of the interaction
amplitudes, describing spin–spin and spin–isospin correlations, lays behind this divergence
in calculations with different Skyrme forces. These results clearly indicate the necessity
to construct a new generation of the energy functionals with the properly constrained
time-odd part at high densities. Probably, these constraints will be obtained from the
data on the time decay of magnetic field of isolated neutron stars [10].
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Abstract

A number of hard exclusive scattering processes can be described in terms of
generalized parton distributions (GPDs) and perturbative hard-scattering kernels.
Both the physical amplitude and the hard-scattering kernels fulfill dispersion rela-
tions. We show that their consistency at all orders in perturbation theory is guar-
anteed if the GPDs satisfy certain integral relations. These relations are fulfilled
thanks to Lorentz invariance.

1 Introduction

For hard exclusive processes that can be calculated using collinear factorization, one may
write down dispersion relations both for the physical process and for the parton-level
subprocess. The question of consistency between both representations turns out to be
nontrivial. Important progress has recently been reported in [1], where it was shown
that this consistency is ensured by Lorentz invariance in the form of the polynomiality
property for generalized parton distributions (GPDs). The studies in [1] were carried
out using the Born-level approximation of the hard-scattering subprocess. In particular,
they showed that to this accuracy not only the imaginary but also the real part of the
process amplitude can be represented in terms of GPDs F (x, ξ, t) along the line x = ξ in
the x–ξ plane. It is natural to ask how the situation changes when including radiative
corrections to the hard-scattering kernel. Here we discuss dispersion representations for
hard exclusive processes to all orders in perturbation theory, generalizing the leading-order
results derived for the unpolarized quark GPDs in [1]. More details, as well as results for
polarized quarks and for gluons, where special issues arise, can be found in our journal
publication [2].

2 Dispersion relations

The exclusive processes we discuss here are deeply virtual Compton scattering (DVCS)
and light meson production,

γ∗(q) + p(p) → γ(q′) + p(p′) , γ∗(q) + p(p) → M(q′) + p(p′) , (1)

where four-momenta are indicated in parentheses. Since the processes in (1) involve par-
ticles with nonzero spin, the appropriate quantities for discussing dispersion relations are
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invariant amplitudes, which have simple analyticity and crossing properties. An explicit
decomposition for Compton scattering can be found in [3].

We use the Mandelstam variables s = (p+q)2, t = (p−p′)2, u = (p−q′)2, and consider
an invariant amplitude F [σ](ν, t) with definite signature σ under s ↔ u crossing,

F [σ](−ν, t) = σF [σ](ν, t) , (2)

where 2ν = s− u. At t ≤ 0 the imaginary part of the amplitude is due to the s-channel
discontinuity for ν > 0 and to the u-channel discontinuity for ν < 0. The fixed-t dispersion
relation with one subtraction reads

ReF [σ](ν, t)− ReF [σ](ν0, t)

=
1

π

∫ ∞

νth

dν ′ ImF [σ](ν ′, t)
[

1

ν ′ − ν
+ σ

1

ν ′ + ν
− 1

ν ′ − ν0

− σ
1

ν ′ + ν0

]
, (3)

where νth is the value of ν at threshold. Its validity requires

ν−2F [+](ν, t) → 0 , ν−1F [−](ν, t) → 0 . (4)

for |ν| → ∞. We consider dispersion relations for the processes (1) in the Bjorken limit
of large −q2 at fixed q2/ν and t. It is useful to trade ν for the scaling variable

ξ = − (q + q′)2

2(p + p′) · (q + q′)
= − q2

s− u
= − q2

2ν
, (5)

where we have neglected q′2 and t compared with q2 in the numerator. The factorization
theorems state that in the Bjorken limit certain invariant amplitudes become dominant
and can be written as convolutions of partonic hard-scattering kernels with quark or gluon
GPDs. We discuss the contribution of unpolarized quark distributions F q = {Hq, Eq} to
the leading invariant amplitudes for DVCS or meson production,

F q[σ](ξ, t) =

∫ 1

−1

dx
1

ξ
Cq[σ]

(x

ξ

)
F q(x, ξ, t) (6)

where for brevity we do not display the dependence of F q[σ] and Cq[σ] on q2. The hard-
scattering kernel satisfies the symmetry relation

Cq[σ](−x/ξ) = −σCq[σ](x/ξ) . (7)

In the Bjorken limit the Mandelstam variables for the hard-scattering subprocess are

ŝ = xs + 1
2
(1− x)q2 , û = xu + 1

2
(1− x)q2 , (8)

so that one has x/ξ = (û− ŝ)/q2. To leading order (LO) in αs, the kernel reads

Cq[σ](ω) ∝ 1

1− ω − iε
−σ

1

1 + ω − iε
, Im Cq[σ](ω) ∝ π

[
δ(ω−1)−σδ(ω+1)

]
(9)

for both DVCS and meson production. At higher orders in αs one finds branch cuts in
the ŝ and û channels for ω > 1 and ω < −1, respectively. For the dispersion relations we
need to know the behavior of the kernels when |ω| → ∞. The NLO kernels for DVCS can
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be found in [4], and those for meson production in [5]. For negative signature, one finds
Cq[−](ω) ∼ ω−1 up to logarithms for both DVCS and meson production. For positive
signature, the NLO corrections give Cq[+](ω) ∼ ω−1 for DVCS, and Cq[+](ω) ∼ ω0 for
meson production, again up to logarithms. The power behavior as ω0 is due to two-gluon
exchange in the t-channel. For DVCS such graphs only start at NNLO, so that at this
level one will also have Cq[+](ω) ∼ ω0. For both signatures one can thus write down an
unsubtracted dispersion relation for the kernel,

Re Cq[σ]
(x

ξ

)
=

1

π

∫ ∞

1

dω Im Cq[σ](ω)

[
1

ω − x/ξ
− σ

1

ω + x/ξ

]
. (10)

On the other hand, the invariant amplitude satisfies its own fixed-t dispersion relation (3).
Therefore the real part of the leading invariant amplitudes for DVCS or meson production
can be obtained from a dispersion relation for the hard-scattering kernel,

ReF q[σ](ξ, t) =
1

π

∫ ∞

1

dω Im Cq[σ](ω)

∫ 1

−1

dxF q(x, ξ, t)

[
1

ωξ − x
− σ

1

ωξ + x

]
, (11)

or for the invariant amplitude itself,

ReF q[σ](ξ, t) =
1

π

∫ ∞

1

dω Im Cq[σ](ω)

{ ∫ 1

−1

dxF q
(
x,

x

ω
, t

) [
1

ωξ − x
− σ

1

ωξ + x

]

+ Iq[σ](ω, ξ0, t)

}
, (12)

where ξ0 corresponds to the subtraction point ν0 in (3) and

Iq[σ](ω, ξ, t) =

∫ 1

−1

dx

[
F q(x, ξ, t)− F q

(
x,

x

ω
, t

)] [
1

ωξ − x
− σ

1

ωξ + x

]
. (13)

As shown in [2], the term Iq[σ] is related with spin-zero exchange in the t-channel.
Consistency of the two representations provides nontrivial constraints on the GPDs.

Indeed, in (12) the GPD enters in the DGLAP region only, whereas in (11) both the
DGLAP and ERBL regions contribute. Let us see that the consistency is guaranteed by
the polynomiality property of Mellin moments, which follows directly from the Lorentz
covariance of the operator matrix elements that are parameterized by GPDs. With the
conventional definitions (given e.g. in [6]) we have for quarks

∫ 1

−1

dx xn−1 Hq(x, ξ, t) =
n−1∑

k=0

(2ξ)k Aq
n,k(t) + (2ξ)nCq

n(t) , (14)

∫ 1

−1

dx xn−1 Eq(x, ξ, t) =
n−1∑

k=0

(2ξ)k Bq
n,k(t)− (2ξ)nCq

n(t) , (15)

where k is even because of time reversal invariance. Clearly, (11) and (12) are consistent
if Iq[σ](ω, ξ, t) is independent of ξ for all ω ≥ 1. To show that this is the case, we Taylor
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expand F q(x, x/ω, t) in its second argument,

Iq[σ](ω, ξ, t) =
1

ω

∞∑
n=1

1

n!

( ∂

∂η

)n
∫ 1

−1

dx
(x

ω
− ξ

)n−1

F q(x, η, t)
∣∣∣
η=ξ

+
σ

ω

∞∑
n=1

1

n!

( ∂

∂η

)n
∫ 1

−1

dx
(x

ω
+ ξ

)n−1

F q(x, η, t)
∣∣∣
η=−ξ

, (16)

where we have interchanged the order of differentiation and integration. For definiteness
let us consider the case F q = Hq. Using the polynomiality property (14) and the fact
that Cq

n is only nonzero for even n, we find

Iq[+](ω, ξ, t) = 2
∞∑

n=2

(
2

ω

)n

Cq
n(t) , Iq[−](ω, ξ, t) = 0 , (17)

which is independent of ξ as required. In the case F q = Eq there is an additional minus
sign on the r.h.s. of (17), in accordance with (15).

The dispersion representations discussed here can provide a practical check for GPD
models in which Lorentz invariance is not exactly satisfied. In particular, we find that even
for small ξ the model proposed in [7] leads to serious conflicts with dispersion relations
when it is used for calculating the real part of scattering amplitudes [2].

The representation (12) has important consequences on the information about GPDs
that can be extracted from DVCS and meson production. To leading approximation in
αs, the imaginary part of the amplitude is only sensitive to the distributions at x = ξ,
and the only additional information contained in the real part is a constant associated
with pure spin-zero exchange, given by (17) at ω = 1. In [1] this was referred to as a
holographic property. Beyond leading order, the evaluation of both imaginary and real
parts of the amplitude involves the full DGLAP region |x| ≥ ξ. In addition, the real part
depends on the appropriate spin-zero term at all ω ≥ 1.

Consider now the comparison of a given model or parameterization of GPDs with data
on DVCS or meson production. In a leading-order analysis (which should of course always
be restricted to kinematics where the LO approximation is adequate) it is sufficient to
characterize each GPD by its values at x = ξ, supplemented by a constant for the spin-zero
exchange contribution discussed above. On one hand this can be a welcome simplification,
and on the other hand it indicates the limitations of an LO analysis: when confronting
data with a given GPD one is sensitive to x 6= ξ (and to the details of the spin-zero
exchange contribution) only at NLO or higher accuracy.
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Q. (L.Jenkowzsky, ITP, Kiev) It is credible that a bootstrap relation between a GPD
and the (imaginary part of) DVCS exists, following from the fact that, in the lowest order
approximation, the imaginary part of the DVCS amplitude is proportional to the GPD?

A. This is not evident for me.
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Abstract

Non-trivial spin effects do not die out with energy growth. Here, we discuss one
example of such effects — production of spin-3 mesons in diffractive DIS. Using both
explicit kt-factorization calculations and their vector-dominance-model interpreta-
tion, we argue that diffractive production of ρ3(1690) is a unique probe of several
novel aspects of diffraction.

It is well known that even at highest energies a significant fraction of hadron-hadron
collisions must be elastic. Elastic scattering is a member of the family of diffractive
processes, in which the colliding hadrons can survive the scattering or turn into a small-
mass diffractive system, Mdiff ¿

√
s. In deep-inelastic scattering, DIS, where the virtual

photon can be also viewed as a hadron, a significant part of all γ∗p collisions is also
diffractive.

The t-channel exchange that drives diffraction, the Pomeron, is often pictured as a
“spin-blind” object. This leads to a prejudice that all non-trivial spin effects must die out
at high energies, where the Pomeron exchange dominates over the secondary Reggeons.
Partly in order to eliminate this prejudice, we present here our recent results on production
of spin-3 mesons in diffractive DIS, [1, 2], which is a genuine example of non-trivial spin
effects in diffraction.

1 Basics of diffractive meson production

Dynamics of diffractive DIS is conveniently described within the color dipole approach, [3].
The incoming photon turns into a qq̄ pair (a color dipole), which experiences scattering
off the target and then is projected onto the final meson V . Thanks to the Lorentz-
dilatation of the transverse motion inside the projectile, the amplitude for this transition
can be written in the probabilistic form

1

s
A(γ → V ) = 〈V |σ̂|γ〉 =

∫
dz d2r Ψ∗

V (z, r)σdip(r)Ψγ(z, r) .

Here, σ̂dip is the diffraction operator, which acts in the projectile Fock space. In the
r-space it is diagonal and is known as dipole cross section.

Practical calculations are most convenient in the transverse momentum space. In this
approach, known as the kt-factorization approach, the amplitude has form:

1

s
A(γ → V ) =

e cV

4π2

∫
dz d2k⊥
z(1− z)

∫
d2κ

κ4
αsF · IV

λV ;λγ
·ΨV (p2) . (1)
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Here z is the lightcone momentum fraction of the photon carried by the quark, k is the
relative transverse momentum of the qq̄ pair, while κ is the transverse momentum of
the gluon. Coefficient cV is the standard flavor-dependent average charge of the quark.
The color dipole cross section is encoded via the unintegrated gluon distribution function
F . In our calculations we used fits of F obtained in [4] and adapted to the off-forward
kinematics needed for the meson production, see details in [5].

This approach can be used to calculate production of quarkonia in different spin-orbital
states. The only requirement is that P = C = −1.

• Ground state vector mesons (L = 0, nr = 0): ρ, ω, φ, J/ψ, Υ.

• Radially excited VM (L = 0, nr > 0): ≈ ρ′(1450), . . .

• Orbitally excited VM (L = 2, nr = 0): ≈ ρ′′(1700), . . .

• High-spin mesons, e.g. spin-3 mesons with L = 2 such as ρ3(1690).

The properties of the given meson appear in (1) in two ways: via the radial wave function
ΨV (p2), and via the spin-orbital structure, which is encoded in an appropriate spinorial
structure of the qq̄V vertex, [6], and is present in (1) implicitly inside the integrands
IV
λV ;λγ

. For example, for the D-wave vector meson the vertex has form ūΓµ
Du · Vµ, where

Vµ is the polarization vector and Γµ
D = γµ−4(M +m)pµ/(M2−4m2). The corresponding

structure for the spin-3 meson is uΓµνρu · Tµνρ, where Tµνρ is the polarization tensor and
Γµνρ was derived in [1].

2 Production of orbitally or spin-excited mesons

2.1 Characteristic features

Let us first discuss the vital property of diffraction: it does not conserve orbital momentum
L of the qq̄ pair. Indeed, symbolically the amplitude is

A ∝
∫

dzd2k⊥
z(1− z)

〈L′|σ̂dip|L〉 =

∫
4

M
d3p 〈L′|σ̂dip|L〉 6= 0 , (2)

because diffraction operator σ̂dip is not spherically symmetric. Namely, when calculating
the diagrams, one observes that the transverse momentum circulating in the quark loop
is much more important than the longitudinal one. This is the unavoidable consequence
of the fact that any collision has a preferred direction.

Since the incoming photon can be also represented as a coherent combination of various
vector mesons, including radially and orbitally excited mesons, see discussion in [2], one
can, therefore, expect that orbitally excited and spin-excited mesons will be present among
the final states in diffractive DIS.

Orthogonality of qq̄ with different L suppresses the helicity conserving, but not the
helicity violating amplitudes. Therefore, a much stronger helicity violation is expected
for orbital excitations than for grounds state mesons.
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2.2 Numerical results

Numerical results are obtained by direct evaluation of amplitudes (1) and integration of
the differential cross section within the diffraction cone, |t| < 1 GeV2. We took into
account all helicity amplitudes, including all helicity violating transitions.

10
-2

10
-1

0 2 4 6 8 10

Figure 1. Ratios σ(ρ′′(1700))/σ(ρ) and
σ(ρ3(1690))/σ(ρ) as functions of Q2.

The main sources of uncertainty in the abso-
lute values of the cross sections are the choice of
the parametrization of the radial wave function
and the e+e− decay width, which is used to ad-
just the size of the wave function. Our experience
with ground state VM production [5] shows that
different choices of the wave function lead to re-
sults differing by factor of 2. The results for the
orbitally excited mesons are even more uncertain
since the value of Γ(ρ′′(1700) → e+e−) is known
only within factor of 5. However, the relative pro-
duction rates of ρ′′(1700) and ρ3(1690) are more
stable, within factor of 2.

Fig. 1 shows the results for the ratios
σ(ρ′′(1700))/σ(ρ) and σ(ρ3(1690))/σ(ρ) as functions of Q2. Both ratios are O(0.1) and
are comparable. Since ρ′′(1700) and ρ3(1690) are degenerate, this means that one must
perform a very careful analysis of multipion diffractive final states in order to separate
these two mesons.

Studying ρ3 production in more detail, we found some other peculiar features.

• Numerical calculations confirm very large contribution from helicity violating tran-
sitions in ρ3 even at moderate Q2. We even predict domination of helicity violation
at small Q2 — a new regime in diffraction.

• The radial wave functions of the orbitally excited mesons are broader than of the
ground states. Thus, typical dipole sizes in ρ3 photoproduction are ∼ 1.5 times
larger (up to 2 fm) than for ρ photoproduction.

• σL/σT ratio is abnormally large for ρ3.

2.3 Coupled channel analysis

The cross sections for ρ′′(1700) and ρ3(1690) production are of the same orders of mag-
nitude, yet, the mechanisms of their diffractive production are quite different. We found
this by performing, in the spirit of generalized vector dominance model, a coupled channel
analysis of the action of diffraction operator in the Fock space generated by three mesons:
ground state ρ, orbitally excited state ρ′′(1700) and spin-3 meson ρ3(1690). Details are
reported in [2]. Here we just show the matrix for the integrated cross sections and with
the sum over all final polarization states:

σba = 〈Vb|σ̂dip|Va〉 =




19 1 0.2
1 27 0.3

1.3 0.4 19


 mb , Va, Vb = ρ, ρ′′, ρ3 .
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The diagonal elements have uncertainty of ∼ 50%, while the off-diagonal elements are
uncertain within factor 2-3.

Since the hadronic part of the incoming photon at small virtuality can be roughly
represented as |γ〉h ∼ |ρS〉+ 0.2|ρD〉, one can conclude that

• ρ′′(1700) is produced mostly via “direct materialization” of the D-wave component
of the photon followed by diagonal scattering, γ → ρ′′ → ρ′′.

• ρ3(1690) is produced via truly off-diagonal transition γ → ρ → ρ3.

• Thus, ρD and ρ3 probe different properties of diffraction.

3 Experimental opportunities

In contrast to the ground state vector meson production, [5], the data on excited VM, in
particular, on the orbitally or spin-excited mesons, are very scarce. For example, the only
published data on excited ρ3(1690) go back to 1986, when the fixed-target experiment
OMEGA at CERN measured it in diffractive multipion photoproduction, [7].

Modern era experiments, both collider or fixed target, have great potential in making
much progress in this field. What one needs is to study diffractive multipion production
and extract the resonant contribution. One broad peak at M ≈ 1.1− 1.9 GeV should be
separated into three excited ρ states: ρ′(1450), ρ′′(1700), and ρ3(1690).

Specifically, the best tool to extract the ρ3 contribution would be the partial-wave
analysis. We expect that the most sensitive to the ρ3 would be π+π− final state at not
too small t, say, at |t| ≈ 0.5 GeV2. One can try to see the ρ3 by comparing multipion spec-
tra in diffractive production and in e+e− annihilation experiments, since ρ3 is present in
diffraction but absent in the annihilation. Preliminary analysis [2] gave interesting results.

Acknowledgements. The work was supported by FNRS and partly by grants RFBR
05-02-16211 and NSh-5362.2006.2.
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Abstract

A Regge-pole model developed earlier for the electroproduction of vector mesons
and for DVCS is generalized to include spin and to calculate the spin density matrix
of the reactions.

In a recent paper [1] a Regge-pole model for the invariant deeply virtual scattering
(DVCS) amplitude was suggested. Here we present its extension including spin and en-
abling the calculation of spin density matrixes for φ and J/Ψ diffractive photoproduction,
where, by the Okubo-Zweig-Iizuka (OZI) rule, only the Pomeron contributes.

Let the helicity amplitude for the process γ∗ + N → V + N in the c.m.s. of the t
channel be MλN̄ ,λV

(s, t) (for a review see e.g. Fef. [2]). The elements of the spin density
matrix of V in its rest frame can be expressed, according to Ref. [3], in terms of helicity
amplitudes in the t channel:

ρV
λµ(s, t) = N−1

∑

λN̄λN

M∗
λN̄λV ,µ(s, t), (1)

where N is normalized to
∑

λ ρV
λλ = 1,

N =
∑

λN̄λN

| MλN̄ ,λV ,λ(s, t) |2 [s− (mN − µ)2] = [s− (mN + µ)2]
dσ

dt
,

and µ is the virtual photon ”mass.” Experimentally, the polarization density matrix can
be determined from the angular distribution of the decay products of the resonance V.
When a vector meson V decays into two particles, e.g. V → 2π, the angular distribution
of the decay products is [4]

dσ

dΩ
=

3

4π
(ρ11 sin2 θ + ρ00 cos2 θ − ρ1−1 sin2 θ cos 2φ−

√
2<ρ10 sin 2θ cos φ),

where θ and φ are the polar and azimuthal angles of one of the emitted particle. In a
factorized Regge pole model

MλN̄λN ,λV
(s, t) =

∑

k

ξk(t)b
k
λN̄λN

(t)bk
λV

(t)

(
s

s0

)αk(t)

,
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where αk(t) are the relevant Regge trajectories, bk
λV

(t) and bk
λN̄λN

(t) are the γ∗Pp and
pPp vertices respectively and ξk(t) is the signature factor.

Each Regge pole is characterized by definite quantum numbers: signature Pj, parity P ,
isospin T , and G parity. By the conservation of P and G parity, a number of constrains and
relations between the amplitudes and the residue can be derived [4]. Since in the present
paper we consider purely diffractive processes, dominated solely by a Pomeron exchange,
we get from Eq. (1) the following simple expressions for the spin density matrices in terms
of the helicity amplitutes [4]:

ρ11 = 2N−1(|Ma
1/21/2,1|2 + |Ma

1/2−1/2,1|2 + |M b
1/21/2,1|2),

ρ1−1 = 2N−1(|M−a
1/21/2,1|2 + |Ma

1/2−1/2,1|2 − |M b
1/21/2,1|2),

ρ00 = 2N−1|M b
1/21/2,1|2, ρ10 = 2N−1M b

1/21/2,1M
b∗
1/21/2,1,

where M
a(b)
λN̄ ,λN ,λV

(s, t) are correspondingly leading (a) or sub-leading (b) type Regge con-

tributions to the helicity amplitude. Note the relation [4]

ρ00(ρ11 − ρ1−1) = 2|ρ10|2.

In φ or J/ψ photoproduction at high energies the dominant contribution comes from
the Pomeron (type a) exchange, whence

ρ11 = 2N−1(|Ma
1/21/2,1|2 + |Ma

1/2−1/2,1|2

ρ1−1 = 2N−1(|M−a
1/21/2,1|2 + |Ma

1/2−1/2,1|2,
ρ00 = ρ10 = 0.

Now we present a dynamical model [1] for the amplitudes M . According to Regge-
factorization, the invariant amplitude can be written as

M(s, t, Q2)γ∗p→γp = −A0V1(t, Q
2)V2(t)(−is/s0)

α(t), (2)

where A0 is a normalization factor, V1(t, Q
2) is the γ∗Pγ vertex, V2(t) is the pPp vertex

and α(t) is the exchanged Pomeron trajectory, which we assume in a logarithmic form:

α(t) = α(0)− α1 ln(1− α2t). (3)

Similarly to the procedure adopted in Ref. [5], we consider only the helicity conserving
amplitude. Here we are referring to the dominant Pomeron contribution. Notice the
appearance in Eq. (2) of a new variable, Q2, absent from the conventional on-mass-shall
S-matrix theory and from the formalism developed by Kaidalov et al. [4]. The role of the
Q2−dependence in the spin-dependent residuae is not quite clear.

For convenience, and following the arguments based on duality, the t dependence of the
pPp vertex is introduced via the α(t) trajectory: V2(t) = ebα(t) where b is a parameter. A
generalization of this concept will be applied also to the upper, γ∗Pγ vertex by introducing
the trajectory

β(z) = α(0)− α1 ln(1− α2z), z = t−Q2. (4)

Hence the scattering amplitude (1), with the correct signature, becomes [1]
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M(s, t, Q2)γ∗p→γp = −A0e
bα(t)ebβ(z)(−is/s0)

α(t) = −A0e
(b+L)α(t)+bβ(z), (5)

where L ≡ ln(−is/s0).
¿From Eq. (5) the slope of the forward cone is

B(s, Q2, t) =
d

dt
ln |A|2 = 2

[
b + ln

(
s

s0

)]
α′

1− α2t
+ 2b

α′

1− α2z
, (6)

which, in the forward limit, t = 0 reduces to

B(s,Q2) = 2

[
b + ln

(
s

s0

)]
α′ + 2b

α′

1 + α2Q2
. (7)

Thus, the slope shows shrinkage in s and antishrinkage in Q2.
In the Q2 → 0 limit the Eq. (5) becomes

M(s, t) = −A0e
2bα(t)(−is/s0)

α(t), (8)

where we recognize a typical Regge-behaved photoproduction (or, for Q2 → m2
H , an

on-shell hadronic) amplitude. The related deep inelastic scattering structure function is
recovered by setting Q2

2 = Q2
1 = Q2 and t = 0, to get a typical elastic virtual forward

Compton scattering amplitude:

M(s,Q2) = −A0e
b(α(0)−α1 ln(1+α2Q2))e(b+ln(−is/s0))α(0) ∝ −(1 + α2Q

2)−α1(−is/s0)
α(0). (9)

For not too large Q2 the contribution from longitudinal photons to DVCS is small.
Moreover, at high energies, typical of the HERA collider, the amplitude is dominated
by the helicity conserving Pomeron exchange and, since the final photon is real and
transverse, the initial one is also transverse - to the extent that helicity is conserved.
Hence the relevant structure function is F1 that, at leading order, is related to F2 by the
Callan-Gross relation.

For t = 0 (with x ≈ Q2/s, valid for large s), the structure function assumes the form:

F2(s,Q
2) ≈ (1− x)Q2

παe

=M(s,Q2)/s, (10)

where αe is the electromagnetic coupling constant and the normalization is σt(s) =
4π
s
=M(s,Q2). It has the correct (required by gauge invariance) Q2 → 0 limit and has

Bjorken scaling behavior for large enough s and Q2.

A standard procedure for the fit [1] to the HERA data on DVCS [6], based on Eq. (5),
is shown in Fig. 1 (for more details see Ref. [1]). The HERMES data will be analyzed
within the present formalism in a forthcoming paper.

We thank A. Borissov and S. Manaenkov for fruitful discussion. L.J. thanks the
organizers of the Spin07 conference in Dubna for their warm hospitality.
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Figure 1: The γ ∗ p → γp cross section as a function of Q2 (a), of W (b) and the cross section
differential in t (c) measured by H1 and ZEUS experiments [6]. The ZEUS measurements have
been rescaled to the W and Q2 H1 values.
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Abstract

The elastic backward proton-deuteron scattering is analyzed including both rel-
ativistic effects in the deuteron and the reaction mechanism. It is shown that inclu-
sion of the graphs corresponding to the emission, rescattering and absorption of the
virtual pion by a deuteron nucleon in addition to the one-nucleon exchange graph
allows a rather satisfactory description of all the experimental data on the differen-
tial cross section, tensor analyzing power of the deuteron and transfer polarization
in this reaction .

1. Introduction. As is known, the study of polarization phenomena in hadron and
hadron-nucleus interactions gives more detailed information on dynamics of their inter-
actions and the structure of colliding particles. The elastic backward proton-deuteron
scattering has been experimentally and theoretically studied in Saclay [1], Dubna and at
the JLab (USA) [2,3]. Up to now all these data cannot be described within the one-nucleon
exchange model (ONE) including even the relativistic effects in the deuteron [4–6].

In this paper we analyze the elastic backward proton-deuteron scattering within the
relativistic approach including the ONE and the high order graphs corresponding to the
emission, rescattering and absorption of the virtual pion by a deuteron nucleon.

2. One-nucleon exchange model. The studies of the elastic backward proton-
deuteron scattering within the nonrelativistic ONE and the relativistic invariant one-
nucleon exchange model (RONE) are presented in Ref. [4] and Ref. [5] respectively. The
differential cross section calculated within the RONE (Fig.1a) can be presented in the
following form [6]:

dσ

dΩ
|c.m.s. =

6π2

s
m2(m2 − u)2 | Ψd(q

2
s) |4 , (1)

where Ψd(q
2
s) is the deuteron wave function; s is the square of the initial energy in the

p−D c.m.s., u is the square of momentum transfer from initial deuteron to final proton;
q2
s = 1

4
s12−m2, s12 = (k1 +k2)

2, k1, k2 are the four-momenta of neutron and proton in the
deuteron, m is the nucleon mass. Unfortunately, the ONE and the RONE do not allow a
satisfactory description of all the observables at the kinetic energy of backward scattered
protons Tp > 0.6 GeV [6] .

3. One-nucleon and one-pion exchange graphs. As was shown in Ref. [7], the con-
tribution of the high-order graphs in the p−D backward elastic scattering corresponding
to the emission, rescattering and absorption of the virtual pion by a deuteron nucleon
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can be sizable at initial energies corresponding to possible creation of the ∆-isobar at
the π − N vertex, see Fig.1c. The corrections to the ONE graph of Fig.1a were also
analyzed in other papers, see for example Ref. [8] and references therein. As was shown
in Refs. [9,10] the contribution of the one-pion exhange graphs to the deuetron stripping
reaction of type D+p → p+X can be also sizable at the initial energies close to a possible
∆-isobar creation in the intermediate state.

p

p

D

D

a)

p

p

D

D

b)

p

p

D

D

c)

Figure 1: One-nucleon exchange graph (a) one-pion exchange graph for the process p + D →
D + p (b), and its equivalent graph (c).
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Figure 2: The center-of-mass differential cross
section dσ/dΩc.m.s. for the elastic backward p−
D scattering as a function of the deuteron mo-
mentum pl.s

d in the laboratory system.

4. Results and discussion. We calcu-
lated the center-of-mass differential cross
section, the tensor analyzing power of the
deuteron T20 and the transfer polarization
κ0 in the elastic backward p − D squat-
tering including the RONE graph (Fig.1a)
and the graphs of Fig.1c. These results are
presented in Figs.(2,3). In Figs.(2,3) curves
1 and 3 correspond to the total calculation
and the RONE computation using the Reid
soft core deuteron wave function, whereas
the lines 2 and 4 are the same calculations
but for the Argon-18 N −N potential. As
is evident from Figs.(2,3) the RONE al-
lows us to describe dσ/dΩc.m.s. and T20 at
initial deuteron momenta up to 1.5GeV/c,
whereas the transfer polarization κ0 is not described within the RONE in the wide in-
terval of deuteron momenta 1.(GeV/c) < pl.s.

d < 4.(GeV/c). Figures.(2,3) show that the
total calculation of all the observables including the graphs of Fig.1a and Fig.1c results
in a rather satisfactory description of the experimental data . The graphs of Fig.1c were
calculated using the monopole form factor for the virtual pion with the cut-off parameter
about 1.GeV/c. The π−N amplitude entering into the π−N vertex of the Fig.1c graph
was taken from the π −N phase shift analysis.

One can conclude that the calculation of all the observables for the elastic backward
p−D scattering within the relativistic invariant approach including the RONE graphs and
the one-pion exchange graphs of Fig.1c type results in a rather satisfactory description of
the experimental data at initial deuteron momenta up to 7GeV/c. Note that we do not
include the six-quark admixture in the deuteron wave function. This effect can probably
be important at larger initial momenta because the contribution of the Fig.1c graphs
decreases when pl.s

d increases, as is shown in Fig.2.
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Figure 3: The tensor analyzing power of the deuteron T20 as a function of pl.s
d (lhs) and the

transfer polarization κ0 as a function of pl.s
d (rhs).
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Discussion

Q. (L.N.Strunov, JINR) What can you say about a contribution of one-pion exchange
graphs to the deuteron breakup reaction ?

A. The contribution of the discussed triangle graphs to the all observables in the
deuteron breakup reaction is sizable at initial energies corresponding to a possible creation
of the ∆-isobar in the intermediate state, e.g., at the initial kinetic energy about 1 GeV .

Q. (I.M.Sitnik, JINR) What is a role of the discussed effects in the elastic backward
proton-deuteron scattering and the deuteron stripping reactions on nuclei at high initial
energies ?

A. At least, the discussed effects in the elastic backward proton-deuteron scatter-
ing decrease at initial deuteron momenta above 7 GeV/c and they can be neglected, as
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is evident from Fig.2. As for the deuteron stripping reactions on nuclei, probably the
contribution of discussed triangle graphs can be also neglected at high initial energies.

Q. (S.L.Belostozky, PNPI) As I understood, the pion entering into one-pion exchange
graphs is virtual. What is the sensitivity of your results to the pion form factor used in
your calculations ?

A. We used the monopole form factor for the virtual pion. The sensitivity of all the
results to the value of the cut-off parameter entering into the form factor is about 10-20
percent. The results presented in the slides correspond to the cut-off parameter about
1 GeV/c.

Q. (S.S.Shimansky, JINR) Why your old results on T20 in the deuteron stripping
reaction on a proton including similar one-pion exchange graphs did not describe the
experimental data at large internal deuteron momenta ? On the other hand your new
calculations of T20 and κ0 in the elastic backward proton-deuteron scattering allow a
rather satisfactory description of the experimental data in the whole kinematic region.

A. It is due to the following. In our old calculations we did not include the interference
between different graphs, we summed the squares of separate graphs. However, the inclu-
sion of the interference terms is very important. Now we include the interference terms
because we take the pion-nucleon scattering amplitude entering into the π −N vertex of
the graph in Fig.1c from the π − N phase shift analysis and can calculate both the real
part and the imaginary part of the matrix element corresponding to any graph of Fig.1c.
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Abstract

The structure of the nucleon charge-exchange process n + p → p + n is in-
vestigated basing on the isotopic invariance of the nucleon-nucleon scattering. Us-
ing the operator of permutation of the spin projections of the neutron and pro-
ton, the connection between the spin matrices, describing the amplitude of the
nucleon charge-exchange process at zero angle and the amplitude of the elastic
scattering of the neutron on the proton in the ”backward” direction, has been ob-
tained. Due to the optical theorem, the spin-independent part of the differential
cross-section of the process n + p → p + n at zero angle for unpolarized particles
is expressed through the difference of total cross-sections of unpolarized proton-
proton and neutron-proton scattering. Meantime, the spin-dependent part of this
cross-section is proportional to the differential cross-section of the deuteron charge-
exchange breakup d + p → (pp) + n at zero angle at the deuteron momentum
kd = 2kn (kn is the initial neutron momentum). Analysis shows that, in the wide
range of neutron laboratory momenta kn > 700MeV/c, the main contribution into
the differential cross-section of the process n + p → p + n at zero angle is provided
namely by the spin-dependent term.

1. Isotopic structure of NN-scattering. Taking into account the isotopic invariance,
the nucleon-nucleon scattering is described by the following operator:

f̂(p,p′) = â(p,p′) + b̂(p,p′)τ̂ (1)τ̂ (2) . (1)

Here τ̂ (1) and τ̂ (2) are vector Pauli operators in the isotopic space, â(p,p′) and b̂(p,p′)
are 4-row matrices in the spin space of two nucleons; p and p′ are the initial and final
momenta in the c.m. frame, the directions of p′ are defined within the solid angle in the
c.m. frame, corresponding to the front hemisphere.

One should note that the process of elastic neutron-proton scattering into the back
hemisphere is interpreted as the charge-exchange process n + p → p + n .

According to (1), the matrices of amplitudes of proton-proton, neutron-neutron and
neutron-proton scattering take the form:

f̂pp→pp(p,p′) = f̂nn→nn(p,p′) = â(p,p′) + b̂(p,p′) ;

f̂np→np(p,p′) = â(p,p′)− b̂(p,p′) ; (2)
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meantime, the matrix of amplitudes of the charge transfer process is as follows:

f̂np→pn(p,p′) = 2b̂(p,p′) = f̂pp→pp(p,p′)− f̂np→np(p,p′) . (3)

It should be stressed that the differential cross-section of the charge-exchange reaction,
defined in the front hemisphere 0 ≤ θ ≤ π

2
, 0 ≤ φ ≤ 2π (here θ is the angle between the

momenta of initial neutron and final proton, φ is the azimuthal angle), should coincide
with the differential cross-section of the elastic neutron-proton scattering into the back
hemisphere by the angle θ̃ = π−θ at the azimuthal angle φ̃ = π+φ in the c.m. frame. Due
to the antisymmetry of the state of two fermions with respect to the total permutation,
including the permutation of momenta ( p′ → −p′), permutation of spin projections and
permutation of isotopic projections (p ¿ n), the following relation between the amplitudes
f̂np→pn(p,p′) and f̂np→np(p,−p′) holds [1] :

f̂np→pn(p,p′) = −P̂ (1,2)f̂np→np(p,−p′) , (4)

where P̂ (1,2) is the operator of permutation of spin projections of two particles with equal
spins; the matrix elements of this operator are [2]: 〈m′

1m
′
2 | P̂ (1,2) | m1m2〉 = δm′

1m2
δm′

2m1
.

For particles with spin 1/2 [1,2]

P̂ (1,2) =
1

2
(Î(1,2) + σ̂(1)σ̂(2)), (5)

where Î(1,2) is the four-row unit matrix, σ̂(1), σ̂(2) – vector Pauli operators. It is evident
that P̂ (1,2) is the unitary and Hermitian operator:

P̂ (1,2) = P̂ (1,2)+, P̂ (1,2)P̂ (1,2)+ = Î(1,2). (6)

Taking into account the relations (5) and (6), the following matrix equality holds:

f̂+
np→pn(p,p′)f̂np→pn(p,p′) = f̂+

np→np(p,−p′)f̂np→np(p,−p′). (7)

As a result, the differential cross-sections of the charge-exchange process n + p → p +
n and the elastic np-scattering in the corresponding back hemisphere coincide at any
polarizations of initial nucleons:

dσnp→pn

dΩ
(p,p′) =

dσnp→np

dΩ
(p,−p′). (8)

However, the separation into the spin-dependent and spin-independent parts is different
for the amplitudes f̂np→pn(p,p′) and f̂np→np(p,−p′) !

2. Nucleon charge-exchange process at zero angle. Now let us investigate in
detail the nucleon charge transfer reaction n + p → p + n at zero angle. In the c.m.
frame of the (np)-system, the amplitude of the nucleon charge transfer in the ”forward”
direction f̂np→pn(0) has the following spin structure:

f̂np→pn(0) = c1Î
(1,2) + c2 [σ̂(1)σ̂(2) − (σ̂(1)l)(σ̂(2)l)] + c3 (σ̂(1)l)(σ̂(2)l) , (9)

where l is the unit vector directed along the incident neutron momentum. In so doing,
the second term in Eq. (9) describes the spin-flip effect, and the third term characterizes
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the difference between the amplitudes with the parallel and antiparallel orientations of
the neutron and proton spins.

The spin structure of the amplitude of the elastic neutron-proton scattering in the
”backward” direction f̂np→np(π) is analogous:

f̂np→np(π) = c̃1Î
(1,2) + c̃2[σ̂

(1)σ̂(2) − (σ̂(1)l)(σ̂(2)l)] + c̃3(σ̂
(1)l)(σ̂(2)l). (10)

However, the coefficients c̃ in Eq.(10) do not coincide with the coefficients c in Eq.(9).
According to Eq.(4), the connection between the amplitudes f̂np→pn(0) and f̂np→np(π) is
the following:

f̂np→pn(0) = −P̂ (1,2)f̂np→np(π) , (11)

where the unitary operator P̂ (1,2) is determined by Eq.(5).
As a result of calculations with Pauli matrices, we obtain:

c1 = −1

2
(c̃1 + 2c̃2 + c̃3); c2 = −1

2
(c̃1 − c̃3); c3 = −1

2
(c̃1 − 2c̃2 + c̃3). (12)

Hence, it follows from here that the ”forward” differential cross-section of the nucleon
charge-exchange reaction n + p → p + n for unpolarized initial nucleons is described by
the expression:

dσnp→pn

dΩ
(0) = |c1|2 + 2|c2|2 + |c3|2 =

=
1

4
|c̃1 + 2c̃2 + c̃3|2 +

1

2
|c̃1 − c̃3|2 +

1

4
|c̃1 − 2c̃2 + c̃3|2 = |c̃1|2 + 2|c̃2|2 + |c̃3|2. (13)

Thus,
dσnp→pn

dΩ
(0) =

dσnp→np

dΩ
(π),

just as it must be in accordance with the relation (8).

3. Spin-independent and spin-dependent parts of the cross-section of the
reaction n + p → p + n at zero angle. It is clear that the amplitudes of the proton-
proton and neutron-proton elastic scattering at zero angle have the structure (9) with

the replacements c1, c2, c3 → c
(pp)
1 , c

(pp)
2 , c

(pp)
3 , c1, c2, c3 → c

(np)
1 , c

(np)
2 , c

(np)
3 , respectively. It

follows from the isotopic invariance ( see Eq. (3) ) that

c1 = c
(pp)
1 − c

(np)
1 , c2 = c

(pp)
2 − c

(np)
2 , c3 = c

(pp)
3 − c

(np)
3 . (14)

In accordance with the optical theorem, the following relation holds, taking into ac-
count Eq.(14):

4π

k
Im c1 =

4π

k
(Im c

(pp)
1 − Im c

(np)
1 ) = σpp − σnp , (15)

where σpp and σnp are the total cross-sections of interaction of two unpolarized protons
and of an unpolarized neutron with unpolarized proton, respectively (due to the isotopic
invariance, σpp = σnn); k = |p| = |p′| is the modulus of neutron momentum in the c.m.
frame of the colliding nucleons 1).

1) We use the unit system with ~ = c = 1.
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Taking into account Eqs. (9), (13) and (15), the differential cross-section of the process
n+p → p+n in the ”forward” direction for unpolarized nucleons can be presented in the
following form, distinguishing the spin-independent and spin-dependent parts:

dσnp→pn

dΩ
(0) = |c1|2 + 2|c2|2 + |c3|2 =

dσ
(si)
np→pn

dΩ
(0) +

dσ
(sd)
np→pn

dΩ
(0) . (16)

In doing so, the spin-independent part
dσ

(si)
np→pn

dΩ (0) in Eq.(16) is determined by the
difference of total cross-sections of the unpolarized proton-proton and neutron-proton
interaction:

dσ
(si)
np→pn

dΩ
(0) = |c1|2 =

k2

16π2
(σpp − σnp)

2(1 + α2) , (17)

where α = Re c1/Im c1. The spin-dependent part of the cross-section of the ”forward”
charge-exchange process is

dσ
(sd)
np→pn

dΩ
(0) = 2|c2|2 + |c3|2. (18)

Meantime, according to Eqs. (10), (12) and (13), the spin-dependent part of the cross-
section of the ”backward” elastic np-scattering is

dσ
(sd)
np→np

dΩ
(π) = 2|c̃2|2 + |c̃3|2. (19)

We see that
dσ

(sd)
np→pn

dΩ (0) 6= dσ
(sd)
np→np

dΩ (π) .

Further it is advisable to deal with the differential cross-section dσ
dt

∣∣∣
t=0

, being a

relativistic invariant (t = −(p1 − p2)
2 = (p − p′)2 − (E − E ′)2 is the square of the 4-

dimensional transferred momentum). In the c.m. frame we have: t = 2k2(1− cos θ) and
dσ
dt = (π/k2) dσ

dΩ . So, in this representation, the spin-independent and spin-dependent

parts of the differential cross-section of the ”forward” charge transfer process
dσnp→pn

dt

∣∣∣
t=0

are as follows:
dσ

(si)
np→pn

dt

∣∣∣
t=0

= (π/k2) |c1|2, dσ
(sd)
np→pn

dt

∣∣∣
t=0

= (π/k2) (2|c2|2 + |c3|2) , and we

may write, instead of Eq.(16):

dσnp→pn

dt

∣∣∣
t=0

=
dσ

(sd)
np→pn

dt

∣∣∣
t=0

+
1

16π
(σpp − σnp)

2(1 + α2) . (20)

Now it should be noted that, in the framework of the impulse approach, there exists a
simple connection between the spin-dependent part of the differential cross-section of the

charge-exchange reaction n + p → p + n at zero angle
dσ

(sd)
np→pn

dt

∣∣∣
t=0

( not the ”backward” elastic neutron-proton scattering, see Section 2) and the differential
cross-section of the deuteron charge-exchange breakup d+p → (pp)+n in the ”forward”

direction
dσdp→(pp)n

dt

∣∣∣
t=0

at the deuteron momentum kd = 2kn (kn is the the initial
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neutron momentum) . In the case of unpolarized particles we have [3,4,5]:

dσdp→(pp)n

dt

∣∣∣
t=0

=
2

3

dσ
(sd)
np→pn

dt

∣∣∣
t=0

. (21)

In doing so, this formula remains still valid if one takes into account the deuteron D-wave
state [5].

It is easy to understand also that, due to the isotopic invariance, the same relation
(like Eq. (21)) takes place for the process p + d → n + (pp) at the proton laboratory
momentum kp = kn and for the process n + d → p + (nn) at the neutron laboratory
momentum kn.

Thus, in principle, taking into account Eqs. (20) and (21),the modulus of the ratio
of the real and imaginary parts of the spin-independent charge transfer amplitude at
zero angle ( | α | ) may be determined using the experimental data on the total cross-
sections of interaction of unpolarized nucleons and on the differential cross-sections of
the ”forward” nucleon charge transfer process and the charge-exchange breakup of an
unpolarized deuteron d + p → (pp) + n in the ”forward” direction.

At present there are not yet final reliable experimental data on the differential cross-
section of the deuteron charge-exchange breakup on a proton. However, the analysis
shows: if we suppose that the real part of the spin-independent amplitude of charge
transfer n + p → p + n at zero angle is smaller or of the same order as compared with
the imaginary part (α2 ≤ 1), then it follows from the available experimental data on

the differential cross-section of charge transfer
dσnp→pn

dt

∣∣∣
t=0

and the data on the total

cross-sections σpp and σnp that the main contribution into the cross-section
dσnp→pn

dt

∣∣∣
t=0

is provided namely by the spin-dependent part
dσ

(sd)
np→pn

dt

∣∣∣
t=0

.

If the differential cross-section dσ
dt is given in the units of mbn/ (GeV

c )2 and the total
cross-sections are given in mbn, then the spin-independent part of the ”forward” charge
transfer cross-section may be expressed in the form :

dσ
(si)
np→pn

dt

∣∣∣
t=0

≈ 0.0512 (σpp − σnp)
2(1 + α2). (22)

Using (22) and the data from the works [6,7,8], we obtain the estimates of the ratio
dσ

(si)
np→pn

dt

∣∣∣
t=0

/
dσnp→pn

dt

∣∣∣
t=0

at different values of the neutron laboratory momentum kn:

1) kn = 0.7 GeV
c ;

dσnp→pn

dt

∣∣∣
t=0

= 268 mbn/ (GeV
c )2 ; σpp − σnp = −22.6 mbn;

dσ
(si)
np→pn

dt

∣∣∣
t=0

/
dσnp→pn

dt

∣∣∣
t=0

≈ 0.1 (1 + α2).

2) kn = 1.7 GeV
c ;

dσnp→pn

dt

∣∣∣
t=0

= 37.6 mbn/ (GeV
c )2 ; σpp − σnp = 10 mbn;

dσ
(si)
np→pn

dt

∣∣∣
t=0

/
dσnp→pn

dt

∣∣∣
t=0

≈ 0.136 (1 + α2).
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3) kn = 2.5 GeV
c ;

dσnp→pn

dt

∣∣∣
t=0

= 17.85 mbn/ (GeV
c )2 ; σpp − σnp = 5.5 mbn ;

dσ
(si)
np→pn

dt

∣∣∣
t=0

/
dσnp→pn

dt

∣∣∣
t=0

≈ 0.085 (1 + α2).

So, it is well seen that, assuming α2 . 1, the spin-dependent part
dσ

(sd)
np→pn

dt

∣∣∣
t=0

provides

at least (70÷ 90)% of the total magnitude of the ”forward” charge transfer cross-section.
The preliminary experimental data on the differential cross-section of ”forward” deuteron

charge-exchange breakup d+p → (pp)+n, obtained recently in Dubna (JINR, Laboratory
of High Energies), also confirm the conclusion about the predominant role of the spin-
dependent part of the differential cross-section of the nucleon charge-exchange reaction
n + p → p + n in the ”forward” direction.

This work is supported by Russian Foundation of Basic Research (Grant No. 05-02-
16674)
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Abstract

Comparing the respective structures of the correlators defining generalized and
transverse momentum dependent parton distributions, one finds possible relations
between these two objects. Although it looks like the relations found do not hold
in general, we show that they can be established at least in simple spectator model
calculations. In addition, we discuss these relations in the context of generalized
transverse momentum dependent parton distributions.

1 Introduction and definitions

Parton distributions are an essential tool for the QCD-description of hadronic scattering
processes. In particular, generalized parton distributions (GPDs) and transverse mo-
mentum dependent parton distributions (TMDs), which appear in connection with hard
exclusive and semi-inclusive reactions, respectively, attracted a lot of interest during the
last years. Although these two types of parton distributions are a priori two distinct
objects, recent work suggests possible relations between them [1–6]. In this note, we will
briefly summarize the current knowledge on these relations (as presented in the review
article [6]) and, in addition, also present new results from the analysis of generalized
transverse momentum dependent parton distributions (GTMDs).

Before discussing the relations between GPDs and TMDs we recall their definitions.
First of all, the leading twist GPDs of the nucleon for unpolarized quarks are defined
through

F q(x, ξ,∆T ; λ, λ′)=
1

2

∫
dz−

2π
eik·z 〈

p′; λ′
∣∣ ψ̄

(− 1
2
z
)
γ+WGPD ψ

(
1
2
z
) ∣∣p; λ

〉 ∣∣∣
z+=zT =0

=
1

2P+
ū(p′, λ′)

(
γ+ Hq(x, ξ, t) +

iσ+µ∆µ

2M
Eq(x, ξ, t)

)
u(p, λ) , (1)

with the average nucleon momentum P = 1
2
(p + p′) and the nucleon momentum transfer

∆ = p′ − p. The GPDs depend on the three kinematical variables

x =
k+

P+
, ξ = − ∆+

2P+
, t = ∆2 . (2)

Throughout this note, we disregard any dependence of the correlator in Eq. (1) on a
renormalization scale µ, as this does not affect the analysis of possible relations between
GPDs and TMDs.
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To derive these relations, it is convenient to work with the GPDs in impact parameter
instead of momentum space. This representation of the GPDs can be obtained by Fourier
transforming the correlator in Eq. (1) for ξ = 0,

F q(x, bT ; S) =

∫
d2∆T

(2π)2
e−i∆T ·bT F q(x, 0,∆T ; S) = Hq(x, b 2

T ) +
εij
T bi

T Sj
T

M

(
Eq(x, b 2

T )

)′
,

(3)
where S parametrizes all possible combinations of the helicities λ and λ′ as described
in Refs. [3, 6]. The GPDs Hq and Eq are the Fourier transformed GPDs Hq and Eq,
respectively, and the prime denotes the first derivative with respect to b 2

T . The correlator
in Eq. (3) can be interpreted as the probability density of finding an unpolarized quark
with longitudinal momentum fraction x at transverse position bT inside a transversely
polarized nucleon.

The second set of parton distributions we are interested in are the TMDs. The leading
twist TMDs of a nucleon for unpolarized quarks are defined through

Φq(x, kT ; S)=
1

2

∫
dz−

2π

d2zT

(2π)2
eik·z 〈

P ; S
∣∣ ψ̄

(− 1
2
z
)
γ+WTMD ψ

(
1
2
z
) ∣∣P ; S

〉 ∣∣∣
z+=0+

=f q
1 (x, k 2

T )− εij
T ki

T Sj
T

M
f⊥q

1T (x, k 2
T ) , (4)

where again we disregard any dependence on a renormalization scale µ. Similar to the
GPDs in impact parameter space the TMDs have a probability interpretation, too. The
correlator in Eq. (4) gives the probability of finding an unpolarized quark with longitudinal
momentum fraction x and transverse momentum kT inside a transversely polarized target.

2 Relations between GPDs and TMDs

Comparing the respective structures of the correlators in Eqs. (3) and (4) one finds that
they are identical after exchanging the impact parameter bT and the transverse parton
momentum kT . This, together with the similar probability interpretations of the corre-
lators, leads to the assumption that there might exist some relations between these two
objects.

Performing such a comparison for all leading twist parton distributions for quarks [3]
as well as for gluons [6], one finds the following set of possible relations, which can be
grouped into four different types according to the number of derivatives on the GPD side:

Hq/g ↔ f
q/g
1 , H̃q/g ↔ g

q/g
1L ,(

Hq
T − b 2

T

M2 ∆bH̃q
T

)
,↔

(
hq

1T +
k 2

T

2M2 h⊥q
1T

)
(5)

(
Eq/g

)′
↔ −f

⊥q/g
1T ,

(
Eq

T + 2H̃q
T

)′
↔ −h⊥q

1 ,
(
Hg

T − b 2
T

M2 ∆bH̃g
T

)′
↔−1

2

(
hg

1T +
k 2

T

2M2 h⊥g
1T

)
, (6)

(
H̃q

T

)′′
↔ 1

2
h⊥q

1T ,
(
Eg

T + 2H̃g
T

)′′
↔ 1

2
h⊥g

1 , (7)
(
H̃g

T

)′′′
↔−1

4
h⊥g

1T . (8)
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3 Model results. . .

To check whether the possible relations in Eqs. (5)–(8) really exist, we performed model
calculations in two simple spectator models: a scalar diquark spectator model of the
nucleon and a quark target model in perturbative QCD. In these models we were able to
confirm all relations to lowest order in perturbation theory [6].

For the relations of first type in Eq. (5) this is not very surprising as it is a well known
model-independent property of the involved GPDs and TMDs that they can be reduced
to the same forward parton distributions,

q(x) =

∫
d2bT Hq(x, b 2

T ) =

∫
d2kT f q

1 (x, k 2
T ) (9)

and analogous for all other relations in Eq. (5).
In the case of the relations of second type in Eq. (6) we were able to reproduce the

results of Refs. [2, 5] and to generalize them [6]. We suppose, however, that the explicit
form for the relations in Eq. (6) presented in Refs. [2, 5, 6] is only valid in the performed
lowest order model calculations and not in general, because it will probably break down
once higher order contributions are taken into account [6]. Nevertheless, this type of
relations has very interesting phenomenological implications [1–6].

For the relations of third type in Eq. (7) we found that

∫
d2bT b 2

T

(
H̃q

T (x, b 2
T )

)′′
=

∫
d2kT k 2

T
1
2
h⊥q

1T (x, k 2
T ) (10)

and analogous for the other relation in Eq. (7). The explicit form in Eq. (10) for the
relations in Eq. (7), which has been presented in Ref. [6] for the first time, looks very
similar to the relations of first type in Eq. (9), but so far it is not known whether Eq. (10)
is restricted to model calculations or whether it could even be valid in general.

Eventually, we were not able to find an explicit form for the relation of fourth type in
Eq. (8). Nevertheless, this relation is trivially fulfilled in our model calculations, as the
corresponding GPD H̃g

T and TMD h⊥g
1T vanish.

4 . . . and beyond

So far, from the relations between GPDs and TMDs in Eqs. (5)–(8) only those of first type
in Eq. (5) are known to be valid in general. Therefore, in order to obtain more information
on the status of the other types of relations, we analyzed generalized transverse momentum
dependent parton distributions (GTMDs). For a spinless target, these are defined through

W q[Γ](x, ξ, kT ,∆T ) =
1

2

∫
dz−

2π

d2zT

(2π)2
eik·z 〈

p′
∣∣ ψ̄

(− 1
2
z
)
ΓWGTMD ψ

(
1
2
z
) ∣∣p〉

∣∣∣
z+=0+

, (11)

which reduces to the correlator for GPDs in Eq. (1) by integration over kT and to the one
for TMDs in Eq. (4) by setting ∆ = 0. Note that the correlator in Eq. (11) is directly
related to the Wigner distributions discussed in Refs. [7, 8].

Using the constraints from hermiticity, parity, and time-reversal, the correlator in
Eq. (11) can be parametrized by 16 GTMDs, which are complex-valued functions of x, ξ,
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k2
T , k ·∆, and ∆2

T . The four leading twist quark GTMDs of an unpolarized target are

W q[γ+]=F q
1 (x, ξ, k2

T ,kT ·∆T ,∆2
T ) , (12)

W q[γ+γ5]=
iεij

T ki
T ∆j

T

M2
G̃q

1(x, ξ, k2
T ,kT ·∆T ,∆2

T ) , (13)

W q[iσj+γ5]=
iεij

T ki
T

M
Hk,q

1 (x, ξ, k2
T ,kT ·∆T ,∆2

T ) +
iεij

T ∆i
T

M
H∆,q

1 (x, ξ, k2
T ,kT ·∆T ,∆2

T ) . (14)

From this parametrization one immediately recovers the model-independent validity of
the relations of first type in Eq. (5), as the involved GPDs and TMDs are simply limiting
cases of the same GTMDs,

∫
d2bT Hq(x, b 2

T ) =

∫
d2kT f q

1 (x, k 2
T ) =

∫
d2kT Re

[
F q

1 (x, 0,k 2
T , 0, 0)

]
. (15)

For the relations of second type in Eq. (6) one finds, however, that

(
Eq

T + 2H̃q
T

)′
∼ Re

[
1
2

(
k1

T

∆1
T

+
k2

T

∆2
T

)
Hk,q

1 + H∆,q
1

]
and h⊥q

1 ∼ Im
[
Hk,q

1

]
, (16)

so that the involved GPDs and TMDs are limiting cases of two independent functions,
the real and the imaginary part of some GTMDs. This supports the understanding that
the relations in Eq. (6) do not hold in general. At the present stage our analysis does not
permit any statement about the relations of third or fourth type in Eqs. (7) and (8), as
here we would have to consider, in particular, target polarization.

5 Conclusions

We showed that model-independent considerations suggest possible relations between
GPDs and TMDs. From these relations, so far only the relations of first type are known to
be valid in general. The relations of second type are probably only valid in simple model
calculations, which is supported by our analysis of GTMDs. It will be very interesting
to redo this analysis for the relations of third and fourth type, as at least the relations of
third type are similar to those of first type and could therefore be valid in general.
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Discussion

Q. (A.Efremov, JINR, Dubna) If the relation of type-3 is valid for any n, then it has
to be a direct relation between GPD and TMD functions. Is it correct?

A. Yes, for the model calculations we performed so far, this is correct. But we expect,
that in general, if the relations of third type should exist at all, they will probably only
hold for some moments of GPDs and TMDs like the relations of first type. However, this
question is still under investigation.
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Abstract

The differential cross-sections are calculated for proton-proton and proton-anti-
proton elastic scattering using the phenomenological model based on the analytic
parameterizations for global scattering parameters (total cross-section and ρ - para-
meter), crossing symmetry and derivative relations. We confront our model predic-
tions with experimental data in wide range of energy and momentum transfer. The
suggested method may be useful for PAX Program (GSI) as well as for high-energy
experiments at RHIC and LHC.

The elastic proton-proton and proton-antiproton interactions allow a unique access
to a number of fundamental physics observables. Some important experimental pp and
pp̄ data are drastically different in the energy region of

√
s < 50 GeV and become close

each to other at higher energies approaching the asymptotical expectation. We have
proposed earlier two analytical presentations for full set of helicity amplitudes for pp̄
elastic scattering and have made predictions for t-dependences of some spin observables
in first presentation [1]. In present paper we focus our attention on predictions for pp, pp̄
elastic reactions in second approach.

We use the following analytic parameterization of averaged spin non-flip amplitude
for elastic proton-proton scattering:

Φ+ (s, t) =
3∑

i=1

Aiδi exp (−Bi (s, t) t/2) , (1)

where Ai are free complex constant parameters, the slope parameters Bi (s, t) are func-
tions of s and t, δi = 1, i = 1, 3, and δ2 = exp (−iβπt/2) describes experimental data
in the region of diffraction deep, β - free parameter. We have approximated the exper-
imental data for slope parameter in order to derive the analytic energy dependence for
Bi (s, t) , i = 1, 2 and the B3 (s, t) was remained as a free parameter. The results for dif-
ferent approximations are shown on Fig. 1a, 1b for energy dependence of slope parameter
at low and intermediate t values correspondingly. We choose the following approximation
for the slope parameter:

Bi (s, t) = Bi
0 + ai

1 (s/s1)
ai
2 + 2αi [ln (s/s1)]

ai
3 , i = 1, 2, (2)

where s1 = 1 GeV2, a1
3 = 1 - fixed and a2

3 = 1.500± 0.005. One can see the parameteriza-
tion (2) describes all experimental data quite reasonably for low t domain (χ2/ndf=2.54).
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The new experimental data are necessaire at high (RHIC, LHC) energies for intermedi-
ate t values in order to derive more unambiguous energy dependence of slope parameter.
But now the function (2) approximates this dependence reasonably (χ2/ndf=4.66) and
predicts the values of B2 (s, t) in high energy domain which agree qualitatively with the-
oretical expectation Bpp (s, t) ' Bpp̄ (s, t) at asymptotic energies.
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Figure 1. Energy dependence of slope parameter for low (a) and medium (b) |t| values. The
data are drawn from the Durham Database Group (UK). Thin solid line in (b) is a Regge

model prediction from [2].

We have followed the standard way [3] and have assumed that the approximation (1)
describes the spin non-flip helicity amplitude at |t| ≥ 0 (GeV/c)2. There are significant
data set for total cross-section (σpp

tot) and ρpp = [<Φ+ (s, t = 0)] / [=Φ+ (s, t = 0)]. We
choose these two characteristics for present analysis in order to decrease the amount of
free parameters in (1). The PAX project (GSI), in particular, plans to study the pp̄
collisions at energies

√
s > 3 GeV. Therefore we have to investigate this energy domain

at least in order to obtain the reasonable energy dependence of free parameters in spin
non-flip amplitude.

We choose the following parameterization for proton-proton total cross-section:

σpp
tot (s) =

3∑
j=1

(σpp
tot)j ,

(σpp
tot)1 = a1

(
s1

s− 4m2
p

)a2

; (σpp
tot)2 = a3

ξa6−1
J1(ξ)
(ξ)

, ξ = a4 (s/s1 − a5) ;

(σpp
tot)3 = Zpp + B ln2 (s/s0) + Y pp

1 (s1/s)
η1 − Y pp

2 (s1/s)
η2 .

(3)

The sum of first two terms is the modification of standard total cross section parameter-
ization from [4] for

√
s>5 GeV.

The different approximations are shown at Fig.2, the fit quality for (3) is χ2/ndf=6.95
when using all available experimental data. As seen the Donnachie - Landshoff (DL),
Kang - Nikolescu (KN) and standard Particle Data Group (PDG) parameterizations do
not describe the proton-proton total cross section at low energies. On the other side
the suggested approach describes the σpp

tot at qualitative level reasonably but this fit is
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still statistically unacceptable. Therefore the problem of description the low energy data
remains open.

Based on the defined analytical parameterization for total cross-section (3) one can
try to obtain the corresponding parameterization for ρpp-parameter from analyticity and
the dispersion relations written in the derivative form. We use the following analytic
parameterization for ρpp-parameter:

ρpp =
1

2σpp
tot

[
2σpp

totΛ +
3∑

i=1

(
Ki

s
+ πδi

d (σpp
tot)

d ln (s/s1)

)]
, Λ = λ1

J1 (λ2 (s/s1 − λ3))

(λ2 (s/s1 − λ3))
λ4

, (4)
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Figure 2. Energy dependences for σpp
tot (a,b) and for

ρpp (c,d). Experimental data are from [4]. Solid line
is the present work parameterization, other curves:
dashed �- DL, dotted �- KN models [5], dot-dashed
�- PDG parameterization [4].

where the additional term Λ describes
the low energy data, the σpp

tot are
defined above. The first term and
Ki, δi, i = 1−3 can be derived from fit
of experimental data. The fit quality
for (4) is χ2/ndf=7.8 for all experi-
mental data. For comparison the fit
quality is equal 54.4 for PDG param-
eterization, for example. There are a
phase shift analysis results at energy
lower than 5 GeV and we plan to look
at these techniques and improve our
description of the experimental data
for low energies.

As seen from Fig. 2 the different
models predict quite similar results
for σpp

tot (Fig. 2b) and for ρ (Fig. 2d)
at high energies, but they valid only
above 10 GeV or so. These models
differ at low energies

√
s < 5 GeV

dramatically (Fig. 2a, 2c). Thus we
approximated the global scattering parameters at qualitative level for all available energy
domain and defined A1.

The remaining parameters in (1) are defined by fit of experimental proton-proton data
for differential cross-section dσ/dt, in particular. We have used the method from [1] in
order to obtain the full set of helicity amplitudes for proton-proton elastic scattering.

We have considered the data for pp differential cross-section in wide energy domain
(
√

s'2−62 GeV) and for range of square of transfer momentum t' 10−2−10 (GeV/c)2.
Experimental data and corresponding fits are shown on Fig. 3a for some initial energies.
One can see that our parameterization describes experimental points well at any energies
understudy and up to t ∼ 9 (GeV/c)2 at quantitative level. Disagreement between the
experimental data and approximation curves at high t is expected: the high t domain is
described by power dependence inspired pQCD.

We have considered the large set of available experimental data for pp̄ differential
cross-section. Analytic curves contradict with experimental data and some other models
(Fig. 3b). Our approach describes experimental data fairly well at energies

√
s ≥ 19
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Figure 3. Differential cross sections for elastic pp (a) and pp̄ (b) scattering. A factor 10−2

between each successive energy is omitted. Experimental data are from the Durham Database
Group (UK) for pp and from [6,7] for pp̄. Solid lines are predictions of present work, other

curves at (b): dashed �- Regge-pole [6], dotted �- mAQ [7] model prediction.

GeV at all t values and it’s close to the modified additive quark (mAQ) model. But our
approach contradicts to experimental data and Regge model predictions at low energies.

In summary, the new analytic approach for full set of helicity amplitudes for elastic pp
collisions allows to describe well proton-proton experimental differential cross section at√

s'2 − 62 GeV and up to t∼9 (GeV/c)2. Full set of helicity amplitudes for pp̄ elastic
scattering is derived based on the known helicity amplitude parameterization for pp and
crossing-symmetry. Analytic approach describes experimental pp̄ data well at

√
s ≥ 19

GeV and for low and intermediate t value, t < 1.5 (GeV/c)2.
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Abstract

We explore the potential of e+e− International Linear Collider (ILC) to study
four-fermion contact interactions in fermion pair production process e+e− → f̄f .
We stress the role played by the initial state polarization to increase the reach of
this machine to discover of the new phenomena. Discovery limits are discussed in a
model-independent way.

A very general framework in which to search for the effect of new physics is the four-
fermion contact interaction. In this framework the Standard Model (SM) Lagrangian
for

e+ + e− → f̄ + f (1)

(f = e, µ, τ, c, b) is extended by a term describing a new effective contact interaction
(CI) with an unknown coupling constants g2

eff and an energy scale Λ. For the process
(1) we consider the flavor-diagonal, helicity conserving eeff contact-interaction effective
Lagrangian [1]:

LCI =
1

1 + δef

∑

α,β

g2
eff εαβ (ēαγµeα)

(
f̄βγµfβ

)
. (2)

In Eq. (2): α, β = L, R denote left- or right-handed fermion helicities, δef = 1 for Bhabha
scattering e+e− → e+e−. The CI coupling constants in Eq. (2) are parameterized in
terms of corresponding mass scales as εαβ = ηαβ/Λ2

αβ and one assumes g2
eff = 4π. Also, by

convention, one takes |ηαβ| = 1 or ηαβ = 0, leaving the energy scales Λαβ as free, a priori
independent, parameters.

For the Bhabha scattering, Eq. (2) envisages the existence of three independent CI
models, each one contributing to individual helicity amplitudes or combinations of them,
with a priori free, and nonvanishing, coefficients (basically, εLL, εRR and εLR = εRL com-
bined with the ± signs). For the processes (1) with f 6= e there are four independent
CI couplings. Correspondingly, in principle, a model-independent analysis of the data
should account for the situation where the full set of couplings of Eq. (2) is included in
the expression for the cross section. Potentially, in this case, the different CI couplings
may interfere and such interference could substantially weaken the bounds. To this aim,
in the case of the processes (1) at the ILC considered here, a possibility is offered by ini-
tial beam polarization to disentangle the constraints on the corresponding CI constants.
In this note, we wish to present a model-independent analysis of the CI based on the
polarized differential distributions of the final fermions. We stress the role played by the
initial state polarization to increase the reach of the ILC to discover of the CI effects.
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The relative deviation of an observable O from the SM predictions due to the new
physics (NP) reads:

∆(O) =
O(SM + NP)−O(SM)

O(SM)
, (3)

and, as anticipated, we concentrate on the polarized differential cross section, O ≡
dσ(P−, P+)/d cos θ.

To derive the constraints on the models, one has to compare the theoretical devia-
tions from the SM predictions, that are functions of Λs, to the foreseen experimental
uncertainties on the differential cross sections. To this purpose we introduce χ2 function
as:

χ2(O) =
∑

{P−, P+}

∑

bins

(
∆(O)bin

δObin

)2

. (4)

Here, for the individual processes, the cross sections for the different initial polarization
configurations are combined in the χ2, and δO denotes the expected experimental relative
uncertainty (statistical plus systematic one). As indicated in Eq. (4), we divide the angular
range into bins. For Bhabha scattering, the cut angular range | cos θ| < 0.9 is divided
into ten equal-size bins. Similarly, for annihilation into fermions pairs (f = µ, τ, c, b) we
consider the analogous binning of the cut angular range | cos θ| < 0.98.

Table 1: 95% C.L. model-dependent discovery reaches (in TeV). Left entry in each col-
umn refers to the unpolarized beams (|P−|, |P+|)=(0,0), while the right entry corresponds to
(|P−|,|P+|)=(0.8, 0.3) at

√
s = 0.5 TeV, Lint = 500 fb−1 and (|P−|,|P+|)=(0.8, 0.6) at

√
s = 1

TeV, Lint = 1000 fb−1, respectively.

Processes
Model e+e− → e+e− e+e− → l+l− e+e− → b̄b e+e− → c̄c√

s = 0.5 TeV; Lint = 500 fb−1

Λef
V V 128.3; 136.7 136.4; 144.2 115.8; 137.4 128.3; 136.7

Λef
AA 76.1; 90.3 122.4; 129.5 116.7; 139.5 116.9; 124.8

Λef
LL 66.2; 82.7 81.9; 98.6 96.9; 105.7 84.1; 96.6

Λef
RR 64.0; 81.5 78.4; 97.7 64.4; 98.0 71.5; 95.3

Λef
LR 94.9; 100.1 74.1; 90.2 76.0; 95.9 54.5; 79.0

Λef
RL ΛRL = ΛLR 74.0; 90.6 70.9; 85.5 78.2; 86.5√

s = 1 TeV; Lint = 1000 fb−1

Λef
V V 223.3; 237.2 230.2; 254.1 196.2; 245.5 216.7; 241.4

Λef
AA 133.6; 187.5 206.5; 228.0 196.6; 249.3 197.5; 220.2

Λef
LL 119.3; 151.9 138.3; 176.0 163.4; 187.5 141.7; 171.8

Λef
RR 114.9; 150.5 132.3; 174.6 109.4; 180.1 120.7; 171.3

Λef
LR 160.0; 179.7 125.3; 161.5 126.2; 171.3 94.2; 145.4

Λef
RL ΛRL = ΛLR 125.0; 162.2 121.3; 153.1 131.8; 153.8

For the Bhabha process, we combine the cross sections with the following initial elec-
tron and positron longitudinal polarizations: {P−, P+} = (|P−|,−|P+|); (−|P−|, |P+|;
(|P−|, |P+|); (−|P−|,−|P+|). For the processes in Eq. (1), with f 6= e, we limit to
combining the (P−, P+) = (|P−|,−|P+|) and (−|P−|, |P+|) polarization configurations.
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Figure 1. Two-dimensional projection of
the 95% C.L. allowed region for unpolar-
ized beams (P− = P+ = 0), polarized
only electrons (P− 6= 0, P+ = 0) and both
beams polarized (P− 6= 0, P+ 6= 0).

Regarding the ILC energy and time-
integrated luminosity, we take

√
s = 0.5 TeV

with Lint = 500 fb−1, and
√

s = 1 TeV with
Lint = 1000 fb−1. The assumed reconstruction
efficiencies, that determine the expected statisti-
cal uncertainties, are 100% for e+e− final pairs;
95% for final l+l− events (l = µ, τ); 35% and 60%
for cc̄ and bb̄, respectively. The major systematic
uncertainties are found to originate from uncer-
tainties on beams polarizations and on the time-
integrated luminosity: we assume δP−/P− =
δP+/P+ = 0.1% and δLint/Lint = 0.5%, respec-
tively.

As theoretical inputs, for the SM amplitudes
we use the effective Born approximation taking
into account electroweak corrections to propa-
gators and vertices, with mtop = 175 GeV and
mH = 120 GeV. Concerning the O(α) QED cor-
rections, the (numerically dominant) effects from
initial-state radiation are accounted for by a
structure function approach including both hard
and soft photon emission, and by a flux factor
method, respectively.

The expected discovery reaches on the contactlike effective interactions are assessed by
assuming a situation where no deviation from the SM predictions is observed within the
experimental uncertainty. Accordingly, the corresponding upper limits on the accessible
values of Λs are determined by the condition χ2(O) ≤ χ2

CL, and we take χ2
CL = 3.84 for

a 95% C.L. In Table 1, we present the numerical results for model-dependent (varying
only one CI parameter at a time) constraints on the eeff contact interactions from the
processes (1).

The model-independent reach on the CI couplings, and the corresponding constraints
on their allowed values in the case of no effect observed, can be estimated by the method
based on the covariance matrix [2, 3] adapted for such kind of analysis. In this approach
model-independent allowed domains in the three- or four-dimensional CI parameter space
to 95% confidence level are obtained from the error contours determined by the quadratic
form in εαβ that can be written for Bhabha scattering as:

(εLL εLR εRR) W−1




εLL

εLR

εRR


 = w2, (5)

where W−1 being the inverse covariance matrix and w2 = 7.82. In this case the quadratic
form (5) defines a three-dimensional surface in the (εLL, εLR, εRR) parameter space. The
matrix W has the property that the square roots of the individual diagonal matrix ele-
ments,

√
Wαα, determine the projection of the surface onto the corresponding α-parameter

axis in the three-dimensional space, and has the meaning of the bound at 95% C.L. on
that parameter regardless of the values assumed for the others. As an example, in Fig. 1
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(a) (b)

Figure 2a. Model-independent discovery reaches on ΛLL at 95% C.L. obtained at different
combinations of polarizations (|P−|; |P+|)=(0; 0): open bars, (0.8; 0): gray bars and (0.8; 0.6):

black bars. Figure 2b. Same as in Fig. 2a but for ΛLR.

we show the planar region that is obtained from Bhabha scattering by projecting onto the
plane (εLL, εRR) the 95% C.L. allowed three-dimensional surface resulting from Eq. (5).
The model-independent limits on CI are shown in Fig. 2 for all fermion pair production
processes. Also, Fig. 1 and Fig. 2 clearly show the role of initial beam polarizations to
increase the sensitivity of observables to CI parameters.

Acknowledgments. This work is partially supported by the ICTP through the
OEA-Affiliated Centre-AC88.

References

[1] E. Eichten, K. Lane and M. E. Peskin, Phys. Rev. Lett. 50, 811 (1983).

[2] F. Cuypers, P. Gambino, Phys. Lett. B388, 211 (1996).

[3] A. A. Babich, P. Osland, A. A. Pankov and N. Paver, Phys. Lett. B518, 128 (2001).

Discussion

Comm. (J.Soffer, Temple Univ.,Philadelphia) I was glad to hear your talk and I
would like to remind you that we have also emphasized the importance of polarization
in e+e− colliders in connection with the discovering of Susy particles (see NPB259, 365
(1985), NP262, 495 (1985))
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Abstract

The recent data on the transverse single spin asymmetries A
sin(φh+φS)
UT and A

sin(φh−φS)
UT

from HERMES and COMPASS Collaborations are analyzed within LO parton
model with unintegrated parton distribution and fragmentation functions. A fit of
SIDIS data from HERMES and COMPASS Collaboration and BELLE e+e− data
is performed leading to the extraction of favoured and unfavoured Collins fragmen-
tation functions and transversity distribution. u and d Sivers distribution functions
and sea Sivers functions are evaluated.

The transversity distribution function, usually denoted as h1q(x,Q2) or ∆T q(x,Q2),
together with the unpolarized distribution functions q(x,Q2) and the helicity distributions
∆q(x,Q2), contains basic and necessary information for a full understanding of the quark
structure, in the collinear, k⊥ integrated configuration, of a polarized nucleon. The distri-
bution of transversely polarized quarks in a transversely polarized nucleon, ∆T q(x,Q2),
is so far unmeasured. The reason is that, being related to the expectation value of a
chiral-odd quark operator, it appears in physical processes which require a quark helicity
flip: this cannot be achieved in the usual inclusive DIS, due to the helicity conservation
of perturbative QED and QCD processes.

The problem of measuring the transversity distribution has been largely discussed
in the literature [1]. The most promising approach is considered the double transverse
spin asymmetry ATT in Drell-Yan processes in pp̄ interactions at a squared c.m. energy
of the order of 200 GeV2, which has been proposed by the PAX Collaboration [1, 3–5].
However, this requires the availability of polarized antiprotons, which is an interesting,
but formidable task in itself. Meanwhile, the most accessible channel, which involves the
convolution of the transversity distribution with the Collins fragmentation function [6],

is the azimuthal asymmetry A
sin(φh+φS)
UT in SIDIS processes, namely ` p↑ → ` π X. This is

the strategy being pursued by HERMES, COMPASS and JLab Collaborations.
A crucial improvement, towards the success of this strategy, has been recently achieved

thanks to the independent measurement of the Collins function (or rather, of the convo-
lution of two Collins functions), in e+e− → h1h2 X unpolarized processes by Belle Col-
laboration at KEK [7]. By combining the SIDIS experimental data from HERMES [23,8]
and COMPASS [9], with the Belle data, we have, for the first time, a large enough set
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of data points as to attempt a global fit which involves, as unknown functions, both the
transversity distributions and the Collins fragmentation functions of u and d quarks.

In Refs. [21,22], we studied the transverse single spin asymmetry A
sin(φh−φS)
UT observed

by the HERMES [23] and COMPASS [24] Collaborations in polarized SIDIS scattering
processes, `p (S) → `′hX. The quality of the data was such that, for the first time, we
could perform a rather well constrained extraction of the Sivers distribution function [11,
26] for u and d quarks, assuming the existence of a symmetric and negligibly small Sivers
sea. Very recently, higher precision data on single spin asymmetries for SIDIS pions and
kaons production have become available, see Refs. [27] and [28]: it is, therefore, of great
interest to reconsider the analysis performed in Ref. [22] to increase our understanding of
the properties of the Sivers functions, for both valence and sea contributions. In particular,
reduced error bars and hadron separation in both the HERMES and COMPASS sets of
experimental data, combined with the use of some newly released sets of pion and kaon
fragmentation functions [34] where quark and antiquark contributions are given separately
for u, d and s flavours, allow us not only a reliable determination of the valence u and
d flavour Sivers distribution functions, but also a first insight into the sea and strange
contributions to the Sivers functions, namely ∆Nfū/p↑ , ∆Nfd̄/p↑ , ∆Nfs/p↑ and ∆Nfs̄/p↑ .

We consider here Collins [6] sin(φS + φh) asymmetry in SIDIS,

Asin(φS+φh)
UT

= 2

∫
dφS dφh [dσ↑ − dσ↓] sin(φS + φh)∫

dφS dφh [dσ↑ + dσ↓]
, (1)

measured by the HERMES [23, 8] and COMPASS [9] Collaborations. This asymmetry
singles out the Collins fragmentation function:

Dh/q,s(z, p⊥) = Dh/q(z, p⊥) +
1

2
∆NDh/q↑(z, p⊥) ŝ · (p̂q × p̂⊥) , (2)

and transversity distribution,

∆T q(x) ≡ h1q(x) =

∫
d2k⊥ ∆T q(x, k⊥) , (3)

The transversity distributions and the Collins functions are unknown. We choose the
following simple parameterization

∆T q(x, k⊥) =
1

2
N T

q (x)
[
fq/p(x) + ∆q(x)

] e−k2
⊥/〈k2

⊥〉T

π〈k2
⊥〉T

(4)

∆NDh/q↑(z, p⊥) = 2N C
q (z) Dh/q(z) h(p⊥)

e−p2
⊥/〈p2

⊥〉

π〈p2
⊥〉

, (5)

with

N T
q (x) = NT

q xα(1− x)β (α + β)(α+β)

ααββ
(6)

N C
q (z) = NC

q zγ(1− z)δ (γ + δ)(γ+δ)

γγδδ
(7)

h(p⊥) =
√

2e
p⊥
M

e−p2
⊥/M2

, (8)
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and |NT
q |, |NC

q | ≤ 1. We let the coefficients NT
q and NC

q to be flavor dependent (q = u, d),
while all the exponents α, β, γ, δ and the dimensional parameter M are taken to be flavor
independent.

fq/p(x, k⊥) is the unpolarized transverse momentum dependent (TMD) distribution
function, while Dh/q(z, p⊥) is the unpolarized TMD fragmentation function:

fq/p(x, k⊥) = fq/p(x)
e−k2

⊥/〈k2
⊥〉

π〈k2
⊥〉

, (9)

Dh/q(z, p⊥) = Dh/q(z)
e−p2

⊥/〈p2
⊥〉

π〈p2
⊥〉

, (10)

where fq/p(x) and Dh/q(z) are the usual integrated parton distribution and fragmentation
functions, available in the literature; in particular we refer to Refs. [11,4] and [13]. Finally,
the average values of k2

⊥ and p2
⊥ are taken from Ref. [21], where they were obtained by

fitting the azimuthal dependence of SIDIS unpolarized cross section:

〈k2
⊥〉 = 0.25 GeV2 〈p2

⊥〉 = 0.20 GeV2 . (11)

Notice that such values are assumed to be constant and flavor independent.
Notice that our parameterizations are devised in such a way that the transversity

distribution function automatically obeys the Soffer bound [14]

|∆T q(x)| ≤ 1

2

[
fq/p(x) + ∆q(x)

]
, (12)

and the Collins function satisfies the positivity bound

|∆NDh/q↑(z, p⊥)| ≤ 2Dh/q(z, p⊥) , (13)

since N T
q (x), N C

q (z) and h(p⊥) are normalized to be smaller than 1 in size for any value
of x, z and p⊥ respectively.

For the asymmetry we obtain (see Ref. [20]) in agreement with Refs. [15,16],

Asin(φS+φh)
UT

=

−PT

M

1− y

sxy2

√
2e
〈p2
⊥〉2C
〈p2
⊥〉

e−P 2
T /〈P 2

T 〉C

〈P 2
T 〉2C

∑
q

e2
q N T

q (x)
[
fq/p(x) + ∆q(x)

] N C
q (z) Dh/q(z)

e−P 2
T /〈P 2

T 〉

〈P 2
T 〉

[1 + (1− y)2]

sxy2

∑
q

e2
q fq/p(x) Dh/q(z)

,(14)

where

〈p2
⊥〉C

=
M2〈p2

⊥〉
M2 + 〈p2

⊥〉
,

〈P 2
T 〉 = 〈p2

⊥〉+ z2〈k2
⊥〉 , (15)

〈P 2
T 〉C

= 〈p2
⊥〉C

+ z2〈k2
⊥〉 .

Eq. (14) expresses Asin(φS+φh)
UT

in terms of the parameters α, β, γ, δ,NT
q , NC

q and M .
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In e+e− → h1h2 X process Collins fragmentation functions of two fragmenting quarks
generate an asymmetry (see Ref. [20]):

dσe+e−→h1h2X

dz1 dz2 d2p⊥1 d2p⊥2 d cos θ
=

3πα2

2s

∑
q

e2
q

{
(1 + cos2 θ) Dh1/q(z1, p⊥1) Dh2/q̄(z2, p⊥2)

+
1

4
sin2 θ ∆NDh1/q↑(z1, p⊥2) ∆NDh2/q̄↑(z2, p⊥2) cos(ϕ1 + ϕ2)

}
,(16)

in the reference frame so that the e+e− → q q̄ scattering occurs in the x̂z plane, with the
back-to-back quark and antiquark moving along the ẑ-axis.

We can now gather simultaneous information on the transversity distribution function
∆T q(x, k⊥) and the Collins fragmentation function ∆NDh/q↑(z, p⊥). To such a purpose we
perform a global best fit analysis of experimental data involving these functions, namely
the data from the SIDIS measurements by the HERMES [23,8] and COMPASS [9] Collab-
orations, and the data from e+e− → h1h2 X unpolarized processes by the Belle Collabora-
tion [7]. Our best fits (see Ref. [20]) of the experimental data from HERMES, COMPASS
and Belle are shown in Figs. 1, Figs. 2 and 3 respectively.
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Figure 1: Our results compared with HERMES data [23] on A
sin(φS+φh)
UT for π± production

(left panel) and COMPASS data on A
sin(φS+φh)
UT , for the production of positively and negatively

charged hadrons off a deuterium target [9] (right panel).

The SIDIS transverse Single Spin Asymmetry (SSA) A
sin(φh−φS)
UT measured by HER-

MES and COMPASS is defined as

Asin(φh−φS)
UT

= 2

∫
dφS dφh [dσ↑ − dσ↓] sin(φh − φS)∫

dφS dφh [dσ↑ + dσ↓]
, (17)

and shows the azimuthal modulation in the distribution function triggered by the cor-
relation between the nucleon spin and the quark’s intrinsic transverse momentum. This
is embodied in the Sivers distribution function ∆Nfq/p↑(x, k⊥), which gives the number
density of an unpolarized quark q with intrinsic transverse momentum k⊥ inside a trans-
versely polarized proton p↑, with three-momentum P and spin polarization vector S

fq/p↑(x, k⊥) = fq/p(x, k⊥) +
1

2
∆Nfq/p↑(x, k⊥) S · (P̂ × k̂⊥) (18)
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Figure 2: Data on two different azimuthal correlations in unpolarized e+e− → h1h2 X processes,
as measured by Belle Collaboration [7], compared to the curves obtained from our fit. The solid
(dashed) lines correspond to the global fit obtained including the A12(A0) asymmetry; the shaded
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Figure 3: First panel: x∆T u(x) (upper plot) and x∆T d(x) (lower plot), vs. x at Q2 = 2.4 GeV2.
The Soffer bound is also shown for comparison (bold blue line). Second panel: x∆T u(x, k⊥)
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In our analysis we will use u,d and s flavours for quark and antiquark. The Sivers
function is parametrized in terms of the unpolarized distribution function, as in Ref. [22],
in the following factorized form:

∆Nfq/p↑(x, k⊥) = 2Nq(x) h(k⊥) fq/p(x, k⊥) , (19)

where

Nq(x) = Nq xaq(1− x)bq
(aq + bq)

(aq+bq)

a
aq
q b

bq
q

, (20)

h(k⊥) =
√

2e
k⊥
M1

e−k2
⊥/M2

1 , (21)

where Nq, aq, bq and M1 (GeV/c) are free parameters to be determined by fitting the
experimental data.
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The A
sin(φh−φS)
UT single spin asymmetry corresponding to K+ production measured by

the HERMES Collaboration [35] is much larger than the analogous asymmetry for π+

in spite of “naive” expectation that K+ and π+ asymmetry are of the same size due
to u quark dominance. This apparent mismatch between experimental data and theory
expectations can easily be explained by some simple considerations on the properties of
kaon fragmentation functions. In a simple partonic model one can imagine a K+ meson
being produced in SIDIS processes in two possible different ways: either from a u or
from an s̄ quark originating from the target proton. In the first case, the fragmentation
process consists in the ricombination of the u quark with a secondary ss̄ pair from the
(sea) vacuum, whereas in the second case the s̄ quark originating from the initial proton
recombines with a u quark from a secondary uū pair. In both cases a final K+ is generated.
It is intuitive to see that, due to mass effects, it should be more “expensive” to extract
an ss̄ than a uū pair: therefore, one expects the number density of K+ mesons inside
an s̄ quark to be larger than that of K+ mesons inside a u quark. As a matter of fact,
this simple property is not respected by any of the fragmentation function sets available
in the literature, see for instance Refs. [13, 30–32, 29], with one exception: very recently
De Florian, Sassot and Stratmann [33, 34] have presented a new global, very advanced
analysis of quark and anti-quark fragmentation functions for protons and charged hadrons
(separated among pions, kaons and residual mesons), in which DK+

s+s̄ and DK+

u+ū are fitted
independently, to account for the expectation that the formation of ss̄ secondary pairs
should be suppressed compared to uū. Indeed, they find DK+

s+s̄(z) > DK+

u+ū(z) over the
whole z range, in contrast to all other previous work.

Using the sets of Refs. [33, 34] we can describe both π and K production data. Our
best fits (see Ref. [36]) of the experimental data from HERMES, COMPASS in Figs. 4,
Figs. 5, and Figs. 6 respectively.
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Figure 4: The results obtained from our simultaneous fit of the SIDIS Asin φh−φS
UT

Sivers asymme-
tries (solid lines) are compared to HERMES experimental data [35] for pion and kaon production
(left and right panel respectively). The shaded area corresponds to the theoretical uncertainty
on the parameters, see text for further details.

We have performed a combined analysis of all experimental data on spin azimuthal
asymmetries which involve the transversity distributions of u and d quarks and the Collins
fragmentation functions, classified as favored (when the fragmenting quark is a valence
quark for the final hadron) and unfavored (when the fragmenting quark is not a valence
quark for the final hadron). We have fixed the total number of 9 parameters by best
fitting the HERMES, COMPASS and Belle data.

130



)
Sφ

 -
 

hφ
si

n
 (

U
T

A
)

Sφ
 -

 
hφ

si
n

 (
U

T
A

x z  (GeV)TP

-0.1

-0.05

0

0.05

0.1 +π COMPASS 2003-2004

-310 -210 -110 1

-0.1

-0.05

0

0.05

0.1 -π

0.2 0.4 0.6 0.8 0.5 1 1.5

)
Sφ

 -
 

hφ
si

n
 (

U
T

A
)

Sφ
 -

 
hφ

si
n

 (
U

T
A

x z  (GeV)TP

-0.1

-0.05

0

0.05

0.1 +K COMPASS 2003-2004

-310 -210 -110 1

-0.1

-0.05

0

0.05

0.1 -K

0.2 0.4 0.6 0.8 0.5 1 1.5
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Figure 6: Sivers distribution functions for u, d and s flavours as determined by our simultaneous
fit on HERMES and COMPASS (left panel). The results obtained from our fit using DSS FF
Ref. [34] are compared to the results we would find by using the Sivers functions as obtained in
our fit, but using the Kretzer and HKNS set [13]

All data can be accurately described, leading to the extraction of the favored and
unfavored Collins functions, in agreement with similar results previously obtained in the
literature [19, 18]. In addition, we have obtained, for the first time, an extraction of the
so far unknown transversity distributions for u and d quarks, h1u(x) and h1d(x). They
turn out to be opposite in sign, with |h1d(x)| smaller than |h1u(x)|, and both smaller than
their Soffer bound [14].

Usage of DSS FF [33, 34] allows to describe Sivers asymmetry data on π and K
production, u and d Sivers distribution functions and sea Sivers functions are evaluated
[36].
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Discussion

Comm. (S.Belostotsky, PNPI, St.Petersburg) 1. It is hard to accept that the expla-
nation of problem Sivers DF measurement done by HERMES using K+ and π+ is related
to big differences in FF. MC-tuning at HERMES to multiplicity is done well.
2. How p⊥ and k⊥ parameters were found from the fit to hadron TMD?

A. 1. It is exactly what I mean. None of the existing FF sets is able to describe
kaon multiplicities of HERMES. De Florian et al. set was constructed to describe kaon
production. In some sense it is equivalent to ”tuning” Monte Carlo.

2. < p⊥ > and < k⊥ > were fitted to SIDIS experimental data on unpolarized cross
sections measured by EMC. They describe very well < p⊥ > measured by HERMES. See
references in this contribution.

Q. (J.Nassalski, SINS, Warsaw) 1. Do we know the Q2-dependence of transverse quark
distributions?
2. Did you compare transversely and longitudinally polarized quark distributions?

A. 1. The evolution of transversity is known and is taken into account in our model.
Gluons decouple from transversity thus its evolution is different from ”usual” evolution
of unpolarized and helicity distributions.
2. Thank you for your suggestion, it is easy to do in this framework and should be very
instructive.

Q. (A.Efremov, JINR, Dubna) What was assumed about Sivers s̄ and d̄ in fitting K+

data?
A. In this analysis we separate sea Sivers functions for s̄ and d̄ quarks, x and k⊥

dependence is assumed to be the same. s̄ Sivers function and d̄ Sivers function were
found to have opposite signs.
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Abstract
Working with a completely collinear twist-3 factorized cross-section formula, we

identify two largely dominant partonic sub-processes, which contribute to the single-
spin asymmetries in semi-inclusive pion production, in the region of large pT and
medium–large xF .

1 Introduction

During the past years, different models have been developed in an attempt to explain the
mechanism behind the single-spin asymmetries observed experimentally in high-energy
hadronic interactions. The approach based on the study of the hadronic cross-section
contribution given by the twist-3 components in the operator product expansion of parton
matrix elements turns out to be particularly interesting: taking into account such terms
provides a consistent model. However, at the same time the complexity of the calculational
framework unfortunately increases, since twist-3 contribution are characterized by the
presence of an additional gauge-field term, which in turn implies an extra gluon in the
sub-processes, see for example [1, 2].

Restricting our analysis therefore to a particular class of processes (pion production
in proton–proton collisions), our principal aim is to identify which, if any, among all
possible partonic sub-processes provide the dominant contributions to the asymmetry
and to understand the origin of the suppression of the other terms. We can thus list a set
of criteria (which we call “selection rules”) summarizing these mechanisms. To simplify
our analysis, we shall extract a totally collinear cross-section formula, in the axial gauge
and in the limit of xF → 1, valid for large pT .

2 The model

We shall now go into detail, first by providing an expression for the twist-3 contribution
to the cross-section through the study of the pole behavior of the Bjorken variables, and
then by analyzing the causes of the suppression of many other sub-processes.

2.1 The poles

Working in axial gauge, thus setting A+ = 0, allows us to write the twist-3 contribution
to the cross-section in the following way:

dσ(τ=3) ' Tr
{
Φα

A(x1, x2)S
β(x1, x2)

}
g⊥αβ, (1)
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where Φα
A(x1, x2) is the multi-parton matrix element and the index α is completely trans-

verse, due to gauge choice. Moreover, in the axial gauge, the relation between Φα
A(x1, x2)

and Φα
F (x1, x2) assumes a very simple form (see [3], Eq. 7.3.30):

(x2 − x1)Φ
α
A(x1, x2) = −iΦα

F (x1, x2), (2)

demonstrating that if Φα
F (x1, x2) is different from zero for x1 = x2, then Φα

A(x1, x2) must
have a pole.

The analysis of the hard part is also crucial for the pole structure; there are two
different possibilities for the extra gluon, generated at twist-3, to interact significantly:
with the on-shell fragmenting parton (the so-called final-state interactions, FSI) and with
the on-shell parton coming from the unpolarized nucleon (initial-state interactions, ISI);
the important feature of these interactions is the presence of an extra internal propagator,
whose Dirac structure has the form

· · · 6k
2(P · k)

(
2kα − (x2 − x1)γα 6P

x2 − x1 − iε

)
· · · , (3)

where kµ is the four-momentum of the on-shell parton and P µ is the four-momentum of
the polarized hadron.

By also taking into account the pole behavior originating in the multi-parton matrix
element, it is possible to separate the trace over the Dirac indices into two traces, each
one with a different pole structure: the first, known as the single-pole contribution, where
the (x2 − x1) term in the numerator cancels the pole contribution of the matrix element,
and the other, called the double-pole contribution, where no such cancellation occurs. In
order to maintain the cross-section a real quantity, we are forced to take the imaginary
part of these poles, remembering that

Im

(
1

(x2 − x1 ± iε)

)
= ∓iπδ(x2 − x1), (4)

Im

(
1

(x2 − x1 ± iε)2

)
= ∓iπδ′(x2 − x1). (5)

Using these relations and integrating the derivative of the delta function by parts, we
obtain the following expression for the twist-3 contribution to the cross-section:

dσ(τ=3) =

∫
dx dx′

dz

z3
εPhS⊥

T

{
dGF (x, x)

dx
HDP (x, x′, z)

+ GF (x, x)HSP (x, x′, z)

}
f(x′) D(z), (6)

where we have omitted the color factors and the sum over flavor indices; εµν
T is the an-

tisymmetric tensor in the transverse directions, GF (x, x) is the multi-parton distribution
function evaluated at the pole (owing to the delta functions), f(x′) is the unpolarized
quark density and H represents the hard-scattering partonic cross-sections, with DP and
SP standing respectively for double pole and single pole.
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2.2 “Selection Rules”

Given such an expression for the cross-section at twist three, we list here the set of
principles we have adopted to identify the possibly dominant contributions:

- first, we expect DP contributions to be much more relevant than SP ones, owing
to the presence of the derivative of the multiparton density function, which endows
the asymmetry with a behavior in x roughly as AN ∼ 1

(1−x)
(for xF approaching

unity, the Bjorken x of the incoming parton also approaches unity), thus enhancing
the contribution of such terms for growing xF ;

- for xF → 1 and |T | ¿ |U | ¿ |S|, we expect the t-channel diagrams to be dominant;
for the same reason, remembering the power suppression of the hard parts given in
Eq. 3, we expect FSI to give a greater contribution than ISI;

- we neglected the contributions given by polarized gluons and by sea quarks since
these may reasonably be expected to be small.

In order to test our model and the selection rules described above, we have evaluated
the single-spin asymmetries for the reaction p↑p → π0+X for the STAR kinematical range
(
√

S = 200 GeV and 1.3GeV/c < PhT < 2.8GeV/c, see for example [4]). Restricting our
analysis to the contribution given only by the t-channel diagram involved in the process,
in Fig. 1a we present a comparison between the data points and the resulting prediction
given by our model; we note that there is good agreement with data for values of xF

greater than 0.4− 0.5.

(a) (b)

Figure 1. (a) The theoretical curve represents the prediction for the SSA in π0 production
evaluated at PhT = 2.3 GeV/c, compared to STAR data points. (b) Here we plot the same

curve as in Fig. 1a, compared to the FSI DP term in a quark–gluon (here labeled qg)
sub-process and the FSI DP in a quark–quark subprocess.

In Fig. 1b we also plot the total asymmetry, but together with the contribution given
by the two major sub-processes we have identified, i.e. the t-channel FSI DP terms.
Comparing these curves, we can see how the two sub-processes mentioned provide almost
entirely the value of the asymmetry in the kinematical range of xF > 0.4; for lower values
of this variable, we expect all the neglected contribution to become more important.
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3 Conclusions

To summarize then:

- we have obtained an expression providing predictions for the single-spin asymme-
tries for pion production consistent with data, in a completely collinear framework,
without appealing to any collinear expansion;

- using such an expression and a simple set of criteria, we have also been able to
identify two largely dominant subprocesses, which are almost entirely responsible
for the asymmetries in the xF → 1 limit.
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Abstract
Determination of the orbital angular momentum of the proton is a difficult but

important part of understanding fundamental structure. Insight can be gained from
suitable models of the gluon asymmetry applied to the Jz = 1/2 sum rule. We have
constrained the models of the asymmetry to gain possible scenarios for the angular
momentum of the proton constituents. Results and phenomenology for determining
Lz are presented.

1 Status of Proton Spin Structure

For the past twenty years, much work has been done to understand the spin structure
of the nucleons. There has been progress in determining the contribution of the lightest
quarks to the spin, but there is still uncertain knowledge about the gluon contribution.
Transversity studies have contributed additional insight about quark dynamics, but little
is known about the the orbital angular momentum of the constituents. [1] This paper
will summarize a project that provides a method of gaining insight into the nature of the
orbital angular momentum of the nucleon constituents.

Recent experiments [15, 4] have significantly lowered the measurement errors of the
quark longitudinal spin contribution (∆Σ) to the proton. The COMPASS collaboration
analysis quotes a result

∆Σ = 0.30± 0.01(stat)± 0.02(evol), all data (1)

while the HERMES collaboration analysis quotes a result

∆Σ = 0.330± 0.025(exp)± 0.011(th)± 0.028(evol), all data. (2)

These groups and others [1] have been working on providing a significant measure of the
proton’s spin weighted gluon density,

∆G(x, t) ≡ G++(x, t)−G+−(x, t), (3)

where x is the Bjorken scaling variable and t ≡ log(αs(Q
2
0)/ log(αs(Q

2)) is the Q2 evolution
variable. The combination of these measurements is summarized in terms of the Jz = 1

2

sum rule:

Jz =
1

2
≡ 1

2
∆Σ + ∆G + Lz. (4)

Here ∆Σ =
∫ 1

0
dx∆q(x, t) and ∆G =

∫ 1

0
dx∆G(x, t) are the projections of the spin carried

by all quarks and the gluons on the z-axis, respectively. Also Lz is the net z-component
of the orbital angular momentum of the constituents. We do not attempt to separate the
flavor components of Lz within the sum rule.
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2 Modeling the Gluon Asymmetry

Experimental groups at the COMPASS, HERMES and RHIC collaborations are measur-
ing both the gluon polarization and the asymmetry, A ≡ ∆G/G to determine the gluon
polarization [15,4,1]. Since there is no suitable theoretical model for ∆G, we have devised
a way to model the asymmetry, A(x, t) to gain insight into the structure of ∆G. This,
coupled with the Jz = 1

2
sum rule can then shed light on the nature of the orbital an-

gular momentum of the constituents, Lz. To model A(x, t), we write the polarized gluon
asymmetry using the decomposition

A(x, t) ≡ ∆G/G = A0(x) + ε(x, t), (5)

where

A0(x) ≡
[
(
∂∆G

∂t
)/(

∂G

∂t
)
]

(6)

is a scale invariant calculable reference form [5]. Here ε(x, t) represents the difference
between the calculated and measured asymmetry. Since ∆G is unknown, a useful form is
to write equation (5) as

∆G = A0(x) G(x, t) + ∆Gε(x). (7)

Although the quantity ∆Gε(x) is not a physical parameter, it allows the theoretical devel-
opment of the calculable quantity, A0. Once an asymmetry is generated from equations
(6) and (7), the measurable quantity A(x, t) can be compared to data. Thus, each Ansatz
for ∆Gε(x) gives a corresponding form for ∆G and a parameterization for Lz. These can
be compared to existing data to provide a range of suitable models for these contributions.

With the definition for the asymmetry in equation (6), the DGLAP equations can
then be used to evaluate the evolution terms on the right side.

A0 =

[
∆PGq ⊗∆q + ∆PGG ⊗∆G

PGq ⊗ q + PGG ⊗G

]
. (8)

The polarized gluon distribution in the numerator of equation (8) is replaced by ∆G ≡ A0·
G+∆Gε. For certain unpolarized distributions, there are points at which the denominator
vanishes. To avoid this, we write equation (8) as:

∂∆G

∂t
= (2/β0)

[
∆PLO

gq ⊗∆q + ∆PLO
gg ⊗ (A0 ·G + ∆Gε)

]
(9)

= A0 · ∂G

∂t
= (2/β0)A0

[
PLO

gq ⊗ q + PLO
gg ⊗G

]
.

The NLO form is essentially the same as equation (9) with the splitting functions PLO

replaced with their NLO counterparts. The quark and gluon unpolarized distributions
are CTEQ5 and the polarized quark distributions are a modified GGR set. [6]

There are constraints on A0(x) that must be imposed to satisfy the physical behavior
of the gluon asymmetry, A(x). These are:

• positivity: |A0(x)| ≤ 1 for all x, and

• endpoint values: A0(0) = 0 and A0(1) = 1
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Note that the constraint of A0 → 1 is built in to satisfy the assumption that the large x
parton distributions are dominated by the valence up quarks in the proton. The convo-
lutions are dominated by the quark terms, forcing the asymmetry to unity as x → 1. To
investigate the possible asymmetry models, we parameterize A0 in the form

A0 ≡ Axα − (B − 1)xβ + (B − A)xβ+1, (10)

which automatically satisfies the constraints that A0(0) = 0 and A0(1) = 1. Once ∆Gε(x)
is chosen, equation (9) is used to determine the parameters in equation (10).

3 Results and Conclusions

The models for ∆Gε(x) that led to asymmetries that satisfied these constraints were all in

the range | ∫ 1

0
∆Gεdx| ≤ 0.25, with positive and negative values included. Larger values

of ∆Gε violate one or more of the constraints. A representative sample of models that
satisfy the constraints are listed in Table 1.

Table 1: Gluon Asymmetry Parameters

∆Gε

∫ 1

0
∆Gεdx A0

∫ 1

0
∆Gdx

0 0 3x1.5 − 3x2.2 + x3.2 0.18
2(1− x)7 0.25 4x1.6 − 4x2.1 + x3.1 0.42
−2(1− x)7 −0.25 1.75x1.1 − 1.5x2.1 + 0.75x3.1 0.01

−90x2(1− x)7 −0.25 3.5x1.3 − 4.5x2.2 + 2x3.2 0.05
9x(1− x)7 0.125 3.75x1.4 − 3x1.6 + 0.25x2.6 0.29
−9x(1− x)7 −0.125 3.25x1.4 − 3.75x2.2 + 1.5x3.2 0.11
4.5x(1− x)7 0.0625 2x0.9 − 1.5x1.2 + 0.5x2.2 0.37
−4.5x(1− x)7 −0.0625 2.25x1.1 − 2.25x1.9 + x2.9 0.23

Note that the integrals for ∆G are all positive, ranging from about 0.01 to 0.42.
The models that gave negative values for these integrals did not agree with the existing
asymmetry data, reported at this workshop to be:

• ∆G/G = 0.016± 0.058± 0.055 at x = 0.09 from COMPASS, Q2 > 1 GeV2

• ∆G/G = 0.060± 0.31± 0.06 at x = 0.13 from COMPASS, Q2 < 1 GeV2

• ∆G/G = 0.078± 0.034± 0.011 at x = 0.204 from HERMES, factorization method

• ∆G/G = 0.071± 0.034± 0.010 at x = 0.222 from HERMES, approximate method.

The models in Table 1 that are within one σ of the preliminary data reported in these
proceedings are in the third, fourth and sixth rows, respectively. Plots of the full asym-
metry are shown in Figure 1. None of the models shown are ruled out by the data since
they fall within two σ of the data and our values of Q2 > 1 GeV2. All of these models
except for the fourth row in the table generate asymmetries A(x, t = 0) that are close to
A(x) = x. Ironically, early assumptions of the polarized gluon assumed this functional
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Figure 1: The gluon asymmetries most closely in agreement with data. Solid line, impulses and
linepoints represent the models in rows 3, 4 and 6 of Table 1 respectively.

form as a naive estimate. Next-to-leading order corrections to these asymmetries tend to
bring them less positive, but with the same general shape.

Using the data on ∆Σ, the relation between < ∆G > and < Lz > can be written as:

< ∆G >= 0.35− < Lz > ±0.02. (11)

The models agreeing most closely with existing data imply that ∆G is in the approximate
range (0 → 0.11). Thus, with existing data, we have the approximate relation 0.24 ≤
Lz ≤ 0.35 ± 0.02. Clearly, future measurements of ∆G and ∆G/G must increase the
kinematic range in x and Q2 with improved precision to better specify the appropriate
model of the asymmetry and extract the x dependence of the constituents’ orbital angular
momentum.
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Abstract

The Dirac and Pauli form factors of the proton and neutron are obtained in the
framework of the generalized parton distributions (GPDs) with some simple momen-
tum transfer dependence. It is shown that both sets of the existing experimental
data on the form factors, obtained by the Rosenbluth and polarization transfer, can
be described by changing only the slope of the GPDs E. The description of neutron
form factors is substantially better when the proton data obtained by the studies
of polarization transfer are used.

1 Introduction

The determination of the hadron structure is related with our understanding of the non-
perturbative properties of the QCD. Generalized parton distributions (GPDs) [1] for ξ = 0
provide information about the distribution of the partons in impact parameter space [2].
It is correlated with t-dependence of GPDs. Now we cannot obtain this dependence from
the first principles; instead, it may be obtained from the phenomenological description of
the nucleon electromagnetic form-factors.

Following [3], we limit ourselves to the case of GPDs with ξ = 0 corresponding to the
non-forward parton densities so that the form factors can be represented as

F q
1 (t) =

∫ 1

0

dx Hq(x, t), (1)

F q
2 (t) =

∫ 1

0

dx Eq(x, t), (2)

We assume the validity of Gaussian ansatz which was used in [3] to describe the form
factors of proton. However, this ansatz leads to a faster decrease in F1 at larger momentum
transfer. Although this region is, strictly speaking, outside the domain of validity of QCD
factorization involving GPDs, one may consider also the problem of t-dependence of GPDs
at large t [4]. It was shown that at large x → 1 and momentum transfer the behavior of
GPDs requires a (larger) power dependence on (1− x) in the t− dependent exponent:

Hq(x, t) ∼ exp[a (1− x)n t] q(x). (3)

with n ≥ 2. It was noted that n = 2 naturally gives rise to Drell-Yan-West duality
between parton distributions at large x and the form factors. Various more elaborated
parameterizations were considered later, see e.g. [5].
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2 Momentum transfer dependence of GPDs and pro-

ton form factors

Our proposal consists in the attempt to find a simple ansatz which will be good enough to
describe the form factors of the proton and neutron taking into account a number of new
data that have appeared in the last years. Let us keep the simple Gaussian ansatz but
using some new conditions. To support the proposal [3] and [4] we chose the t-dependence
of GPDs in the form

Hq(x, t) = q(x) exp[a+
(1− x)2

xb
t]; Eq(x, t) = Eq(x) exp[a−

(1− x)2

xb
t]. (4)

with the free parameters b = 0.4 (determined mostly by the power 2 of the factor 1− x),
a± (a+ - for H and a− - for E). All these parameters were fixed by analyzing the data
on the ratio of proton Pauli and Dirac form-factors. The function q(x) was taken in the
same normalization point µ2 = 1 GeV2 as in [6], which is based on the MRST2002 global
fit [11]. In all our calculations we restricted ourselves to the contributions of u and d
quarks in Hq and Eq with Eu(x) = ku/Nu(1 − x)κ1 u(x), Ed(x) = kd

Nd
(1 − x)κ2 d(x),

(where κ1 = 1.53 and κ2 = 0.31 [6]) According to the normalization of the Sachs form
factors, we have ku = 1.673, kd = 2.033, Nu = 1.53, Nd = 0.946. The parameters
a+ = 0.675 and a− correspond to the two experimental methods of the determination of
the ratio of the Pauli and Dirac form factors. Below we consider version (I - polarization
transfer method) leading to a− = 0.59 and version (II - Rosenbluth separation) leading
to a− = 0.7 .

The proton Dirac form factor, calculated in this work and multiplied by t2, is shown
in Fig.1a in comparison with the other works ( [6], [8]) and experimental data. One can
see, that our calculations sufficiently well reproduces the behavior of experimental data
not only at high t but also at low t.

The ratio of the Pauli to the Dirac proton form factors multiplied by t is shown in
Fig.1b. There are two different sets of experimental data. Firstly, one may extract the
form factors of the proton from the unpolarized differential cross section by the Rosenbluth

(a) (b)

Figure 1a. Proton Dirac form factor multiplied by t2 (hard line - the present work,
dot-dashed line - [3]; long-dashed line - [6]; the data for F p

1 are from [9].
Figure 1b. Ratio of the Pauli to Dirac proton form factors multiplied by t (hard and

dot-dashed lines correspond to version (I) and (II)) of the present work , dotted line - [10];
long-dashed line - [6]) ; the data are from [11].
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method. The other method uses the polarized differential cross section to obtain these
form factors. In our model we can obtain the results of both methods by changing the
slope of E . So we examined two versions differing by the slopes a−.

One can now use the information on the neutron form factors in order to choose the
more realistic version.

3 Neutron form factors

Using the model developed for proton we can calculate the neutron form factors. For that
the isotopic invariance can be used to relate the proton GPDs to the neutron ones, Hence,
we do not change any parameters and preserve the same t-dependence of GPDs as in the
case of proton.

Again, we take two values of the slope a− as in the case of the proton form factors
with the same size, which correspond to version (I) and version (II) below.

Our calculation of the Gn
E is shown in Fig. 2a. Evidently, the first version is in better

agreement with experimental data. Therefore, neutron data support the results obtained
by polarization transfer method.

This conclusion is supported by the calculations of Gn
M shown in Fig.2b. In this case,

it is clearly seen that our parameterization normalized using the proton form-factors ratio
from the polarization experiments describes these neutron data quite well.

4 Conclusions

The proposed version of Gaussian t-dependence of GPDs reproduces the electromagnetic
structure of the proton and neutron sufficiently well. We show that changing only the
slope parameters a− of Eq it is possible to obtain both the Rosenbluth and Polarization
data on the ratio of Pauli and dirac electromagnetic proton form-factors. The description
of neutron form-factors is essentially better with the slope parameter fitted to proton
polarization transfer data. This is in accordance with the recent theoretical analysis [14].

(a) (b)

Figure 2a. Gn
E (hard and dot-dashed lines correspond to version (I) and (II)); experimental

data from [12].
Figure 2b. Gn

M (hard and dot-dashed lines correspond to version (I) and (II)); experimental
data from [13].
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Abstract

The feasibility is studied of the asymmetries which give the direct access to
transversity as well as to kT dependent T-odd PDFs via investigation of unpolarized
and single-polarized Drell-Yan (DY) processes. The estimations performed for J-
PARC and RHIC kinematics demonstrate that there exist the such kinematical
regions where these asymmetries are presumably measurable. It is also studied the
model on J/ψ production allowing to extract parton distribution functions from the
combined analysis with both data on Drell-Yan and J/ψ production processes. It
is shown that this, so attractive from theoretical point of view, model, can be safely
used in the low energy region E <∼ 100GeV .

The leading twist kT integrated transversity PDF ∆T q ≡ h1q, as well as the leading
twist unpolarized q ≡ f1q and longitudinally polarized (helicity) ∆q ≡ g1q PDFs, is of the
crucial importance for understanding of the nucleon spin structure. At the same time,
nowadays the study of transverse momentum kT dependent PDFs is also among the special
issues in hadron physics. Of particular interest, are two leading-twist T-odd kT dependent
PDFs: Sivers function f⊥q

1T (x, k2
T ) and Boer-Mulders function h⊥1q(x, k2

T ). Recently it was
shown [2] that not only the double polarized DY processes but also the unpolarized and
single-polarized DY processes can give us an access to these PDFs. In the papers [2] we
considered the DY processes with antiproton-proton and pion-proton collisions. At the
same time the DY processes with proton-proton collisions are also very important since
they provide the access to sea PDFs. The such experiments are planned at RHIC and J-
PARC. Here we will consider the single-polarized DY process pp↑ → l+l−X and estimate
two types of single-spin asymmetries (SSA), which give us respectively access to Sivers
PDF [1]

A
sin(φ−φS)

qT
MN

UT = 2

∑
q e2

q[f̄
⊥(1)q
1T (xp↑)f1q(xp) + (q → q̄)]∑

q e2
q[f̄1q(xp↑)f1q(xp) + (q → q̄)]

, (1)

and to transversity and Boer-Mulders PDFs [2]:

A
sin(φ+φS)

qT
MN

UT = −
∑

q e2
q[h̄

⊥(1)
1q (xp)h1q(xp↑) + (q → q̄)]∑

q e2
q[f̄1q(xp)f1q(xp↑) + (q → q̄)]

. (2)

At first sight it seems that DY processes with proton-proton collisions are strongly
suppressed because there is no valence antiquark in the initial state there. However, on
the contrary to valence PDFs, the sea PDFs dominate at small x and rapidly die out
when x increases. Thus, in the case of pp↑ collisions it is very important to find the
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regions where the sea PDFs are given at small Bjorken x, while, by virtue of the relation
xpxp↑ = Q2/s, the valence PDFs occur at large x. In such the regions we can neglect the
contributions to SSA containing sea PDFs at large x and, thereby, to essentially cancel the
number of extra unknown PDFs entering the asymmetries. Let us consider two limiting
cases xp À xp↑ and xp ¿ xp↑

In the first case, neglecting the terms containing the sea PDFs at large xp, taking into
account the quark charges and u quark dominance at large x, Eqs. (1) and (2) are essen-

tially given by A
sin(φ−φS)

qT
MN

UT

∣∣∣
xpÀx

p↑
' 2

f̄
⊥(1)u
1T (x

p↑ )
f̄1u(x

p↑ )
, A

sin(φ+φS)
qT

MN
UT

∣∣∣
xpÀx

p↑
' −h

⊥(1)
1u (xp)h̄1u(x

p↑ )
f1u(xp)f̄1u(x

p↑ )
.

Analogously, in the second limiting case one gets A
sin(φ−φS)

qT
MN

UT

∣∣∣
xp¿x

p↑
' 2

f
⊥(1)u
1T (x

p↑ )
f1u(x

p↑ )
,

A
sin(φ+φS)

qT
MN

UT

∣∣∣
xp¿x

p↑
' − h̄

⊥(1)
1u (xp)h1u(x

p↑ )
f̄1u(xp)f1u(x

p↑ )
. It is easy to check that these approximations

are indeed work quite well.
To study the feasibility of SSA (1) and (2) for the kinematical conditions of J-PARC

facility, we performed the preliminary estimations using available in the literature informa-
tion on Sivers, Boer-Mulders and transversity PDFs. To this end we use the three different
fits for the Sivers function: fits I and II from Ref. [1] and also the latest fit from Ref. [3],
which we denote as fit III. For the first moment of the sea Sivers PDF entering Eq. (1) we

use the model (with the positive sign) proposed in Ref. [4]:
f
⊥(1)q̄
1T (x)

f
⊥(1)q
1T (x)

=
f1ū(x)+f1d̄(x)

f1u(x)+f1d(x)
. Since

neither the Boer-Mulders function nor its first moment are still not measured, we use in
our calculation the Boer’s model [5]. We also apply the following assumption for the first

moment of the sea Boer-Mulders PDF
h
⊥(1)
1q̄ (x)

h
⊥(1)
1q (x)

= f1q̄(x)

f1q(x)
. To estimate the transversity, we

applied two versions of evolution model [6]. First is the model where the Soffer inequality is
saturated [6]: h1q(x,Q2

0) = 1
2
[q(x,Q2

0) + ∆q(x,Q2
0)], h1q̄(x,Q2

0) = 1
2
[q̄(x,Q2

0) + ∆q̄(x,Q2
0)]

at low initial scale (Q2
0 = 0.23GeV 2), and then h1q, h1q̄ are evolved with DGLAP. In the

second version the valence and sea transversity PDFs are assumed to be equal to helicity
PDF ∆q at the same initial scale. The results for J-PARC kinematics are presented in
Fig. 1.

Looking at Fig. 1 we see that SSA A
sin(φ−φS)

qT
MN

UT is rather large, of order 5-10% in
the region xp > xp↑ and is much smaller in the region xp < xp↑ . On the contrary, the
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Figure 1. Estimation of SSA A
sin(φ−φS)
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UT (left) and A
sin(φ+φS)
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UT (right) for J-PARC,
s=100GeV 2, with Q2 = 2GeV 2.
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estimations performed for SSA A
sin(φ+φS)

qT
MN

UT (see Fig. 1), show that this asymmetry is
negligible in the region xp > xp↑ and take quite considerable values (also about 5-10%) in
the region xp < xp↑ .

In the case of fixed target mode (J-PARC facility) the regions xp > xp↑ and xp < xp↑

correspond to the options with the unpolarized beam/polarized target and the polar-
ized beam/unpolarized target, if the forward-geometry spectrometer would be applied.
Certainly, it would be very desirable to avoid the acceptance restriction applying the
forward-backward geometry spectrometer. In particular, studying the unpolarized and
single-polarized Drell-Yan processes in the limiting case xp ¿ xp↑ one can directly extract
the ratio of transversity and Boer-Mulders PDFs.

There exists also another very interesting possibility to extract PDFs we are interested
in. Namely, one can use [7,8] the close analogy (duality) between Drell-Yan (DY) H1H2 →
γ∗X → l+l−X and J/ψ H1H2 → J/ψX → l+l−X production mechanisms. It is assumed
that a such analogy/duality occurs at relatively low energies, where the gluon-gluon fusion
(gg) mechanism of J/ψ production is suppressed by the quark-antiquark fusion (q̄q).
Then, since J/ψ is a vector particle like γ and the helicity structure of q̄q(J/ψ) and
(q̄q)γ∗ couplings is the same, one can get the J/ψ production cross-section from the DY
process cross-section applying the simple replacement

16π2α2e2
q → (gJ/ψ

q )2 (g
J/ψ
` )2,

1

M4
→ 1

(M2 −M2
J/ψ)2 + M2

J/ψΓ2
J/ψ

, (3)

where M2 ≡ Q2 is the squared mass of dilepton pair, M2
J/ψ ' 9.59 GeV 2 is the squared

J/ψ mass and ΓJ/ψ is the full J/ψ width. It is believed that the model (3) can be applied
in both unpolarized [8] and polarized [7] cases. The advantage of model (3) is that in the
region of u-quark dominance all couplings exactly cancel out in the ratios of cross-sections,
so that they become absolutely the same for DY and J/ψ production processes. Certainly,
the such possibility to use J/ψ production for PDFs extraction is very attractive because
the dilepton production rate in the J/ψ production region is two orders of magnitude
higher than in the continuum region above the J/ψ mass. However, the “duality” model
(3) is applicable only in the such kinematical regions where the quark-antiquark fusion
process dominates while the gluon-gluon fusion is suppressed. To find these regions we,
besides of the model (3), will consider the most popular “gluon evaporation” model which
includes all elementary processes [9]. To cancel unknown constants, we will study not
absolute cross-sections but the ratios of the angle and xF integrated (xF > 0) cross-
sections on J/ψ production σpp/σπ±p, σpA/σπ±A and σpp/σp̄p.

First we consider the ratios σpp/σπ±p. The results in comparison with experimental
data (taken from [9], Tables 2 and 3) are presented in Fig.2. First of all, one can conclude
that in the low energy region, near the first experimental point

√
s ' 8.7 GeV , the curves

corresponding to “duality” model and to “gluon evaporation” model with and without
gluons almost merge and equally well describe the existing experimental data. This is not
surprising since the gluon contribution should be suppressed in the low energy region. At
the same time, the results in the high energy region occur to be rather surprising: even
at energies 150 GeV and 200 GeV the gluon contribution seems to be insignificant in the
ratios σpp/σπ±p and the curves with and without gluon contributions equally well describe
the existing data. The absolutely analogous picture occur also for the ratios σpA/σπ±A

with the different target nuclei.
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Figure 2. Ratios of cross-sections σpp/σπ−p (left) and σpp/σp̄p (right) on J/ψ production
calculated with two models in comparison with the experimental data.

The results for the ratios σpp/σp̄p in comparison with experimental data [10] are pre-
sented in Fig.2. While in the low energy region we again see the good agreement between
the models with and without gluons and the data, the situation in high energy region is
absolutely different. First, the gluon contribution becomes very significant in this kine-
matical region. Second, the “gluon evaporation” model gives a good description of the
high energy data only with the old parameterization [11]. However, when we apply the
modern and widely used GRV98 parameterization instead, we immediately get the strong
disagreement of “gluon evaporation” model prediction with the high energy data. Thus,
it seems that to pass this crucial test the gluon sector in the “gluon evaporation” model
should be essentially modified. In any case, all existing nowadays models on J/ψ produc-
tion should pass this test on high energy behaviour, and this is a subject of our future
investigation.
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Discussion

Comm. (O.Teryaev, JINR, Dubna) The pion-nucleon Drell-Yan process at COM-
PASS may provide (see recent paper of Bakulev, Stefanis and myself Phys. Rev. D76:
074032, 2007) the access to such an important ingredient of pion structure as light-cone
distribution amplitude, being similar to Generalized Parton Distributions.
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Q. (A.Vasiliev, IHEP, Protvino) If you substitute beam protons by pions with about
the same energy, how will it affects your calculations on Drell-Yan?

A. When we replace the incident protons by incident pions, then, due to the antiquark
in the valence state in pion, we have: 1) the integrated over xF absolute cross-sections are
higher 2) the asymmetries behaves in another way. Namely, they acquire their maximal
value near xF = 0 and decrease at high x.
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Abstract

The impact of the recent very precise CLAS and COMPASS g1/F1 data on polar-
ized parton densities and higher twist effects is discussed. It is demonstrated that
the low Q2 CLAS data improve essentially our knowledge of higher twist correc-
tions to the spin structure function g1, while the large Q2 COMPASS data influence
mainly the strange quark and gluon polarizations. It is also shown that the un-
certainties in the determination of the polarized parton densities are significantly
reduced. We find also that the present inclusive DIS data cannot rule out a negative
polarized and changing in sign gluon densities. The present status of the proton
spin sum rule is discussed.

1 Introduction

One of the features of polarized DIS is that a lot of the present data are in the preasymp-
totic region (Q2 ∼ 1− 5 GeV2, 4 GeV2 < W2 < 10 GeV2). This is especially the case for
the experiments performed at the Jefferson Laboratory. As was shown in [1], to confront
correctly the QCD predictions to the experimental data including the preasymptotic re-
gion, the non-perturbative higher twist (powers in 1/Q2) corrections to the nucleon spin
structure functions have to be taken into account too.

In this talk we discuss the impact of the recent very precise CLAS [2] and COMPASS [3]
inclusive polarized DIS data on the determination of both the longitudinal polarized par-
ton densities (PDFs) in the nucleon and the higher twist (HT) effects. These experiments
give important information about the nucleon structure in quite different kinematic re-
gions. While the CLAS data entirely belong to the preasymptotic region and as one can
expect they should mainly influence the higher twist effects, the COMPASS data on the
spin asymmetry Ad

1 are large Q2 data and they should affect mainly the polarized parton
densities. In addition, due to COMPASS measurements we have for the first time accu-
rate data at small x (0.004 < x < 0.015), which allow to determine the behavior of the
PDFs at small x region and therefore to calculate more precisely the first moment of the
nucleon spin structure g1.
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2 NLO QCD analysis of the data

The method used to extract simultaneously the polarized parton densities and higher
twist corrections to the spin-dependent nucleon structure function g1 is described in [1].
According to this method, the g1/F1 and A1(≈ g1/F1) data have been fitted using the
experimental data for the unpolarized structure function F1(x,Q2)

[
g1(x,Q2)

F1(x,Q2)

]

exp

⇔ g1(x,Q2)LT + h(x)/Q2

F1(x,Q2)exp

. (1)

As usual, F1 is replaced by its expression in terms of the usually extracted from unpo-
larized DIS experiments F2 and R and the phenomenological parameterizations of the
experimental data for F2(x,Q2) [4] and the ratio R(x,Q2) of the longitudinal to trans-
verse γN cross-sections [5] are used. Note that such a procedure is equivalent to a fit to
(g1)exp, but it is more precise than the fit to the g1 data themselves actually presented by
the experimental groups because here the g1 data are extracted in the same way for all of
the data sets.

In Eq. (1) ”LT” denotes the leading twist contribution to g1

g1(x,Q2)LT = g1(x,Q2)pQCD + hTMC(x,Q2)/Q2 +O(M4/Q4) , (2)

where g1(x,Q2)pQCD is the well known (logarithmic in Q2) NLO pQCD contribution

g1(x,Q2)pQCD =
1

2

Nf∑
q

e2
q[(∆q + ∆q̄)⊗ (1 +

αs(Q
2)

2π
δCq) +

αs(Q
2)

2π
∆G⊗ δCG

Nf

], (3)

and hTMC(x,Q2) are the calculable kinematic target mass corrections [6], which effectively
belong to the LT term. In Eq. (3), ∆q(x,Q2), ∆q̄(x,Q2) and ∆G(x,Q2) are quark, anti-
quark and gluon polarized densities in the proton, which evolve in Q2 according to the
spin-dependent NLO DGLAP equations. δC(x)q,G are the NLO spin-dependent Wilson
coefficient functions and the symbol ⊗ denotes the usual convolution in Bjorken x space.
Nf is the number of active flavors (Nf = 3 in our analysis). h(x)/Q2 in Eq. (1) corresponds
to the first term in the (Λ2

QCD/Q2)n expansion of higher twist contribution to g1. Its
logarithmic Q2 dependence, which is not known in QCD, is neglected. Compared to the
principal 1/Q2 dependence it is expected to be small and the accuracy of the present data
does not allow its determination. Therefore, the extracted from the data values of h(x)
correspond to the mean Q2 for each x-bean.

Let us discuss now how inclusion of the CLAS EG1 proton and deuteron g1/F1 data [2]
and the new COMPASS data on Ad

1 [3] influence our previous results [12] on polarized
PDFs and higher twist obtained from the NLO QCD fit to the world data [8], before the
CLAS and the latest COMPASS data were available.

3 Impact of the new data on polarized PDFs and HT

The new CLAS EG1/p, d data on g1/F1 (633 experimental points) [2] and the recent
COMPASS data on the longitudinal asymmetry Ad

1 (15 experimental points) [3] are at
very different kinematic regions. While the CLAS data are high-precision data at low
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Q2:{x ∼ 0.1 − 0.6, Q2 ∼ 1 − 5 GeV2, W > 2 GeV}, the COMPASS data are mainly
at large Q2:{0.0046 ≤ x ≤ 0.57, Q2 ∼ 1 − 55 GeV2} and the only precise data covering
the low x region. Therefore, they will play a different role in the improvement of the
determination of the polarized PDFs and higher twist effects. The new PDFs and HT and
their uncertainties will be compared with those of LSS’05 determined from our previous
analysis of the world data [8] available before the CLAS EG1/p, d and COMPASS’06 data
have appeared.

Figure 1. Effect of new data on the
higher twist values.

As the CLAS data are mainly low Q2 data where
the role of HT becomes important, they should help
to fix better the higher twist effects. Indeed, due to
the CLAS data, the determination of HT corrections
to the proton and neutron spin structure functions,
hp(x) and hn(x), is significantly improved in the CLAS
x region, compared to the values of HT obtained from
our LSS’05 analysis [12] in which a NLO(MS) QCD
approximation for g1(x, Q2)LT was used. This effect
is illustrated in Fig. 1. One can conclude now that
the HT corrections for the proton target are definitely
different from zero and negative in the x region: 0.1-
0.4. Also, including the CLAS data in the analysis,
the HT corrections for the neutron target are better
determined in the x region: 0.2-0.4. Note that hn(x)
at x ∼ 0.5 was already fixed very precisely from the
JLab Hall A data on the ratio g

(n)
1 /F

(n)
1 . We have

found that the impact of the COMPASS’06 data on the values of higher twist corrections
and their uncertainties is negligible. The only exception are the central values of HT at
small x for both the proton and the neutron targets which are slightly lower than the old
ones. Note that this is the only region where the COMPASS DIS events are at small Q2:
1-4 GeV2.

The effect of the new data on the polarized PDFs and their uncertainties is demon-
strated in Figures 2 and 3, respectively. The central values of both the (∆u + ∆ū) and
(∆d + ∆d̄) parton densities do not change in the experimental region (the correspond-
ing LSS’06 curves can not be distinguished from those of LSS’05). As one can see from
Fig. 2 the new data influence only the polarized gluon and strange quark sea densities
(while the magnitude of strange sea decreases at x < 0.1, the gluon density increases at
x > 0.1). As expected, the central values of the polarized PD are practically not affected
by the CLAS data. This is a consequence of the fact that at low Q2 the deviation from
logarithmic in Q2 pQCD behaviour of g1 is accounted for by the higher twist term in g1

in Eq. (1). So, the change of the central values of the polarized gluon and strange quark
sea densities is entirely due to the new COMPASS data. On the contrary, the accuracy
of the determination of polarized PDFs is essentially improved due to the CLAS data
(the dashed curves in Fig. 3). This improvement is a consequence of the much better
determination of higher twist contributions to the spin structure function g1, as discussed
above. The impact of COMPASS data on the uncertainties for the PDFs is also shown in
Fig. 3 (the solid curves). As seen, they help to improve in addition the accuracy of the
determination of the gluon and strange sea quark polarized densities at small x: x < 0.2
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Figure 2. Effect of new data on the NLO(MS) polarized parton densities.

Figure 3. Impact of GLAS and COMPASS data on uncertainties for NLO polarized PDFs.
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Figure 4. Expected uncertainties for NLO(MS) polarized PDFs after including the data set
to be collected with CLAS12 experiment including statistical and systematic errors

for the gluons and x < 0.1 for the strange sea.
An essential further improvement (the dashed lines in Fig. 4) can be achieved after

including in the analysis the data set to be collected with CLAS12 experiment [9] planned
to be performed using a 12 GeV electron beam at Jefferson Laboratory, USA.

At the end of this Section we would like to mention that all results on the PDFs
presented here have been obtained when 5 x-bins have been used to extract the HT
values. Due to the good accuracy of the CLAS data, one can split the measured x region
of the world data set into 7 bins instead of 5, as used up to now, and therefore, can
determine more precisely the x-dependence of the HT corrections to g1. The numerical
results of the best fit to the data using 7 x-bins are presented in [13]. It is important
to emphasize that the central values for the PDFs(5 bins) and PDFs(7 bins) excepting
the gluons are very close to each other. However, the uncertainties for the PDFs(5 bins)
are smaller than those for PDFs(7 bins), especially for ∆s(x) and ∆G(x). That is why
we prefer to present here the PDFs and there uncertainties corresponding to 5 bins in x
using for the HT values.

4 The sign of the gluon polarization

We have observed also that the present inclusive DIS data cannot rule out the solutions
with negative and changing in sign gluon polarizations (see Fig 5a). The shape of the
negative gluon density differs from that of positive one. In all the cases the magnitude of
∆G (the first moment of the gluon density) is small: |∆G| ≤ 0.4 and the corresponding
polarized quark densities (∆u + ∆ū) and (∆d + ∆d̄) are very close to each other. The
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Figure 5. Strange quark sea densities x∆s(x) corresponding to the fits with ∆G > 0, ∆G < 0
and changing in sign x∆G

corresponding strange sea densities are shown in Fig. 5b. Note, however, that the uncer-
tainties for PDFs corresponding to the solution with ∆G < 0 are larger than those in the
case of ∆G > 0 (for more details see [13]). In Fig. 6 the ratio ∆G(x)/G(x) calculated
for the different ∆G(x) obtained in our analysis and using G(x)MRST′02 [11] for the unpo-
larized gluon density, is compared to the existing direct measurements of ∆G(x)/G(x).
The error band correspond to statistic and systematic errors of ∆G(x). The most precise
value for ∆G/G, the COMPASS one, is well consistent with any of the polarized gluon
densities determined in our analysis. One can see from Fig. 6 that in order to choose
between gluons with positive and negative polarization direct measurements of ∆G(x) at
large x : x > 0.3 are needed.

5 The proton spin sum rule and spin puzzle

Using the values for the singlet and gluon polarizations ∆Σ(Q2) and ∆G(Q2) at Q2 =
1 GeV 2 obtained in our analysis (MS scheme):∆Σ = 0.207±0.039 and ∆G = 0.237±0.153
we have found the following value for the spin of the proton at Q2 = 1 GeV 2:

Sz =
1

2
=

1

2
∆Σ(Q2) + ∆G(Q2) + Lz(Q

2) = 0.34± 0.15 + Lz(Q
2). (4)

So, in order to satisfy the proton spin sum rule (4) the sum of the quark and gluon orbital
angular momentum Lz = Lq

z + Lg
z should be different from zero and positive. Note that

the quark orbital momentum Lq
z will be determined soon from the data using the forward

extrapolation of the generalized parton densities (GPD).
Let us finally discuss the so called ”spin puzzle” - the discrepancy between the values

of the singlet polarization ∆Σ: 0.2-0.3 in the DIS region and 0.6 at low Q2(Q2 ∼ Λ2
QCD)

(see Fig. 7a). For better understanding of the situation it is useful to use the JET
factorization scheme [12], in which ∆Σ(Q2) does not depend on Q2. Then, in this scheme
it is meaningful to directly interpret the singlet polarization ∆Σ as the contribution of
the quark spins to the nucleon spin and to compare its values obtained in the DIS and
low Q2 regions. The value of ∆ΣJET obtained in our LSS’06 analysis of the DIS data is
0.26 ± 0.08.
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Figure 6. Comparison between the ex-
perimental data and NLO(MS) curves
for the gluon polarization ∆G(x)/G(x)
at Q2 = 3 GeV2 corresponding to ∆G >

0, ∆G < 0 and an oscillating-in-sign
x∆G.

On the other hand the well known value of
0.6 for ∆Σ(Q2 ∼ Λ2

QCD) = ∆uv + ∆dv + ∆qsea

is predicted in the relativistic constituent quark
model (CQM) [13]. However, this model does NOT
account for the vacuum (quark sea) polarization.
It was qualitatively shown in the instanton mod-
els [14, 15] that due to the non-perturbative vac-
uum spin effects the contribution of the sea quark
polarization to ∆Σ is negative. So, the value of
∆Σ in the non-perturbative region (Q2 ∼ Λ2

QCD)
is really smaller than 0.6. Also, it was found from
a combined analysis of forward scattering parity-
violating elastic −→e p asymmetry data from G0 and
HAPPEx experiments at JLab, and elastic νp and
ν̄p scattering data from Experiment 734 at BNL,
that the strange axial form factor GS

A(Q2), which
is strongly related with ∆s (GS

A(Q2 = 0) = ∆s), is
negative in the region 0.4 < Q2 < 1 GeV 2 [16] (see Fig. 7b), i.e there is a strong indication
that the strange quark contribution to ∆Σ at low Q2 is negative. In conclusion, we are
very close to the solution of the so called ”spin puzzle”.

Figure 7. A possible explanation of the nucleon’s spin puzzle (a). Results of analysis for the
strange axial form factor of the proton (b).

Conclusion

We have studied the impact of the CLAS and latest COMPASS data on the polarized
parton densities and higher twist contributions. It was demonstrated that the inclusion
of the low Q2 CLAS data in the NLO QCD analysis of the world DIS data improves
essentially our knowledge of HT corrections to g1 and does not affect the central values of
PDFs, while the large Q2 COMPASS data influence mainly the strange quark and gluon
polarizations, but practically do not change the HT corrections. The uncertainties in the
determination of polarized parton densities is significantly reduced due to both of the
data sets. These results strongly support the QCD framework, in which the leading twist
pQCD contribution is supplemented by higher twist terms of O(Λ2

QCD/Q2).
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Finally, one of the important messages coming from this analysis is that it is impossible
to describe the very precise CLAS data if the HT corrections are not taken into account.
Note that if the low Q2 data are not too accurate, it would be possible to describe them
using only the leading twist term in g1 (logarithmic in Q2), i.e. to mimic the power in Q2

dependence of g1 with a logarithmic one (using different forms for the input PDFs and/or
more free parameters associated with them) which was done in the analysis of another
groups before the CLAS data were available.
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Discussion

Q. (S.Belostotsky, PNPI, S.Petersburg) How to explain in better details the discrep-
ancy between ∆Σ = 0.3 from DIS experiments and theoretical expectation?

A. The theoretical estimations for ∆Σ are usually given in the non-perturbative region
(Q2 ∼ Λ2), which is different from DIS one. However, using the factorization JET scheme,
in which ∆Σ does not depend on Q2, one can compare the values of ∆Σ obtained in non-
perturbative and DIS regions. The well known value of 0.6 for ∆Σ(Q2 ∼ Λ2) is predicted
in constituent quark model (CQM). However, this model does NOT account for vacuum
(quark sea) polarization. It was qualitatively shown in the instanton models that the
contribution of the sea quark polarization to ∆Σ is NEGATIVE. So, the value of ∆Σ
in the non-perturbative region should be smaller than 0.6. On the other hand, as I
have discussed in my talk, there is also an experimental evidence that the strange axial
form factor GS

A(Q2), which is strongly related with ∆s [note that GS
A(Q2 = 0) = ∆s], is

NEGATIVE in the region 0.4 < Q2 < 1 GeV 2. In conclusion, we are very close to the
solution of the so called ”spin puzzle”.

Q. (B.Ermolaev, IPTI, St.Petersburg) 1. No doubt that Q2-corrections exist and they
are important. However, they cannot be attributed to higher twists before accounting for
perturbative contributions.
2. You should not use DGLAP at small x or small Q2. It makes your results unreliable.

A. 1. The ”Q2-corrections” to g1, which you point out to be of a ”perturbative origin”,
have nothing to do with the dynamical (1/Q2)n corrections to g1(x,Q2)LT coming from
QCD. The Q2 terms, you are speaking, arise in the expansion of g1(x + z,Q2) when
z = µ2/2pq << x = Q2/2pq (or µ2 << Q2):

g1(x + z, Q2) = g1(x,Q2) +
∑

k=1

Tk(µ
2/Q2)k.

In contrast to the Q2 terms in this equation, which provide a connection between g1(x +
z, Q2) and g1(x,Q2) for small z, the higher twist corrections are (1/Q2)n corrections to
g1(x,Q2)LT at the SAME x.
2. The analysis of the world unpolarized data including the HERA data at very small x
(x ∼ 10−5) have demonstrated that DGLAP equations are still working at such a small
x. In the polarized case the smallest x value is much larger: x = 0.0046. So, as all other
groups, we have used the standard DGLAP equations for the leading twist term of g1.

Q. (A.Prokudin, Univ. Torino) Nowadays speaking about extraction of the parton
distributions we speak about accuracy of the result. The mere definition of accuracy
some times is ambiguous. For example, CTEQ and AAC use two different methods to
estimate accuracy. What is your procedure to do that?

A. Our error bands for the polarized PDFs correspond to ∆χ2 = 1.
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Q. (A.Efremov, JINR, Dubna) What changes in your analysis? Why earlier you do
not speak about negative ∆G?

A. In some of our previous analysis we have also found solutions with ∆G negative.
However, we have not shown them because the corresponding χ2 were significantly larger
than those corresponding to ∆G positive. The situation has changed due to the CLAS
and COMPASS data: i) χ2 corresponding to ∆G positive and negative are practically the
same and ii) the absolute value of ∆G is smaller now.
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CHIRAL DYNAMICS AND SINGLE-SPIN ASYMMETRIES

Dennis Sivers

Portland Physics Institute 4730 SW Macadam, #101 Portland, OR 97239
Spin Physics Center University of Michigan Ann Arbor, MI 48109

Abstract

Parity-conserving single-spin asymmetries provide a specific measure of coherent
spin-orbit dynamics in quantum chromodynamics. The origin of these effects can be
traced to the interplay of chiral dynamics and confinement in the theory. The most
elegant display of the relevant mechanisms occurs in the Collins functions and in the
polarizing fragmentation functions and fracture functions for particles with spin. In
the nucleon, these same dynamical mechanisms generate virtual quantum structures
leading to the Boer-Mulders functions and orbital distributions. Two complemen-
tary formalisms for these distribution functions appear. The familiar gauge-link
formalism incorporates all nonperturbative dynamics into nonlocal correlators. The
constructive formalism introduced by the author describes distributions normal-
ized to an intrinsic property of the nucleon, namely, the currents specified in the
Bakker-Leader-Trueman sum rule. The connection between these two approaches
can be explored in the process dependence of single-spin asymmetries in various
hard-scattering processes. The study of the SU(2) Weyl-Dirac equation in spherical
coordinates allows typical Wilson operators that determine this process dependence
to be evaluated in the coordinate gauge.

This conference has already heard two excellent theoretical talks on transverse single-
spin asymmetries by Professors Efremov [1] and Teryaev [2]. A specific goal of this
presentation is to acquaint you with a different, and complementary, set of theoretical
tools that emphasizes the dynamical origin of these observables. A convenient way of
introducing this alternative approach focuses on the concept of spin-directed momentum.
The observation that single-spin measurements (either analyzing powers or polarizations)
necessarily define a spin-directed momentum can be easily confirmed. The requirement
can be illustrated by the sketch shown in Fig. 1. For a parity-conserving asymmetry, the
form of this spin-directed momentum is highly constrained by rotational invariance and
finite symmetries. The required expression is

kTN = kT ·
(
σ̂ × P̂

)
(1)

in which P is the 3-momentum of a hadron, kthe 3-momentum of a constituent and σ
and axial vector denoting a spin direction. This expression can easily seen to be invariant
under C (charge conjugation), P (parity) and T (time reflection). It is, however, odd
under a symmetry designated Aτ [3,4]. The observation that all single-spin observables
are odd under the combination O = PAτ requires that all such observables fall into one
of two distinct categories:

1. P-odd and Aτ -even,

2. P-even and Aτ -odd.
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Figure 1: Graphical illustration of how a measurement of AN for a parity-conserving single-spin
asymmetry can also be used to define the underlying spin-directed momentum transfer in the
process.

In the light-quark sector of the standard model, Aτ -odd observables can be shown to be
uniquely associated with coherent spin-orbit dynamics. Mulders and Tangerman [5] have
classified four distinct leading-twist functions characterizing Aτ -odd quantum structures.
This collection consists of two types of fragmentation function: the Collins functions [6]
and the polarizing fragmentation functions, and two types of distribution function; the
Boer-Mulders functions [7] and the orbital distribution functions. These functions have
distinct characteristics but they share a common origin in the combination of confinement
and chiral dynamics that generate the non-perturbative spin-orbit correlations.

The existence of a probabilistic description of the Aτ -odd dynamics in fragmentation
functions is guaranteed by the existence of a projection operator [3,4]

P−A =
1− Aτ

2
(2)

that isolates spin-orbit effects. The work of Artru, Czyzewski, and Yabuki [8] displays
these dynamical elements very elegantly. This model actually has all the ingredients of
the full nonperturbative calculation of the pion Collins function. The ingredients include
mixing between gluonic degrees of freedom and a 0++ 3P0 quark-antiquark pair that
generates internal orbital angular momentum. As the pair rotates, configuration mixing
alters the local SU(3) color geometry, enhancing the probability of flux-tube breaking.
Chiral dynamics enter the picture by giving an energy advantage for the antiquark in the
3P0 pair to form a light-mass pion involving the leading quark. This pion then inherits
the spin-directed momentum of the antiquark. The phenomenological estimates for pion
Collins functions presented in Prof. Efremov’s talk [1] provide strong quantitative support
for this picture. The reader should consult his summary for the original references.

For particles with spin, a density matrix formulation of these basic dynamical mech-
anisms with a quantization axis specified by the orientation of L produces a tightly-
constrained formulation of both the Collins function and the polarizing fragmentation
function. For baryons, it is convenient to consider, in addition to usual polarizing frag-
mentation functions describing the fragmentation of a quark jet, the polarizing fracture
function describing the fragmentation of the “diquark-jet” created by stripping away a
quark from a nucleon target to create an SU(3) color ion. This extension of the fracture-
function formalism established by Trendadue and Veneziano [9] to the sector of Aτ -odd
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dynamics seems also to be efficiently characterized by mechanisms similar to those of the
Collins functions.

Since the nucleon is a stable particle, the orbital angular momentum that appears
explicitly in the final state for fragmentation and fracture functions appears as virtual
quantum structures leading to the nucleon’s Aτ -odd distribution functions. The field-
theoretical descriptions of the virtual processes allow for two distinct formalisms to char-
acterize these distributions. The distinction between the two approaches reflects the alter-
nate descriptions for single-spin observables illustrated in Fig. 1. The, now conventional,
gauge-link formalism [10,11] presents these functions in terms of nonlocal correlators that
lead to the expectation value for kTN . This formalism engages the full power of gauge
theory and makes a direct connection to the operator product expansion. [12]. The
predictive power of the gauge-link approach is demonstrated by the Collins conjugation
relation, [10] that relates the orbital distribution measured in SIDIS with that measured
in the DY process. The other, more modest, formalism, developed by the author in [3,4],
is based on local, gauge-invariant, number densities that describe properties intrinsic to
the proton and are not based on any specific process. The orbital distributions and Boer-
Mulders functions in this formalism are constructed such that they are normalized to the
expectation values of spin-orbit effects,

∫
dxd2kT ∆NGfront

q/p↑ (x, kTN(x); µ2) = 1
2
〈Lq · σ̂p(µ

2)〉∫
dxd2kT ∆NGfront

g/p↑ (x, kTN(x); µ2) = 1
2
〈Jg · σ̂p(µ

2)〉∫
dxd2kT ∆NGfront

q↑/p (x, kTN(x); µ2) = 1
2
〈Lq · σ̂q(µ

2)〉
(3)

To avoid confusion, the symbols for the distributions in these constructions are purposely
chosen to be different from the Mulders-Tangerman symbols traditionally used in the
gauge-link formalism. This, constructive, formalism describes characteristics of the spin-
orbit dynamics of the proton so that, for example, the Bakker, Leader, Trueman sum rule
[13] can be written,

Jy =
1

2
=

1

2

∑
qi

δT qi(µ
2) + 2

∑
qi,g=c

∫
dxd2kT ∆NGfront

c/p↑ (x, kTN(x); µ2) (4)

where δT qi(µ
2)is the moment of the quark transversity distribution. The constructive

formalism takes advantage of the fact that all Aτ -odd dynamics can be factorized into an
effective distribution to give a recipe for the initial-state and final-state interactions that
contribute to a given single-spin asymmetry. The specific construction of these functions
described in refs. [3,4] clarifies the distinction between constructive distributions and the
conventional functions specified by nonlocal correlators.

As discussed in the presentation by Teryaev, [2] at this conference and emphasized, for
example by Brodsky [14] the orbital distributions and Boer-Mulders functions defined in
the gauge-link formalism are, in fact, effective distributions. These functions are connected
to the imaginary parts generated in the helicity-amplitude basis by soft initial-state and/or
final-state interactions. In the gauge-link formalism it thus makes perfect sense to say
that the distributions are created by the initial-state or final-state interactions involved.
Whereas, in the constructive approach of the author it is more correct to say that the
underlying Aτ -odd number densities are revealed by the soft initial-state or final-state
interactions. Brodsky and his collaborators have demonstrated in numerous calculations
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[14] the connection between in soft initial-state and final-state interactions involved in
single-spin effects with those that appear in other phenomenological contexts.

The constructive approach allows a more direct connection of the virtual corrections
leading to quantum structures in the nucleon with the explicit spin-orbit dynamics as dis-
played by the Collins functions. For example, the calculations presented in Ref. 4 provide
the normalization for the quark, antiquark and gluon orbital distributions ∆NGfront

c/p↑ and

for the quark Boer-Mulders functions ∆NGfront
q↑/p in terms of the expectation values for

orbital angular momentum found in the Georgi-Manohar [15] chiral quark model. This
venerable model is defined in terms of transitions from constituent quarks, (U,D) to par-
tonic quarks (u,d,s) as exemplified by

U ↑→ [1− ηB − αc(1 + εs + εo)]u ↑ ...(L = 0)
+[ηBu ↓ +αcd ↓ (d̄u) + εsαcs ↓ (s̄u) + εoαcu ↓ (ūu)]...(L = +1)

(5)

The transitions for U ↓, D ↑ and D ↓ can be obtained from (5) using isospin and rota-
tional invariance. The fixing of the parameters ηB, αc, εs, εo in the model is an interesting
exploration of angular momentum sum rules. The observation that the transitions (5) are
precisely the Collins functions qi ↑→ qj ↓ πj̄i emphasizes the underlying connections.

Figure 2: In spherical coordinates, the coordinate gauge allows for the calculation Wilson
operators consisting of triangles with two radially directed lines based on the operator techniques
discussed in references 16 and 17.

The familiar gauge-link formalism of the effective approach and the transversity-
amplitude based calculations of the constructive approach are therefore seen to be very
complementary. Each constrains the other in many important ways. Comparing the two
leads to a challenging program of study of the process-dependence in single-spin asymme-
tries. The process dependence for the gauge-link formalism can be described recursively
using spectator models and the twist expansion. A convenient tool that goes beyond
perturbation theory for beginning to understand the same process dependence in the con-
structive approach uses explicit solutions of the Weyl-Dirac equation in color SU(2) and
spherical coordinates to calculate the Wilson operators that appear for these observables
in the coordinate gauge. The techniques for doing these calculations exploit specific oper-
ators discussed in Refs.[16,17]. The Weyl-Dirac equation allows the separation of degrees
of freedom for the energy and 3-momentum and the coordinate gauge in spherical coordi-
nates simplifies the calculation of the spatial component of Wilson operators as indicated
in Fig. 2.
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Significant progress is being made in the understanding of the factorization properties
[18] of the gauge-link formalism, as well as the connection to the twist expansion [19] and
in the relationships with generalized parton distributions [20] found in this approach. The
application of the Aτ symmetry and the formulation of single- spin observables in terms
of transversity amplitudes provides important constraints in all these endeavors. The
ability to formulate calculations in complementary formalisms has already proven to be
a real benefit but the important information contained in the fragmentation and fracture
functions has not yet been fully exploited.
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Abstract

Our knowledge of the nucleon spin structure has greatly improved over the last
twenty years or so, but still many fundamental questions remain unsolved. I will
try to review some of the puzzling aspects of the structure of the nucleon spin, in
particular, what is known, what remains to be discovered and the prospects for the
near future. I will also focus on some current activities in QCD spin physics.

1 Introduction

Among the essential goals of QCD spin physics one has first, to understand the nucleon
spin structure in terms of its basic partonic constituents and second, to test the SPIN
SECTOR of perturbative QCD, at the highest possible precision level. Concerning the
first point, one needs to know how the quark and gluon distributions in a polarized nucleon
make its spin one-half and several questions arise in particular: what is the role of the
orbital angular momentum? The second point is very relevant to reinforce the validity of
the already well established perturbative QCD theory, because many spin asymmetries
have been calculated, at the next-to-leading order (NLO), and have not yet been compared
with experimental data. Therefore it is very legitimate to ask to what extent they will
agree. We will try to answer the following questions: What is known? What is missing?
What needs to be measured next? What are the prospects?

The basic information comes from Deep Inelastic Scattering (DIS), unpolarized lN →
l′X, or polarized

−→
l
−→
N → l′X. In the unpolarized case, widely measured over the last

three decades, one gets access to F p,n
2 (x, Q2) =

∑
q e2

q[xq(x,Q2) + xq̄(x,Q2)]. Here the

q(x,Q2)’s (same for antiquarks) are defined as q = q+ + q−, where q± are the quark
distributions in a polarized proton with helicity parallel (+) or antiparallel (−) to that
of the proton. In the polarized case, one measures the corresponding polarized structure
function, gp,n

1 (x,Q2) = 1/2
∑

q e2
q[∆q(x,Q2)+∆q̄(x,Q2)]. Similarly ∆q(x,Q2)’s (same for

antiquarks) are defined as ∆q = q+ − q−. The gluon distributions are also defined as
G = G+ + G− and ∆G = G+ −G−, but in DIS they are not accessible directly and only
enter in the QCD Q2 evolution of the quark distributions.

There is a long list of interesting topics, e.g. characteristic features of unpolarized
and polarized parton distributions, flavor separation of ∆q, ∆q̄, gluon polarization in the
nucleon, generalized parton distributions, quark transversity δq(x,Q2) and double trans-
verse spin asymmetries ATT , single spin asymmetries (SSA) AN and QCD mechanisms,
etc...
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In this opening lecture, for lack of time, we will have to make a strong selection, but
given the high density of the scientific program, it will certainly allow to cover all missing
important subjects.

Figure 1: On the left (right) the light quark (antiquark) distributions with different helicities
versus x for Q2 = 20GeV2, taken from Ref. [1].

2 Digression on parton distributions functions

A new set of parton distribution functions (PDF) was constructed in the framework of a
statistical approach of the nucleon [1], which has the following characteristic features:
- For quarks (antiquarks), the building blocks are the helicity dependent distributions q±
(q̄±) and we define q = q+ + q− and ∆q = q+ − q− (similarly for antiquarks).
- At the initial energy scale taken at Q2

0 = 4GeV2, these distributions are given by the
sum of two terms, a quasi Fermi-Dirac function and a helicity independent diffractive
contribution, which leads to a universal behavior for all flavors at very low x.
- The flavor asymmetry for the light sea, i.e. d̄ > ū, observed in the data is built in. This
is clearly understood in terms of the Pauli exclusion principle, based on the fact that the
proton contains two u quarks and only one d quark.
- The chiral properties of QCD lead to strong relations between q and q̄. For example,
it is found that the well established result ∆u > 0 implies ∆ū > 0 and similarly ∆d < 0
leads to ∆d̄ < 0.
- Concerning the gluon, the unpolarized gluon distribution is given in terms of a quasi
Bose-Einstein function, with no free parameter, but for simplicity, one assumes zero gluon
polarization, i.e. ∆G(x,Q2

0) = 0, at the initial energy scale.
- All unpolarized and polarized distributions depend upon eight free parameters, which
were determined in 2002 (See [1]), from an NLO fit of a selected set of accurate DIS
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data. For illustration, the ± light quark (antiquark) distributions are displayed on Fig. 1
and we clearly notice the essential features mentioned above 1. More recently, new tests
against experimental (unpolarized and polarized) data turned out to be very satisfactory,
in particular in hadronic reactions [2, 3].

Figure 2: Various recent data on the isovec-
tor structure function 2xg

(p−n)
1 (x) compared to

the statistical model prediction Ref. [3] (lower
curve) and the AAC calculation Ref. [6] (upper
curve, taken from Ref. [7]).

The statistical approach has been ex-
tended to the interesting case where the
PDF have, in addition to the usual Bjorken
x dependence, an explicit transverse mo-
mentum kT dependence [4] and this might
be used in future calculations with no kT

integration.
Concerning the strange quark and anti-

quark distributions, a simplifying assump-
tion consists to take s(x,Q2) = s̄(x,Q2)
and similarly for the corresponding polar-
ized distributions ∆s(x,Q2) = ∆s̄(x,Q2).
However a careful analysis of the data
led us to the conclusion that s(x,Q2) 6=
s̄(x,Q2) and the corresponding polarized
distributions are unequal, small and nega-
tive [5].

Now let us come back to the impor-
tant prediction of the statistical approach,
namely ∆ū > 0 and ∆d̄ < 0, which con-
trasts with the flavor symmetric assump-
tion ∆ū = ∆d̄ = ∆s = ∆s̄ made, for ex-
ample, in Ref. [6]. With this assumption,
the ∆q̄ don’t contribute to the Bjorken sum rule, so one has to increase the absolute
values of the valence contributions to ∆u and ∆d, in order to satisfy this sum rule. As
shown on Fig. 2, this leads to over estimate 2xg

(p−n)
1 (x) in the valence region, but it is

not the case for the statistical approach. This has been confirmed by recent Compass
data [8].

There is another way to test directly the predictions of the statistical approach for the
polarized quark distributions and their flavor separation. This has been obtained from
the semi-inclusive polarized DIS and the Hermes data are shown on the left hand side
of Fig. 3. On the right hand side of Fig. 3, we also display the very accurate JLab data
which show that, even in the high x region, ∆(u + ū) remains positive whereas ∆(d + d̄)
remains negative, in accordance with the statistical approach expectations.
These features can and will be also investigated in future runs with polarized pp collisions
at BNL-RHIC, which we briefly discuss now.
Consider the parity-violating helicity asymmetry APV

L (W )

APV
L (y) =

∆dσ/dy

dσ/dy
=

dσW
− /dy − dσW

+ /dy

dσW− /dy + dσW
+ /dy

, (1)

1For a practical use of these PDF, see www.cpt.univ-mrs.fr/ bourrely/research/bbs-dir/bbs.html.
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Figure 3: Left: Quark and antiquark polarized parton distributions as a function of x for
Q2 = 2.5GeV2. Data from Ref. [9]. Right: Ratios (∆u + ∆ū)/(u + ū) and (∆d + ∆d̄)/(d + d̄)
as a function of x. Data from Hermes for Q2 = 2.5GeV2 [9] and a JLab experiment [8]. In both
the curves are predictions from the statistical approach Ref. [3].

where ± stands for the helicity of one polarized proton beam and y is the W rapidity.
For W+, at the lowest order of the Drell-Yan production mechanism, it reads

APV
L (W+) =

∆u(xa)d̄(xb)−∆d̄(xa)u(xb)

u(xa)d̄(xb) + d̄(xa)u(xb)
, (2)

where xa =
√

τey, xb =
√

τe−y and τ = M2
W /s. For W− production one interchanges

u and d. The general trend of APV
L (y) can be easily understood and, for example at√

s = 500GeV near y = +1, APV
L (W+) ∼ ∆u/u and APV

L (W−) ∼ ∆d/d, evaluated at
x = 0.435. Similarly for near y = −1, APV

L (W+) ∼ −∆d̄/d̄ and APV
L (W−) ∼ −∆ū/ū,

evaluated at x = 0.059.
The features appear clearly on the left hand side of Fig. 4, where the calculations were

done at two different energies. For completeness we also show the predicted APV
L (Z) on

the right hand side of Fig. 4, but in this case the interpretation is not so straightforward.
Moreover the production rate of Z’s is much lower than W ’s.

However there is an important point to mention here, since the W ’s are not directly
seen. For the most relevant signature, if one selects the leptonic decay W → eν, one
measures in fact

APV
L (ye) =

∆dσ/dye

dσ/dye

=
dσW

− /dye − dσW
+ /dye

dσW− /dye + dσW
+ /dye

, (3)

where ye is the charged lepton rapidity. Fortunately, by using the RhicBos code due to
P. Nadolski, one finds that APV

L (ye) has essentially the same trend as APV
L (y).
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Figure 4: Left: Predictions from the statistical approach for the parity violating asymmetry
APV

L for the pp → W± production, versus the W rapidity y, at
√

s = 350GeV (dashed curve)
and

√
s = 500GeV (solid curve). Right: Same for the pp → Z production. (Taken from Ref. [1])

So much for the quarks, let us now turn to the gluon distributions and we first consider
the unpolarized distribution G(x, Q2). In the statistical approach it has a very simple ex-
pression (See Ref. [1]), which is consistent with the available data, most coming indirectly
from the QCD Q2 evolution of F2(x,Q2), defined earlier, in particular in the low x region.
However it is known that ep DIS cross section is characterized by two independent struc-
ture functions, F2(x,Q2) and the longitudinal structure function FL(x, Q2). For low Q2,
the contribution of the later to the cross section at HERA is only sizeable at x smaller
than approximately 10−3 and in this domain the gluon density dominates over the sea
quark density. More precisely, it was shown that using some approximations, one has [12]

xG(x, Q2) =
3

10
5.9[

3π

2αs

FL(0.4x,Q2)− F2(0.8x, Q2)] ' 8.3

αs

FL(0.4x, Q2) . (4)

Before HERA was shut down, a dedicated run period with reduced proton beam energy
was approved and we are waiting for these new H1 results on FL. We show on Fig. 5 the
predictions of the statistical approach and the new data, whose precision is expected to
be rather good, will allow to test its predictive power, once more.

The polarized gluon distribution ∆G is also extremely important to determine and we
have the following helicity sum rule

1

2
=

1

2
∆Σ + ∆G(Q2) + Lq(Q

2) + LG(Q2) , (5)

where ∆Σ =
∑

q

∫ 1

0
[∆q(x,Q2) + ∆q̄(x,Q2)]dx is twice the quark (+ antiquark) contri-

bution to the nucleon helicity and ∆G, Lq,G are the contributions of gluon and orbital
angular momentum of quark and gluon. So far ∆Σ ∼ 0.3 and the sum rule is not satisfied.

There are several attempts to extract ∆G(Q2) from DIS using different processes and
the most recent results will be presented later in this Workshop. The RHIC spin program
is also putting a high priority to this determination and the cleanest reaction is inclusive
prompt photon production, which is dominated by the subprocess Gq → γq. The double
helicity asymmetry, which has schematically the following expression

ALL ≈ ∆G(x1)

G(x1)
·
[∑

q e2
q [∆q(x2) + ∆q̄(x2)]∑
q e2

q [q(x2) + q̄(x2)]

]
· âLL(Gq → γq) + (1 ↔ 2) , (6)
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is directly proportional to ∆G. This has not been measured yet, but from the measure-
ments on −→p −→p → π(orjet)X, we have all indications that ∆G is small and still badly
known, unfortunately.

Figure 5: Statistical approach predic-
tions for the longitudinal structure func-
tion FL(x,Q2) with earlier H1 data (Taken
from Ref. [7]).

The next very serious question is indeed: are
there relevant contributions from Lq,G?

3 Quark transversity δq(x,Q2)

and ATT

The existence of this new quark distribution
δq(x,Q2), was first mentioned by Ralston and
Soper in 1979, by studying the angular distri-
bution in p(↑)p(↑) → µ+µ−X with transversely
polarized protons. It was merely forgotten until
1990, where it was first realized that it completes
the description of the quark distribution in a nu-
cleon as a density matrix

Q(x,Q2) = q(x,Q2)I ⊗ I+∆q(x,Q2)σ3 ⊗ σ3 +

δq(x,Q2)(σ+ ⊗ σ−+σ− ⊗ σ+) . (7)

This quark transversity δq(x,Q2) is chiral odd,
leading twist and decouples from DIS. So it was
never measured and we only have the following
positivity bound [13] 2

q(x,Q2) + ∆q(x,Q2) ≥ 2|δq(x,Q2)| , (8)

which survives up to NLO corrections. It is indeed accessible in p(↑)p(↑) → µ+µ−X, with
both protons transversely polarized. The double transverse spin asymmetry ATT reads

ATT =
dσ(↑↑)− dσ(↑↓)
dσ(↑↑) + dσ(↑↓) = âTT

∑
q e2

qδq(x1,M
2)δq̄(x2,M

2) + (1 ↔ 2)∑
q e2

qq(x1,M2)q̄(x2, M2) + (1 ↔ 2)
, (9)

where âTT = −1 and M2 is the dilepton mass square. It involves the product of δq and δq̄,
as expected from the dominant qq̄ annihilation Drell-Yan mechanism. Predictions using
the saturation of the bound, lead to some estimates of only a few percents, but it is on
the list of future measurements at the BNL-RHIC spin program.

The asymmetry at the Z pole, which reads

ATT (Z) =

∑
q(b

2
q − a2

q)δq(x1,M
2
Z)δq̄(x2,M

2
Z) + (1 ↔ 2)∑

q(b
2
q + a2

q)q(x1,M2
Z)q̄(x2, M2

Z) + (1 ↔ 2)
, (10)

is also expected to be small. However, for the W± production, considered above, ATT = 0,
because the W has a V − A coupling, i.e. aq = bq, which remains to be checked.

2Positivity is extremely useful to constrain spin observables, as discussed by X. Artru in these pro-
ceedings (See also Ref. [14]).
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Figure 6: Left: Upper bounds for ATT for single jet production at RHIC, with the expected
statistical errors. Right: same for prompt photon production (Taken from Ref. [15]).

There is no such a transversity distribution for gluons which carry a spin one and
this fact has important consequences for ATT of different reactions. For example in the
case of single-jet production, according to pQCD, the cross section in the low pT region is
dominated by gluon- gluon collisions, in the medium pT region by gluon-quark collisions
and in the high pT region by quark-quark collisions. As a result, ATT is expected to
be non-zero only in this last kinematic region and this is what we see on the left hand
side of Fig. 6. We have a similar situation for prompt photon production, shown on the
right hand side of Fig. 6. These results, which were obtained by using the positivity
bound, probe the sensitivity only to quark transversity in the hight pT region. As was
noticed in Ref. [15], we expect double spin transverse asymmetries to be much smaller
than double helicity asymmetries, i.e. |ATT | << |ALL| and this theoretical observation
must be carefully confirmed experimentally.

4 Single spin asymmetry in QCD

What is a single spin asymmetry (SSA)?
Consider the collision of a proton of momentum −→p , carrying a transverse spin −→sT and

producing an outgoing hadron with transverse momentum
−→
kT . The SSA defined as

AN =
dσ(−→sT )− dσ(−−→sT )

dσ(−→sT ) + dσ(−−→sT )
(11)

is zero, unless the cross section contains a term −→sT · (−→p × −→
kT ). It can be shown that

this requires the existence of an helicity flip and final state interactions, which generate a
phase difference between the flip and the non-flip amplitudes, to avoid violation of time
reversal invariance. In the naive parton model one expects very small SSA, because of
the double suppression αsmq/Q, where mq is the quark mass and Q the energy scale of
the process.

Actually a large SSA has been discovered 30 years ago at FNAL with a 300 GeV/c
unpolarized proton beam in pBe → Λ↑X [17] and many more SSA have been observed
later, in particular large SSA in p↑p → πX and p̄↑p → πX at FNAL by E704 [15] and
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Figure 7: Left: The single spin asymmetry AN as a function of xF at two different energies.
The data are from Refs. [15, 19]. Right: A comparison between a pQCD NLO calculation and
data for two different angles ( Taken from Ref. [22]) .

more recently by STAR at BNL-RHIC [19]. These data have the same trend, as shown
in Fig. 7, although they were obtained in very different energy ranges. Therefore one can
be tempted to conclude that they originate from the same mechanism satisfying scaling.

Before discussing this point, we recall that in the collinear approximation, the mecha-
nism to generate SSA is based on higher-twist quark-gluon correlators (Efremov-Teryaev
1982, Qiu-Sterman 1991). However, if one introduces transverse momentum dependence
(TMD), two QCD mechanisms have been proposed:
- TMD parton distributions ⇒ Sivers effect 1990
- TMD fragmentation distributions ⇒ Collins effect 1993

The gauge-invariance properties of the TMD PDF have been first clarified for DIS and
Drell-Yan processes in Ref. [20]. In general both Sivers and Collins effects contribute to
a specific reaction, although there are some cases in which only one of them contributes.
For example in semi inclusive DIS, the Collins effect is the only mechanism that can lead
to asymmetries AUT and AUL. On the other hand, it does not appear in some electroweak
interaction processes, where there is only the Sivers effect. In prompt photon production
in pp collisions, which is dominated by qG → qγ, the SSA is sensitive to either the quark
or the gluon Sivers functions, according to the value of the photon xF [21].

Now let us ask: do we understand the SSA displayed on Fig. 7, given the fact that
STAR is at a very small angle 2.6 deg., whereas E704 is at a much larger angle, between 9
deg. and 64 deg.? A negative answer is partially obtained by looking at the cross section.
The pQCD NLO calculation underestimates the cross section at low energies and medium
angles, namely for the E704 kinematic region. This is shown on Fig. 7 and it means that
one should not ignore other contributions. This is not the case at 90 deg. and at very
small angles at high energy, which is the STAR kinematic range. To conclude, one should
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not try to ”explain” the SSA, ignoring the unpolarized cross section [22]. Of course one
should not forget resummation effects, which might help clarifying the situation.
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Discussion

Comm. (S.Belostotsky, PNPI, St.Petersburg) 1. HERMES latest result differs from
that presented by the speaker: ∆G ' 0.1± 0.2.

Q. (G.Lykasov, JINR, Dubna) Do the spin asymmetries die out with energy increase?
A. Yes, all spin-asymmetries are general coming down but that does not mean not

importance to study them. Only the difficulties are getting more serious.
Q. (J.Nassalski, SINS, Warsaw) 1. The first hint on ū < d̄ came from the NMC result

on the Gottfried sum rules violation.
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2. The first quark helicity distributions were obtained by the SMC.
3. You did not show the new HERMES result on ∆G/G which is lower than their first
result.

A. 1. I fully agree and even have an article following the MNC data (PRL66, 687
(1991)).
2. I agree.
3. I agree but this was left to HERMES people, since a talk is scheduled on that.

Q. (S.Nurushev, IHEP, Protvino) Your statement about cross-section and analyzing
power in reaction p↑p → π0X at

√
s = 20GeV and

√
s = 200GeV a little bit confused

me. First the pT region is small in both cases (pT ≤ 3.5GeV/c). How do you apply QCD
for such small pT region?
Second, the asymmetries are the same in both cases. How do you explain this fact in your
model?

A. I have said that the pQCD NLO calculation agrees well with the STAR cross
section which is at low pT and

√
s = 200 GeV, but underestimate the E704 cross section

data corresponding to the same pT region. I don’t explain the AN for both experiment,
but I claim that one should first understand the cross section in both cases.
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Abstract

We give a review on a recently developed powerful method for investigation of
different phenomena that can appear when neutrinos and electrons move in back-
ground matter with special focus on the spin phenomena.

This paper is devoted to the problem of neutrino and electrons motion in a dense
matter with special focus on the spin phenomena.

It has been proven in recent oscillation experiments that neutrino has nonzero mass.
Therefore, the Dirac neutrino should have nontrivial electromagnetic properties, in partic-
ular, nonzero magnetic moment. It is also well known [1] that in the minimally extended
Standard Model with SU(2)-singlet right-handed neutrino the one-loop radiative correc-
tion generates neutrino magnetic moment which is proportional to the neutrino mass

µν = 3
8
√

2π2 eGF mν = 3× 10−19µ0

(
mν

1eV

)
, where µ0 = e/2m is the Bohr magneton, mν and

m are the neutrino and electron masses. There are also models (see [2]) in which much
large values for magnetic moment of neutrino are predicted.

The LEP data require that the number of light neutrinos coupling to Z boson is
exactly three, whereas any additional neutrino, if this particle exist, must be heavy. In
light of this opportunity we considered the neutrino magnetic moment for various ratios
of particles masses. We have obtained [3] values of the neutrino magnetic moment for
light (for this particular case see also [1, 4]), intermediate and heavy massive neutrino:

1) µν = eGF

4π2
√

2
mν

3(2−7a+6a2−2a2 ln a−a3)
4(1−a)3

, for mν ¿ m` ¿ MW , 2) µν = 3eGF

8π2
√

2
mν

{
1 + 5

18
b
}
,

for m` ¿ mν ¿ MW , 3) µ = eGF

8π2
√

2
mν , for m` ¿ MW ¿ mν , where a =

(
ml

MW

)2
and

b =
(

mν

MW

)2
. It should be also mentioned that the neutrino magnetic moment can be

affected by the external environment. In particular, the value of the neutrino magnetic
moment can be significantly shifted by the presence of strong external magnetic fields [5]
(see also [6, 7]).

So far, solar neutrino experiments set a limit on the neutrino magnetic moment on
the level of µνe ≤ 1.5 × 10−10 [8]. More stringent constraint µνe ≤ 5.8 × 10−11 has been
provided by the GEMMA accelerator experiment [9]. The constraint from astrophysical
considerations (the red giants cooling) is µνe ≤ 3× 10−12 [10].

Developing of the theory of neutrino spin properties in an external environment we
have evaluated the Lorentz invariant approach to the neutrino spin evolution that was
based on the proposed generalized Bargmann-Michel-Telegdi equation [11]. Within the
developed Lorentz invariant approach it is also possible to find the solution for the neutrino
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spin evolution problem for a general case when the neutrino is subjected to general types
of non-derivative interactions with external fields [12]. These interactions are given by
the Lagrangian

−L = gss(x)ν̄ν+gpπ(x)ν̄γ5ν+gvV
µ(x)ν̄γµν+gaA

µ(x)ν̄γµγ
5ν+

gt

2
T µν ν̄σµνν+

g′t
2

Πµν ν̄σµνγ5ν,

(1)
where s, π, V µ = (V 0,V), Aµ = (A0,A), Tµν = (a,b), Πµν = (c, d) are the scalar, pseu-
doscalar, vector, axial-vector, tensor and pseudotensor fields, respectively. For the corre-
sponding spin evolution equation we have found

dS
dt

= 2ga

{
A0[S× β]− (Aβ)[S×β]

1+γ−1 − 1
γ
[S×A]

}
+ 2gt

{
[S× b]− (βb)[S×β]

1+γ−1 + [S× [a× β]]
}

+2ig′t
{

[S× c]− (βc)[S×β]
1+γ−1 − [S× [d× β]]

}
.

(2)
This is a rather general equation for the neutrino spin evolution that can be also used
for description of neutrino spin oscillations in different environments such as moving and
polarized matter with external electromagnetic fields (see [13,14]).

Considering the neutrino spin evolution within the quasi-classical treatment on the
basis of the above mentioned generalized Bargmann-Michel-Telegdi equation, we have
predicted [15] a new mechanism for the electromagnetic radiation by a neutrino moving
in the background matter. We have termed this radiation the “spin light of neutrino”
(SLν) in matter [15]. The term “spin light” was used [16] for designation of the magnetic-
dependent term in the radiation of an electron in a magnetic field. The SLν effect
also studied in the cases when electromagnetic and gravitational fields also present in
matter [17]. Here we should like to mention that the considered SLν is indeed a new
type of electromagnetic radiation of a neutrino that can be emitted by the particle in
matter. This radiation mechanism has never been considered before. As it was mentioned
in our first papers on this subject [15], the SLν in matter can not be considered as the
neutrino Cherenkov radiation in matter because it can exist even when the emitted photon
refractive index is equal to unit. The SLν radiation is due to radiation of the neutrino
by its own rather then radiation of the background particles.

As it was clear from the very beginning [15], the SLν is a quantum phenomenon
by its nature and later on we elaborated [18] the quantum theory of this radiation (see
also [19]). To put it on a solid ground, we of have elaborated a rather powerful method
that implies the use of the exact solutions of the modified Dirac equation for the neutrino
wave function in matter.

Recently we have spread this developed method of the “exact solutions” to description
of an electron moving matter [20–22] and derived the modified Dirac equation for an
electron moving in matter and found its solutions. On the basis of this exact solution of
this equation we have considered a new mechanism for the electromagnetic radiation that
can be emitted by an electron in the background matter. This mechanism is similar to
the SLν in matter and we termed it the “spin light of electron” in matter [20].

As it was shown in [18,20–22], in the case of the standard model interactions of electron
neutrinos and electrons with matter composed of neutrons, the corresponding modified
Dirac equations for each of the particles can be written in the following form:

{
iγµ∂

µ − 1

2
γµ(cl + γ5)f̃

µ −ml

}
Ψ(l)(x) = 0, (3)
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where for the case of neutrino ml = mν and cl = cν = 1, whereas for electron ml = me

and cl = ce = 1 − 4 sin2 θW . For unpolarized matter f̃µ = GF√
2
(nn, nnv), nn and v

are, respectively, the neutron number density and overage speed. The solutions of these
equations are as follows,

Ψ(l)
ε,p,s(r, t) =

e−i(E
(l)
ε t−pr)

2L
3
2




√
1 + ml

E
(l)
ε −cαnml

√
1 + sp3

p

s
√

1 + ml

E
(l)
ε −cαnml

√
1− sp3

p
eiδ

sεη
√

1− ml

E
(l)
ε −cαnml

√
1 + sp3

p

εη
√

1− ml

E
(l)
ε −cαnml

√
1− sp3

p
eiδ




. (4)

where the energy spectra are

E(l)
ε = εη

√
p2

(
1− sαn

ml

p

)2

+ m2 + clαnml, αn = ± 1

2
√

2
GF

nn

ml

. (5)

Here p, s and ε are the particles momenta, helicities and signs of energy, “±” corresponds
to e and νe. The value η =sign

(
1− sαn

ml

p

)
is introduced to provide a proper behavior of

the neutrino wave function in the hypothetical massless case.
It should be pointed out that the derived modified Dirac equations for a neutrino and

electron in matter and their exact solutions obtained establish an effective method for
investigation of different phenomena that can arise when the particles move in dense media
(for more details see [21]), including the cases peculiar for astrophysical and cosmological
environments. For example, effects of the Dirac neutrino reflection and trapping, as well
as neutrino-antineutrino annihilation and neutrino pair creation in matter at the interface
between two media with different densities can be considered on this basis (see [23] and
references therein).

Using the exact solutions of the above mentioned Dirac equations for a neutrino and
electron we have performed detailed investigations of the SLν and SLe in matter. In
particular, in the case of ultra-relativistic neutrinos (p À m) and a wide range of the
matter density parameter α for the total rate of the SLν we obtained [18]

ΓSLν = 4µ2
να

2m2
νp, mν/p ¿ α ¿ p/mν . (6)

The main properties of the SLν investigated in [15, 17, 18] can be summarized as
follows: 1) a neutrino with nonzero mass and magnetic moment when moving in dense
matter can emit spin light; 2) in general, SLν in matter is due to the dependence of the
neutrino dispersion relation in matter on the neutrino helicity; 3) the SLν radiation rate
and power depend on the neutrino magnetic moment and energy, and also on the matter
density; 4) the matter density parameter α, that depends on the type of neutrino and
matter composition, can be negative; therefore the types of initial and final neutrino (and
antineutrino) states, conversion between which can effectively produce the SLν radiation,
are determined by the matter composition; 5) the SLν in matter leads to the neutrino-
spin polarization effect; depending on the type of the initial neutrino (or antineutrino) and
matter composition the negative-helicity relativistic neutrino (the left-handed neutrino
νL) is converted to the positive-helicity neutrino (the right-handed neutrino νR) or vice
versa; 6) the obtained expressions for the SLν radiation rate and power exhibit non-trivial
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dependence on the density of matter and on the initial neutrino energy; the SLν radiation
rate and power are proportional to the neutrino magnetic moment squared which is, in
general, a small value and also on the neutrino energy, that is why the radiation discussed
can be effectively produced only in the case of ultra-relativistic neutrinos; 7) for a wide
range of matter densities the radiation is beamed along the neutrino momentum, however
the actual shape of the radiation spatial distribution may vary from projector-like to
cap-like, depending on the neutrino momentum-to-mass ratio and the matter density; 8)
in a wide range of matter densities the SLν radiation is characterized by total circular
polarization; 9) the emitted photon energy is also essentially dependent on the neutrino
energy and matter density; in particular, in the most interesting for possible astrophysical
and cosmology applications case of ultra-high energy neutrinos, the average energy of
the SLν photons is one third of the neutrino momentum. Considering the listed above
properties of the SLν in matter, we argue that this radiation can be produced by high-
energy neutrinos propagating in different astrophysical and cosmological environments.

Performing the detailed study of the SLe in neutron matter [22] we have found for
the total rate

ΓSLe = e2m2
e/(2p)

[
ln

(
4αnp/me

)− 3/2
]
, me/p ¿ αn ¿ p/me, (7)

where it is supposed that ln 4αnp
me

À 1. It was also found that for relativistic electrons the
emitted photon energy can reach the range of gamma-rays. Furthermore, the electron can
loose nearly the whole of its initial energy due to the SLe mechanism.

Several aspects of the background plasma effects in the SLν radiation mechanism have
been discussed in [18]. Recently this problem has been also considered in [24] and the
total rates of the SLν and SLe in plasma where derived. The final result of [24] for the
SLν rate, that accounted for the photon dispersion in plasma, in the case of ultra-high
energy neutrino (i.e., when the time scale of the process can be much less than the age of
the Universe) exactly reproduces our result (6) obtained in [18]. At the same time, the
SLe total rate given by eq. (65) in the second paper of [24] in the leading logarithmic
term confirms our result (7) obtained in [22].

Recently we have applied the developed method of exact solutions of quantum wave
equations in the background matter to a particular case when a neutrino is propagating in
a rotating medium of constant density [25]. Suppose that the neutrino propagates inside
a uniformly rotating medium composed of neutrons. This can be considered for modelling
of neutrino propagation inside a rotating neutron star. The corresponding modified Dirac
equation for the neutrino wave function is given by (3) with the potential f̃µ that accounts
for the medium rotation. The equation can be solved in the considered case and for the
energy spectrum of the relativistic active left-handed neutrinos with vanishing mass we
have obtained

p0 =
√

p2
3 + 2γN −GF n/

√
2, γ = GF ωn/

√
2, N = 0, 1, 2, ..., (8)

where ω is the angular frequency of the star rotation. The energy depends on the neutrino
momentum component p3 along the rotation axis of matter and the quantum number N
that determines the value of the neutrino momentum in the orthogonal plane. Thus, it
is shown that the transversal motion of an active neutrino is quantized very much like
an electron energy is quantized in a constant magnetic field forming the Landau energy
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levels. From these properties of the neutrino energy spectrum we predict that there is an
effect of trapping neutrinos with the correspondent energies inside rotating dense stars.

The two of the authors (A.G. and A.S.) are thankful to Anatoly Efremov and Oleg
Teryaev for the invitation to attend the XII Workshop on High Energy Spin Physics and
for the kind hospitality provided in Dubna.
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Discussion

Q. (S.Nurushev, IHEP, Protvino) I have two questions:
1) As I remember, Prof. I.M. Ternov wrote a paper ”Spin-light of electrons” several years
ago. Is your mechanism relevant to that process which was experimentally observed?
2) If the neutrino has a mass, how much it may influence your results?

A. 1) We termed a new mechanism of electromagnetic radiation by a neutrino moving
in matter as ”Spin Light of Neutrino” because this light originates from the neutrino
momentum procession (in matter) that in fact reminds us the ”Spin Light of Electron”
(in magnetic field) that was discussed in papers of Igor Mikhailovich and that was observed
in Novosibirsk in 80th.
2) In fact, we need non-zero neutrino mass because a massive neutrino should have no
magnetic moment so that in this case there is no spin light.

Q. (V.Huseynov, Nakhchivan Univ.) 1) Does the medium radiate or does a neutrino
radiate when neutrino propagate in the medium?
2) Does anomalous magnetic moment of a neutrino change its sign when the magnetic
field strength is greater then the corresponding Schwinger critical field strength? Do any
tachyon modes appear in this case?

A. 1) The spin light of neutrino (SLν) in matter is radiated by the neutrino itself
and this is a new mechanism of electromagnetic radiation that has never discussed before.
The SLν is not a Cherenkov radiation (the Cherenkov radiation of neutrino in matter was
considered before by many people and it is the radiation that is emitted not by a neutrino
but by particles of the background matter through which a neutrino is propagating).
2) In strong magnetic filed of the order of the critical Schwinger value (m2

e/e = 4.41 · 1013

Gauss), the influence of the field on the neutrino magnetic moment is not visible. However,
in the very extreme case of the magnetic field of the order of m2

W /e ≈ 1024 Gauss there
is a significant increase of the neutrino magnetic moment (this has been checked for the
one-loop contribution to the neutrino magnetic moment).
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Abstract

The soft-gluon twist-3 contributions to single-spin asymmetries (SSA) in hard
processes may be expressed in the form of effective T-odd Sivers distributions, whose
signs and scales are modified by process-dependent colour factors. The Sivers mech-
anism is applied at large transverse momenta and the emission of balancing gluons
provide the colour flow explaining this factor.

Introduction. Single-spin asymmetries (SSA) represent one of the most subtle and
intriguing effects in QCD. In the simplest inclusive processes parity conservation requires
a transversely polarised beam or target. The transverse polarisation component is not
enhanced by Lorentz boosts, and one immediately encounters the necessity of describing
twist-3 effects. This can be achieved via use of either local [1] or non-local [2–5] operators.

The latter approach also permits the description of the imaginary phases required
to produce T-odd effects, such as SSA. These phases mimic true T(CP) violation (see
e.g. [6]) and allow T-odd effects in a T-conserving theory, such as QCD. The phases
emerging from gluon loops describing initial- and final-state interactions (ISI and FSI) in
hard subprocesses are suppressed by powers of light-quark masses and the QCD coupling
constant [7]. However, deeper analysis [8] shows that quark masses should be substituted
by hadronic mass scales. Moreover, ISI and FSI between the hard and soft regions of QCD
factorisation, which is just the physical picture corresponding to twist three, lead to SSA
free of both suppression factors [9]. The imaginary phase is generated by gluon correlations
with soft quarks; the situation when instead the gluon is soft was also considered later [10].

An alternative description of SSA effects is provided by a T-odd transverse-momentum
dependent (TMD) distribution function, first introduced by Sivers [11]. As soon as there
is no kinematical variable whose cut produces an imaginary phase in the hadron–parton
transition amplitude, this may simply become an effective function [6], so that the phase
also emerges owing to the ISI and FSI involving hard subprocess. The first case of the
appearance of an effective T-odd distribution was found [12] for soft-gluon SSA in the
Drell–Yan (DY) process integrated over transverse momenta [13]. It was later identified
[14] with the first moment of the Sivers function, which plays a special role in what
follows. The role of FSI between the hard and soft regions of semi-inclusive deeply inelastic
scattering (SIDIS) was clearly revealed in the model of Brodsky, Hwang and Schmidt [15],
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where it was interpreted [16] as a manifestation of the Sivers function. The crucial role
of hard processes in defining this function was made manifest by the discovery of a sign
difference between SIDIS and DY.

This is all qualitatively similar to earlier findings [17] in the twist-3 case. However,
the apparent difference between the FSI arising in twist-3 interactions is the absence
of true power suppression. The situation is, though, even more peculiar. In the hard
Abelian process of semi-inclusive production of a real photon by a deeply virtual photon
(SIDVCS, the semi-inclusive counterpart of the well-known DVCS [18] process) an overall
suppression as b(xB, xB − xg)MpT /Q2 was shown [19] to be compensated by a gluonic
pole in the quark–gluon correlator b ∼ 1/xg, which is approached at low pT ¿ Q as the
gluon momentum fraction is defined by kinematics xg ∼ p2

T /Q2, indicating the possibility
to obtain unsuppressed (in Q) twist-3 effects. Similar conclusions that the Sivers function
and gluonic poles describe similar physics for different pT have been reached within the
framework of a general proof [20].

These analyses imply a picture in which the Sivers function is limited to the low-pT

region, where a special type of factorisation [21] is assumed valid and either the continu-
ation of the twist-3 result to lower pT [19] or matching [20] of high- and low-pT results is
adopted.

Recently, a different, complementary approach [22] was suggested to apply the Sivers
function at high pT . This is of special importance for hadronic processes where pT is the
only hard scale. The general quantitative relations between the Sivers function and gluonic
poles, using master formulæ [23] for the latter lead, besides the sign, to the important
process-dependent colour factors (cf. [24, 25], where such colour factors were calculated
by considering gauge links) modifying the Sivers function and underlining its effective
nature.

In the approach suggested these factor correspond to the colour flow carried by the hard
partons balancing transverse momentum. It is a universal feature of the processes, while
the sign factor between SIDIS and DY at low pT is an exception due to the participation
of only a colour-neutral hard photon and emerging colour correlations between the initial
and final quarks (in SIDIS) or initial quark and antiquark (in DY).

From the Sivers function to gluonic poles. To prove the relation between twist
three and the Sivers function we shall not attempt to obtain the latter as some special
limit [19,20] of a twist-3 contribution, but instead transform some approximation of it to
the form [23] appearing in the twist-3 calculation. In other words, we are going to provide
a posteriori proof of the following factorised formula involving the Sivers function

d∆σ ∼
∫

d2kT dx fS(x, kT ) Tr
[
γρH(xP, kT )

]
ερsPkT , (1)

where other (unpolarized and collinear) distribution or fragmentation functions should
normally also be present. To achieve this goal, we expand the subprocess coefficient
function H in powers of kT , retaining only the first non-vanishing term: and after some
algebra get [22]:

d∆σ ∼ M

∫
dx f

(1)
S (x) Tr

[
6P ∂H(xP, kT )

∂kα
T

]

kT =0

εαsPn. (2)
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The key observation now is that this expression exactly coincides with the recently ob-
tained master formula [23] for the contribution of twist-3 gluonic poles in high-pT pro-
cesses. The Sivers distribution can then be identified with the gluonic pole strength
T (x, x) multiplied by a process-dependent colour factor. In turn, the sign of the Sivers
function is fixed according as to which of the ISI or FSI is relevant:

f
(1)
S (x) =

∑
i

Ci
1

2M
T (x, x), (3)

where Ci is a relative colour factor, defined with respect to an Abelian subprocess (say
SIDVCS discussed above, where it is just CF ), which is naturally absorbed into the defi-
nition of the quark–gluon correlator [3]. As we shall discuss below, this is also the factor
appearing in low-pT SIDIS and DY at the Born level.

The relation established is one of the principal results of this paper. It completes the
a posteriori proof of (1) and relates the twist-3 factorization to the modified (by colour
factors) factorization in terms of Sivers function The second moment of the Sivers function
enters the original expression (1) with a factor M instead of 1/M , indicating its twist-3
nature. This may be seen immediately by defining the Sivers function in coordinate
(impact-parameter) space, in a manner similarly to earlier discussions [27] of the Collins
fragmentation function:

〈P, s|ψ(0)γρψ(z)|P, s〉 ∼ MερsPz

∫
dx eizxf

(1)
S (x). (4)

Note too that higher Sivers-function moments enter with higher derivatives of the co-
efficient function and therefore correspond to higher twist (5, 7, 9, . . . ). The entire
kT -dependent Sivers function thus corresponds to a resummed infinite tower of higher
twists. This property has also been studied in coordinate space [27], where kT -dependent
functions represent a complete similarity with non-local quark condensates. The latter
manifest a similar resummation of an infinite tower of higher twists (see e.g. [28] and refs.
therein), but for vacuum rather than hadronic matrix elements.

Colour factors and the transition from large to small transverse momenta.
Let us consider some particular applications of this relation, starting with high-pT SIDIS.
In this case there are only final-state interactions, while the colour factors differ for mesons
produced in fragmentation of quarks (−1/2Nc); or gluons (Nc/2). This shows that there
is a specific enhancement in the latter, which is of special importance for K− mesons.

To experimentally verify such a picture, it would be of major importance to distinguish
between mesons originating from either quark or gluon fragmentation at large pT . While
a complete separation is impossible, there are methods that can help. Firstly, one may
use jet shape, which differs for quark and gluon jets owing to the different spins of the
fragmenting objects. This difference in spin can also be seen in the tensor polarization of
vector mesons [30]. However, most promising would seem to be exploration of the different
z-dependence in quark and gluon fragmentation functions. The faster decrease of the
latter should result in dramatic variations of SSA, so that at low z gluon fragmentation
would be dominant with a colour factor Nc/2, while at large z one would expect a sign
change and transition to quark fragmentation with a factor −1/2Nc.
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Let us now turn to hadronic processes, starting with the simplest: direct-photon
production. There are only initial-state interactions with gluons, resulting in the very
simple relation

F hh→γX
S =

Nc

2
fDY

S . (5)

Exploration of this process in various kinematical regions can provide information on
the gluon Sivers function [31]. There is little doubt that this is also an effective function,
related to the three-gluon correlators considered earlier in relation to pion SSA [32] and the
DIS structure function g2 [33,34]. The generalization of our approach to the case of three-
gluon correlators is therefore an important task. Consideration of quark–gluon processes
is more complicated; a list of colour factors relevant for twist-3 subprocesses may be found
in [24,25]. Let us only mention that FSI for pions produced in quark fragmentation may
be reexpressed in a manifestly gauge-invariant manner via the summation formula

taS ta = − 1

2Nc

S +
1

2
I TrS. (6)

The first term corresponds to the usual Sivers function [35] with colour factor −1/2Nc

and the second to the Abelian Compton subprocess, with s- and u-channel diagrams
contributing with the same factors while the t-channel is absent. Both terms are separately
gauge invariant. The general proof of gauge invariance in hadronic collisions remains to
be found

The colour factor is defined by the colour charge of the parton participating in the ISI
and FSI. This charge is, generally speaking, independent of the properties of the polarized
hadron emitting the gluon that participates in the ISI and FSI and, in this sense, breaks
factorization. SIDIS and DY processes at low pT are exceptional: the colour charge of the
quark participating in the FSI in SIDIS is the same as that of the quark originally emitted
by polarized hadron. By the same token, the colour charge of the antiquark participating
in the ISI in DY processes at low pT is just the opposite, which explains the Collins sign
rule. At the same time, the emission of a hard gluon changes these colour charges in high-
pT SIDIS, DY processes and, needless to say, other hadronic processes. This modification
of colour charge causes a colour modification of the effective Sivers function.

Discussion and Conclusions. We have suggested and proved here a method of apply-
ing the Sivers distribution at large transverse momenta. We have shown that the Sivers
function is, in effect, none other than an expression of the contribution of gluonic poles.
It is therefore process dependent and this dependence includes, besides the sign related
to the ISI and FSI responsible for the imaginary phase, a colour factor. This situation
means that validity of factorization in terms of twist-3 correlators leads to its violation
or modification in terms of Sivers function. The colour factor is defined by the colour
charge of the initial and final partons participating in the hard scattering. Its simplest
manifestation is provided by the sign difference between SIDIS and DY processes at low
pT . At the same time, at high pT and in hadronic reactions these factors are much more
complicated.

Such a picture is complementary to that considered previously, in which matching
between the Sivers function and twist-3 matrix elements occurred in the region where,
strictly speaking, factorization formulæ were not valid. This complementary method of
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establishing a relation between the Sivers function and twist-3 matrix elements lends
support to the possibility of global fits of Sivers functions [19], including lepton–hadron
and hadron–hadron processes, as well as DIS, where twist three also contributes.
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Abstract

Directed flow v1 treated as an effect of the transient matter rotation in hadronic
and nuclei reactions.

Multiparticle production in hadron and nucleus collisions and corresponding observ-
ables provide a clue to the mechanisms of confinement and hadronization. Discovery of
the deconfined state of matter has been announced by the four major experiments at
RHIC [1]. Despite the highest values of energy and density have been reached, a genuine
quark-gluon plasma QGP (gas of the free current quarks and gluons) was not found 1.
The deconfined state reveals the properties of the perfect liquid, being strongly interacting
collective state and therefore it was labelled as sQGP [3]. The nature of the new form
of matter is not known. The importance of the experimental discoveries at RHIC is that
the matter remains strongly correlated and reveals high degree of the coherence when it
is well beyond the critical values of density and temperature. In this report we would
like to stress that the behavior of collective observables in hadronic and nuclear reactions
could have some similarities. Among several experimental probes of collective dynamics in
AA interactions [4,5] are the momentum anisotropies vn defined by means of the Fourier
expansion of the transverse momentum spectrum over the momentum azimuthal angle φ.
With measurements of these observables one can obtain a valuable information on the
early stages of reactions and observe signals of QGP formation [6–14]. We discuss the role
of the coherent rotation of the transient matter in hadron and nuclei collisions and the
directed flow dependence. Hypothesis on connection of the strongly interacting transient
matter rotation with the directed flow generation is the main point of this report.

We consider non-central hadron collisions and apply notions acquired from heavy-
ion studies. In particular, we amend the model [15] developed for hadron interactions
(based on the chiral quark model ideas) and consider the effect of collective rotation of a
quark matter in the overlap region. The determination of the reaction plane in the non-
central hadronic collisions [16] could be experimentally realizable with the utilization of
the standard procedure [17]. Geometrical picture of hadron collision at non-zero impact
parameters [15] implies that the generated massive virtual quarks in overlap region (due
to shock-wave type of interaction of the condensate clouds2) carry large orbital angular
momentum at high energies. The total orbital angular momentum can be estimated as
follows

L(s, b) ' αb

√
s

2
DC(b). (1)

1It is to be noted here that confinement due to causality principle might exclude the very existence of
QGP defined that way [2].

2This mechanism is similar to the shock-wave production process proposed by Heisenberg [18]
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The parameter α is related to the fraction of the initial energy carried by the condensate
clouds which goes to rotation of the quark system and

DC(b) ≡ Dh1
c ⊗Dh1

c ,

where function Dh
c describes peripheral condensate distribution inside the hadron h, and

b is an impact parameter of the colliding hadrons. The overlap region, which is described
by the function DC(b), has an ellipsoidal form similar to the overlap region in the nucleus
collisions. It should be noted that L → 0 at b →∞ and L = 0 at b = 0. Similar impact
parameter dependence with maximum at the impact parameter values around 1 fm the
directed flow v1 has.

Due to strong interaction between quarks the orbital angular momentum L leads to
coherent rotation of the quark-pion liquid located in the overlap region as a whole in
the xz-plane since strong correlations between particles are presented there. It should be
noted that for the given value of the orbital angular momentum L kinetic energy has a
minimal value if all parts of liquid rotates with the same angular velocity. We assume
therefore that the different parts of the quark-pion liquid in the overlap region indeed have
the same angular velocity ω. It has grounds also in the perfect, non-viscous, character of
the liquid revealed at RHIC. Such coherent rotation is absent in the parton picture used
in [20], where finite transverse gradient of parton longitudinal momentum is a driving force
of the orbital angular momentum conversion to the global system polarization through
spin-orbital coupling. The polarization not yet been detected experimentally [19].

The generation time of the transient state ∆ttsg obey to the inequality ∆ttsg ¿ ∆tint,
where ∆tint is the total interaction time. The assumed particle production mechanism
at moderate transverse momenta is an excitation of a part of the rotating transient state
of massive constituent quarks (interacting by pion exchanges) by the one of the valence
constituent quarks with subsequent hadronization of the quark-pion liquid droplets. Due
to the fact that the transient matter is strongly interacting, the excited parts should be
located closely to the periphery of the rotating transient state otherwise absorption would
not allow to quarks and pions to leave the region (quenching). The mechanism is sensitive
to the particular rotation direction and the directed flow should have opposite signs for
the particles in the fragmentation regions of the projectile and target respectively. It is
evident that the effect of rotation (shift in px value ) is most significant in the peripheral
part of the rotating quark-pion liquid and is to be weaker in the less peripheral regions
(rotation with the same angular velocity ω), i.e. the directed flow v1 (averaged over all
transverse momenta) directly depends on the distance to the center of the rotating matter
or on the depth ∆l where the excitation of the rotating quark-pion liquid takes place. In
its turn, the length ∆l should be proportional to the energy loss of constituent valence
quark in the medium (quark-pion liquid) prior an excitation occurs, i.e. before constituent
quark would deposit its energy into the energy of the excited quarks (those quarks lead
to the production of the secondary particles)

∆l ∼ ∆E. (2)

Proportionality of the energy loss due to elastic rescattering and ∆l is a consequence of
the liquid nature of the transient state which has fixed interparticle distances. Energy
loss ∆E should (in a rough approximation) be proportional to the difference between
the rapidities of the final particle and the projectile. Thus, the observable v1, which
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magnitude is determined by the shift of transverse momentum due to rotation and depend
therefore on the value of ∆l in this mechanism, would depend in its turn on the rapidity
difference y−ybeam and not on the incident energy. The mechanism therefore can provide
a qualitative explanation of the incident-energy scaling of v1 observed at RHIC [21].
Evidently, the directed flow |v1| decreases when the absolute value of the above difference
increases, i.e. |v1| increases at fixed energy and increasing rapidity of final particle and it
decreases at fixed rapidity of final particle and increasing beam energy.

An important assumption based on the RHIC data is the strongly interacting nature
of the transient matter, namely, it was supposed that valence constituent quark excites
quark-pion liquid in the closest hemisphere to the entry point.

The magnitude of |v1| is to be proportional to inverse depth length ∆l−1 which is
determined by elastic quark scattering cross-section σ and quark pion liquid density n,
i.e. ∆l ∼ 1/σn and therefore averaged value of v1 should be proportional to the particle
density of the transient state 〈|v1|〉 ∼ σn. This estimate shows that the magnitude of
the directed flow could provide information on the properties of the transient state. The
centrality dependence of v1 should be decreasing towards high and lower centralities.
Decrease toward high centralities is evident, no overlap of hadrons or nuclei should be
at high enough impact parameters. Decrease of v1 toward lower centralities is specific
prediction of the proposed mechanism based on rotation since central collisions with
smaller impact parameters would lead to slower rotation or its complete absence in the
head-on collisions.

If the proposed mechanism of the directed flow generation is realized, vanishing di-
rected flow can serve as a signal of a genuine quark-gluon plasma (gas of free quarks
and gluons) formation. Then the orbital momentum, could be converted e.g. into the
global polarization at the partonic level and detected experimentally measuring hyperon
or photon polarizations [20].

It would be interesting to perform studies of transient matter at the LHC not only in
heavy ion collisions, but also in pp–collisions, and to find possible existence or absence of
the rotation effects through the directed flow and polarization measurements. Collective
rotation should also contribute to the elliptic flow. However, since the regularities already
found experimentally for v1 and v2 in nuclei interactions imply different dynamical ori-
gin for these flows, we should conclude that the rotation does not provide a significant
contribution to elliptic flow.
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[6] J. Hofmann, H. Stöcker, U. W. Heinz, W. Scheid, W. Greiner, Phys. Rev. Lett. 36,
88, (1976).
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Abstract

We carry out a comparative analysis of the transversities and the longitudinally
polarized parton distribution functions in light of the first empirical extraction of
the transversity distributions recently done by Anselmino et al. It is shown that the
precise determination of the isoscalar tensor charge, which is defined as the 1st mo-
ment of the isoscalar combination of the transversity distributions, is of fundamental
importance for clarifying the internal spin structure function of the nucleon.

As is well known, the transversity is one of the three fundamental parton distribution
functions (PDFs) with the lowest twist 2. Different from the other two, i.e. more familiar
unpolarized PDF and the longitudinally polarized PDF, its chiral-odd nature prevents us
from extracting it directly through the standard inclusive deep-inelastic-scattering mea-
surements [1], [2]. For this reason, we have had little empirical information on it until
recently. Very recently, however, Anselmino et al. succeeded to get a first empirical in-
formation on the transversities [3] from the combined global analysis of the azimuthal
asymmetries in semi-inclusive DIS scatterings measured by HERMES and COMPASS
groups [4], [5], and those in e+e− → h1h2X processes by the Belle Collaboration [6].
Their main observation for the transversities can be summarized as follows. First, the
u-quark transversity is positive and d-quark one is negative with the magnitude of ∆T u(x)
being much larger than that of ∆T d(x). Second, both of ∆T u(x) and ∆T d(x) are signifi-
cantly smaller than the Soffer bound [7]. The 2nd observation is only natural, since the
magnitudes of unpolarized PDFs are generally much larger than the polarized PDFs. In
our opinion, what is more interesting from the physical viewpoint is the comparison of
the transversities with the longitudinally polarized PDFs. This comparative analysis of
the two fundamental PDFs is the main purpose of my present talk [8].

Before going into the comparative analysis of the transversities and the longitudinally
polarized PDFs, it would be useful to give an overview of new measurements of the lon-
gitudinally polarized PDFs, especially in the flavor singlet channel related to the nucleon
spin problem. Recently, the COMPASS and HERMES groups carried out high-statistics
measurements of the longitudinal spin structure function of the deuteron, thereby having
succeeded to significantly reduce the error bars of ∆Σ, the net quark spin contribution to
the nucleon spin [9]- [11].

As pointed out in [12], these new results for the deuteron spin structure function is
remarkably close to our theoretical predictions given some years ago based on the chiral
quark soliton model (CQSM) [12], [14]. (See also [15]- [18].) Fig.1 show the comparison
between our predictions for x gd

1(x,Q2) given several years ago and the new COMPASS
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and SU(3) CQSM in comparison with the
new COMPASS data for x gd

1(x) (filled
circles) and their NLO QCD fits (long-
dashed curve). The old SMC data [28] are
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Figure 2: The predictions of the SU(2) and
SU(3) CQSM in comparison with the new
COMPASS data for gN

1 (x) (filled circles) and
their NLO QCD fits (long-dashed curve).

data [9] (the filled circles) together with the old SMC data [28] (the open squares). The
solid and dashed curves respectively stand for the predictions of the flavor SU(3) and
SU(2) CQSM evolved to the energy scale Q2 = 3 GeV2, which is the average energy
scale of the new COMPASS measurement. The long-dashed curve shown for reference
is the next-to-leading order QCD fit by the COMPASS group [10]. As one can see,
the new COMPASS data show a considerable deviation from the old SMC data in the
small x region. One finds that the predictions of the CQSM are consistent with the new
COMPASS data especially in the small x region. This tendency can more clearly be seen
in comparison of gN

1 (x) ≡ gd
1(x)/(1 − 3

2
ωD) illustrated in Fig.2. The filled circles here

represent the new COMPASS data for gN
1 (x), while the long-dashed curve is the result of

the next-to-leading order QCD fit by the COMPASS group [10]. The predictions of the
SU(3) and SU(2) CQSM are represented by the solid and dashed curves, respectively.
For the quantity gN

1 (x), the experimental uncertainties are still fairly large in the small
x region. Still, one can say that the predictions of the CQSM is qualitatively consistent
with the new COMPASS data as well as their QCD fit.

The COMPASS group also extracted the matrix element of the flavor-singlet axial
charge a0 [10], which can be identified with the net longitudinal quark polarization ∆Σ in
the MS factorization scheme. Taking the value of a8 from the hyperon beta decay, under
the assumption of SU(3) flavor symmetry, they extracted from the QCD fit of the new
COMPASS data for gd

1(x) the value of ∆Σ as

∆Σ(Q2 = 3 GeV2)COMPASS = 0.35 ± 0.03 (stat.) ± 0.05 (syst.). (1)
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On the other hand, the same quantity derived from the fits to all g1 data is a little smaller

∆Σ(Q2 = 3 GeV2)COMPASS = 0.30 ± 0.01 (stat.) ± 0.02 (evol.). (2)

A similar analysis was also reported by the HERMES group [11]. Their result is

∆Σ(Q2 = 5 GeV2)HERMESS = 0.330 ± 0.011 (theor.) ± 0.025 (exp.) ± 0.028 (evol.). (3)
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Figure 3: The scale dependencies of ∆Σ and ∆g
predicted by the CQSM in combination with the
NLO DGLAP equation are compared with the
recent QCD fits by the COMPASS group (filled
circle and open triangle) and by the HERMES
group (open circle). The old SMC result is also
shown by an open square.

The results of the two groups for ∆Σ
are mutually consistent and seems to be
larger than the previously known central
values [28]. We now compare these new
results with the prediction of the CQSM
given in our previous papers [13], [14].
Shown in Fig.3 are the prediction of the
CQSM for ∆Σ and ∆g as functions of the
energy scale Q2. They are obtained by
solving the standard DGLAP equation at
the NLO with the prediction of the model
as the initial condition given at the scale
Q2

ini = 0.30 GeV2 ' (600 MeV)2. Since the
CQSM is an effective quark model, which
contains no gluon degrees of freedom, ∆g
is simply assumed to be zero at the ini-
tial scale. One sees that the new COM-
PASS and the HERMES results for ∆Σ
are surprisingly close to the prediction of
the CQSM. Also interesting is the longitu-
dinal gluon polarization ∆g. In spite that
we have assumed that ∆g is zero at the starting energy, it grows rapidly with increasing
Q2. As pointed out in [20], the growth of the gluon polarization with Q2 can be traced

back to the positive sign of the anomalous dimension γ
(0)1
qg . The positivity of this quantity

dictates that the polarized quark is preferred to radiate a gluon with helicity parallel to
the quark polarization. Since the net quark spin component in the proton is positive,
it follows that ∆g > 0 at least for the gluon perturbatively emitted from quarks. The
growth rate of ∆g is so fast especially in the relatively small Q2 region that its magnitude
reaches around (0.3 − 0.4) already at Q2 = 3 GeV2, which may be compared with the
estimate given by the COMPASS group :

∆g(Q2 = 3 GeV2)COMPASS ' (0.2− 0.3). (4)

Now that we have convinced that the CQSM reproduces very well the longitudinally
polarized PDFs of the nucleon and the deuteron, we return to the main topic of this talk,
i.e. the difference of the longitudinally polarized PDFs and the transversities. First, I
recall that the most important quantities characterizing these PDFs are their 1st moments,
known as the axial and tensor charges. Next, I emphasize that the understanding of isospin
dependencies is crucially important to disentangle the nonperturbative chiral dynamics of
QCD hidden in the PDFs. Neglecting the strange quark degrees of freedom, for simplicity,

194



there exist two independent combinations. the isoscalar and isovector combinations for
both of the axial and tensor charges.

Let us first recall some basic facts about the axial and tensor charges. The difference
of the axial and tensor charges is of purely relativistic nature [1]. In fact, in the naive
quark model or the nonrelativistic quark model, there is no difference between the axial
and tensor charges, that is, the isovector axial and tensor charges are both 5/3, while the
isoscalar axial and tensor charges are both unity :

g
(I=1)
A = g

(I=1)
T =

5

3
, g

(I=0)
A = g

(I=0)
T = 1. (5)

On the other hand, in the familiar MIT bag model, which is nothing but the valence
quark model with the relativistic kinematics, an important difference appear between the
axial and tensor charges due to the presence of the lower component of the ground state
wave function g(r) as

g
(I=0)
A = 1 ·

∫ (
f 2 − 1

3
g2

)
r2 dr, g

(I=1)
A =

5

3
·
∫ (

f 2 − 1

3
g2

)
r2 dr, (6)

g
(I=0)
T = 1 ·

∫ (
f 2 +

1

3
g2

)
r2 dr, g

(I=1)
T =

5

3
·
∫ (

f 2 +
1

3
g2

)
r2 dr. (7)

Nevertheless, an important observation is that the ratio of the isoscalar to isovector charge
is just common for the axial and tensor charges, i.e. they are three fifth in both of the
NQM and the MIT bag model :

g
(I=0)
A

g
(I=1)
A

=
g

(I=0)
T

g
(I=1)
T

=
3

5
. (8)

Most probably, this feature is related to a common shortcoming of these models, that is,
the lack of the spontaneous chiral symmetry breaking mechanism. One can convince it
by comparing the predictions of the MIT bag model with those of the CQSM, which is
an effective model of QCD taking account of the effect of spontaneous chiral symmetry
breaking in a maximal way.

MIT bag CQSM Experiment

g
(I=1)
A 1.06 1.31 1.267 (scale independent)

g
(I=0)
A 0.64 0.35 0.330 ± 0.040 (Q2 = 5GeV2)

g
(I=1)
T 1.34 1.21

g
(I=0)
T 0.88 0.68

g
(I=0)
A /g

(I=1)
A 0.60 0.27 ∼ 0.26 (Q2 = 5GeV2)

g
(I=0)
T /g

(I=1)
T 0.60 0.56

Table 1: The predictions of the MIT bag model and of CQSM for the axial and tensor charges
in comparison with the empirical information.

195



As mentioned, in the MIT bag model, the ratio of the isoscalar and isovector axial
charges and also the ratio of isoscalar and isovector tensor charges are both exactly 0.6.
On the other hand, the CQSM predicts that the ratio of the axial charges is much smaller
than that of the tensor charges. This comes from the fact that the CQSM predicts very
small isoscalar axial charge just consistent with the EMC observation, while its prediction
for the isoscalar tensor charge is not extremely different from the prediction of other low
energy effective models including the MIT bag model.

In any case, the predictions of the CQSM for the axial and tensor charges can roughly
be summarized as follows. The isovector tensor and axial charges have the same order
of magnitudes, while the isoscalar tensor charge is not so small as the isoscalar axial
charge. From this analysis, we immediately expect the following qualitative features
for the transversity and the longitudinally polarized PDFs. The isovector transversity
distribution and the isovector longitudinally polarized distribution would have the same
order of magnitude, while the isoscalar ∆T q(x) is much larger than the isoscalar ∆q(x),
i.e.

∆q(I=0)(x) ¿ ∆T q(I=0)(x), ∆q(I=1)(x) ' ∆T q(I=1)(x). (9)

In other words, we would expect the magnitude of d-quark transversity is much smaller
than that of d-quark longitudinally polarized PDF :

|∆T d(x)| ¿ |∆d(x)|. (10)
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Figure 4: The predictions of the flavor SU(2)
CQSM for the transversities (solid curves) and
the longitudinally polarized distribution func-
tions (dashed curves) for the u- and d-quarks
evolved to Q2 = 2.4 GeV.

To make the argument more quantita-
tive, we compare in Fig.4 the CQSM pre-
dictions for the transversities and the longi-
tudinally polarized PDFs. Here, the model
predictions are evolved to the energy scale
of Q2 = 2.4 GeV2, for later convenience.
One can confirm that the magnitudes of
the u-quark transversities and the u-quark
longitudinally polarized PDF are roughly
the same, whereas the magnitude of d-
quark transversity is roughly a factor of
two smaller than that of the d-quark longi-
tudinally polarized PDF.

Now, I compare in Fig.5 the CQSM pre-
dictions for the transversities with the re-
cently obtained global fit by Anselmino et
al. [3]. As one sees, the uncertainties of the
global fit are still quite large. Still, a remarkable feature of the transversity distributions
seems to be already seen in their fit. A common feature of the CQSM prediction and their
global fit is that the ratio ∆T d(x)/∆d(x) is very small. As a general trend, however, the
magnitudes of the transversities obtained by their global fit look fairly smaller than the
corresponding CQSM predictions. In particular, the CQSM prediction for the u-quark
transversity appears to lie outside the upper limit of their fit. We shall come back to this
point later.

At this point, it would be useful to make some comments on the calculation of transver-
sities by Bochum group based on the same CQSM [21]. A main difference between our cal-
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culation [13], [22] and theirs [21] resides in the isovector part of transversities ∆T q(I=1)(x).
In their calculation, they included only the leading-order contribution to this quantity,
and neglected the subleading 1/Nc correction, while we have included the latter as well.
This is because we know that a similar 1/Nc correction (or more concretely, the 1st-order
rotational correction) is very important for resolving the famous underestimation problem
of some isovector observables, like the isovector axial-charge and/or the isovector mag-
netic moment of the nucleon, inherent in the hedgehog-type soliton model [23], [24]. The
neglect of this 1/Nc correction would led to a similar underestimation of the isovector
tensor charge, thereby having a fear of being lead to a misleading conclusion on the size
of the transversities. We emphasized that, to avoid such a danger, it is very important
to analyze the transversities and the longitudinally polarized PDFs simultaneously within
the same theoretical framework.

To see the difference with the longitudinally polarized PDFs, we show in Fig.6 the
LSS2005 fit for the longitudinally polarized u- and d-quark distributions [25]. One can
confirm that the CQSM prediction for the u-quark transversity has the same order of
magnitude as that of the LSS fit for the u-quark longitudinally polarized PDF, while the
CQSM prediction for the d-quark transversity is a factor of two smaller than the LSS fit
for the longitudinally polarized PDF [25].

As already emphasized, the reason of this difference can be traced back to the fact
that the isoscalar tensor charge is not so small as the isoscalar axial charge in the CQSM.
Then, the next question is why the CQSM predicts so small isoscalar axial charge. First,
I recall that in the standard MS scheme the isoscalar axial charge can be identified with
the net quark polarization ∆Σ. Within the framework of the CQSM, we can prove the
following nucleon spin sum rule, naturally saturated by the quark fields alone [26] :

1

2
=

1

2
∆Σ + LQ. (11)
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Figure 5: The predictions of the flavor
SU(2) CQSM for the transversities (solid
curves) in comparison with the global-fit
of [3] (shaded areas).
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On the other hand, in accordance with the physical nucleon picture of the model as a
rotating hedgehog, the CQSM predicts quite large quark OAM, which in turn dictates
that ∆Σ must be small [26]. As a matter of course, in real QCD, the correct nucleon spin
sum rule contains the gluon contributions as well :

1

2
=

1

2
∆Σ + LQ + ∆g + Lg. (12)

However, all the recent investigations indicate that the ∆g is likely to be small at least in
the relatively low energy scale. Combining these observation, one must therefore conclude
that the sum of LQ and Lg must be fairly large at low energy scale.

Our next question is then, ”Is there any sum rule that constrains the magnitudes of the
isoscalar tensor charge ? Here, one may remember the nucleon spin sum rule proposed by
Bakker, Leader and Trueman some years ago [27], which in fact contains the transversity
distributions as

1

2
=

1

2

∑
a=q,q̄

∫ 1

0

∆T qa(x) +
∑

a=q,q̄,g

〈LsT
〉a, (13)

where LsT
is the component of the orbital angular momentum L along the transverse spin

direction sT . Unfortunately, there are several peculiarities in the BLT sum rule. First
of all, it is not such a sum rule obtained as the 1st moment of some parton distribution
functions. In fact, the r.h.s. of this sum rule does not correspond to a nucleon matrix
element of local operator. In particular, the 1st term of this sum rule does not correspond
to the isoscalar tensor charge, because here the sum of the quarks and antiquarks, not
the difference, appear as

∑
a=q,q̄

∫ 1

0

∆T qa(x) dx =

∫ 1

0

{
[∆T u(x) + ∆T d(x)] + [∆T ū(x) + ∆T d̄(x)]

}

6= g
(I=0)
T . (14)

Nonetheless, our analysis based on the CQSM indicates that antiquark transversities are
fairly small. This means that the 1st term of the BLT sum rule may not be extremely
different from the tensor charge. Then, if the postulated inequality between the isoscalar
axial and tensor charges is in fact confirmed experimentally, it would mean the following
inequality, that is the transverse OAM is much smaller than the longitudinal OAM :

LQ
sT

+ Lg
sT

¿ LQ + Lg. (15)

At this point, we come back to the discrepancy between the CQSM predictions and
the global fit by Anselmino et al. We can estimate the magnitudes of tensor charges
from their central fit, under the assumption that the antiquark contributions to them are
negligible, as justified by the CQSM. We then get the following values for the u- and
d-quark tensor charges,

δu ' 0.39, ∆d ' − 0.16, (16)

or for the isoscalar and the isovector tensor charges,

g
(I=0)
T ' 0.23, g

(I=1)
T ' 0.55, (17)
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at the energy scale Q2 ' 2.4 GeV2. If they are evolved down to the low energy model
scale around 600 MeV, we would obtain the following numbers :

δu ' 0.49, ∆d ' − 0.20, (18)

or
g

(I=0)
T ' 0.28, g

(I=1)
T ' 0.69. (19)

We recall that all the theoretical estimates in the past, based on the low energy models as
well as the lattice QCD, predict the isovector tensor charge between 1.0 and 1.5 [28]- [33].
At any rate, we emphasize that the transversities obtained by their global fit correspond to
fairly small magnitudes of tensor charges as compared with the past theoretical estimates.

To sum up, we have carried out a comparative analysis of the transversities and the
longitudinally polarized PDFs in light of the new global fit of transversities and the
Collins fragmentation functions carried out by Anselmino et al. Their results, although
with large uncertainties, already appears to indicate a remarkable qualitative difference
between transversities and longitudinally polarized PDFs such that |∆T d(x)/∆d(x)| ¿
|∆T u(x)/∆u(x)|, which is qualitatively consistent with the predictions of the CQSM.
I have emphasized that the cause of this feature can be traced back to the relation
g

(I=0)
T À g

(I=0)
A = ∆Σ. Further combining with the BLT sum rule, this indicates

the inequality, LQ
ST

+ Lg
ST

¿ LQ + Lg, i.e. the transverse OAM may be much smaller
than the longitudinal OAM. We are not sure whether this unique observation can be
understood as the dynamical effects of Lorentz boost or Melosh transformation. Natu-
rally, the global analysis carried out by Anselmino et al. is just a 1st step for extracting
transversities. More complete understanding of the spin dependent fragmentation mech-
anism is mandatory for getting more definite knowledge of the transversities. Also very
desirable is some independent determination of transversities, for example, through dou-
ble transverse spin asymmetry in Drell-Yan processes. We hope that such near-future
experiments will provide us with more stringent constraint on the isovector as well as the
isoscalar tensor charges, thereby deepening our knowledge on the internal spin structure
function of the nucleon.
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Discussion

Comm. (A.Prokudin, Univ. Torino) I would like to comment on the comparison
between the results of the presented work and Anselmino et al. global analysis results.
In SIDIS we measure product of transversity and Collins Fragmentation Function. In
order to extract transversity one should know the evolution of Collins FF. The results of
the global analysis could change if the evolution of Collins FF differs drastically from the
evolution of unpolarized FF.

Q. (G.Burce, BNL) Is the statement that if gI=0
T >> gI=0

A = ∆Σ with BLT Sum Rule,
LQ

T + LG
T << LQ + LG model independent?
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A. Depends on validity of BLT sum rule. Under discussion.
Q. (J.Soffer, Temple Univ.,Philadelphia) 1. Your model does not reproduce well the

magnitude of d̄/ū? Do you know why?
2. ATT for pp̄ → µ+µ− requires polarized p̄. Any comment?

A. 1. I agree and the reason is that the ratio of two small quantities is difficult to
predict.
2. I agree.

Q. (A.Efremov, JINR, Dubna) Could you compare transversity of your model and
those of the Bochum group?

A. The biggest difference between my calculation of transversities and that by Bochum
group is that I have included the 1/Nc correction (or the Q(Ω

′
) correction) to the isovector

transversity. The importance of such 1/Nc correction is already known from the analysis
of isovector axial-vector coupling constant gI=1

A , which is nothing but the 1st moment of
isovector longitudinally polarized PDF, or the familiar β-decay coupling constant. With-
out this 1/Nc correction, we cannot reproduce the observed β-decay coupling constant.
Roughly

gI=1
A ' gI=1

A (Ω◦) + gI=1
A (Ω

′
)

' 0.8 + 0.4 ' 1.2 (exp. : 1.27)

If we do not include such 1/Nc correction in the calculation of isovector tensor charge,
we would obtain smaller isovector tensor charge, and also smaller isovector transversity
distribution. As a consequence, the difference between the u-quark transversity and the
d-quark transversity would become smaller, and the find prediction would become closer
to the global fit by Anselmino et al. However, such success is fortuitous, I think. In fact,
the predictions of many effective models as well as the prediction of lattice QCD is close
to the answer obtained by including both of O(Ω◦) and O(Ω

′
) terms.

To sum up, such 1/Nc correction term (or the O(Ω
′
) term) which is necessary to

resolve the underestimation problem of should also be included in the calculation of gI=1
T ,

or ∆T qI=1(x), for theoretical consistency.
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OBSERVATION OF SPIN ALIGNMENT OF DEUTERONS
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A.K. Kurilkin, P.K. Kurilkin, V.P. Ladygin, A.G. Litvinenko, V.F. Peresedov,
S.M. Piyadin, S.G. Reznikov, P.A. Rukoyatkin, A.V. Tarasov, T.A. Vasiliev,

V.N. Zhmyrov and L.S. Zolin

JINR, 141980, Dubna, Moscow Region, Russia

Abstract

The tensor polarization of the deuteron beam arising as deuterons pass through a carbon target
was measured. The experiment was performed at an extracted unpolarized 5-GeV/c deuteron
beam of the Nuclotron. The effect observed is compared with the calculations made within the
framework of the Glauber multiple scattering theory.

1 Introduction

The deuteron is a loosely bound pair of nucleons with aligned spins (spin 1 triplet state).
The a small quadruple moment of the deuteron implies that it is not spherical in con-
figuration space, i.e. these two nucleons are not in a pure S state of the relative orbital
angular momentum, and there is an additional D wave component. These properties of
the deuteron give rise to a number of polarization effects in the nuclear reactions involving
the deuteron.

First of all, the calculations of the angular dependence of the elastic dp scattering [1,2]
made within the framework of the Glauber multiple scattering theory [3] show that if one
would direct the unpolarized deuteron beam onto an unpolarized hydrogen target, the
scattered deuterons would be aligned. Secondly, a marked tensor analyzing power was
observed in the inclusive inelastic reaction A(d, d′)X in the region of 4-momentum transfer
near |t| = 0.3 GeV/c in the scattering of polarized deuterons with initial momenta of 4.5
and 5.5 GeV/c on nuclei at 0◦ [4]. At last, it was shown by Baryshevsky [5] that as
particles of spin ≥ 1 pass through matter, effects of spin rotation and oscillations may
occur. These effects may give rise to polarization of the beam crossing the target. The
first attempt to measure spin dichroism, i.e. occurrence of tensor polarization of an
unpolarized deuteron beam by an unpolarized target, was made with deuterons up to 20
MeV in a carbon target [6]. Although the magnitude of the deuteron polarization was not
determined precisely, authors argue that evidence for existence of dichroism was obtained
in this experiment.

In this report we describe an experimental investigation devoted to the first attempt
to measure tensor polarization of an unpolarized 5-Gev/c deuteron beam after its passing
through a carbon target.

2 Experiment

The experiment has been performed at an unpolarized deuteron beam extracted from the
Nuclotron of JINR. The layout of the experimental equipment is shown in Fig. 1. In this

1E-mail: azhgirey@jinr.ru
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figure F3, F4, F5 and F6 are the foci of the magnetic system of the beam line. Magnetic
lenses and magnets are schematically denoted as L1, l2, L3 and M1, M2,M3. The part of
the beam line up to F5 was tuned to the momentum of ∼ 5 GeV/c, and the part behind
F5 was tuned to 3.3 GeV/c.

Figure 1: Layout of the experimental equipment

The slowly extracted beam of ∼ 5 GeV/c deuterons with an intensity of 5×108−3×109

particles per beam spill was incident on 40, 83 and 123 g/cm2-thick carbon targets T1
placed near F3. The values of the extracted beam momenta were taken to be exactly 5.0
GeV/c after crossing the target irrespective of the target thickness. The measurements
without the target were also made. The beam intensities near F3, F4 and F5 were
monitored by ionization chambers. The intensity of the secondary beam between F4 and
F5 was 5× 106 − 3× 107 particles per beam spill.

The tensor polarization of the deuteron beam scattered at the target T1 at 0◦ was
determined by means of the second scattering on the 10-cm thick beryllium target T2
placed near F5 [18]. It is known that the reaction d + Be → p + X for proton emission
at the zero angle with the momentum pp ∼ 2

3
pd has a large tensor analyzing power

T20 = −0.82± 0.04, which is independent of the atomic number of the target (A > 4) and
the momentum of incident deuterons between 2.5 and 9.0 GeV/c [8].

The secondary particles emitted from the target T2 at 0◦ were transported to the focus
F6 by means of bending magnets and magnetic lens doublets. The momentum and polar
angle acceptances of the setup defined by the Monte Carlo simulation were ∆p/p ∼ ±2%
and ±8 mr, respectively.

Coincidences of the signals from the scintillation counters placed near the focus F6
were used as a trigger. Along with the secondary protons, the apparatus detected the
deuterons from inelastic scattering. The detected particles were identified off-line on the
basis of time-of-flight measurements with a base line of ∼ 28 m between the start counters
and four stop counters. The TOF resolution (∼ 0.2 ns) allowed one to separate protons
and deuterons completely.

Since the experiment was carried out with beams of considerably different intensities,
the question of the linearity of monitors had a dominant role. The examination of the
linearity was made in separate measurements. The readings of current-to-digit convertors
of ionization chambers at F3 and F5 were linear with current in the range from 0.1 to
104 nA.

The general expression for the invariant differential cross section of the reaction with
the polarized deuteron may be found in Ref. [9]. In our case it converts to

σ′ = σ0

(
1 +

1√
2
pZZT20

)
, (1)
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(where the polarized and unpolarized cross sections are referred to as σ′ and σ0, respec-
tively, pZZ is the tensor polarization of the beam, and T20 is the analyzing power in the
representation of irreducible tensors Tκq).

Figure 2: Ratios of proton counts to
the monitor for targets T1 of different
thickness: black points - 123 g/cm2,
stars - 83 g/cm2, crosses - 40 g/cm2,
light points - 0 g/cm2.

The ionization chamber placed upstream of the
analyzer target T2 served as a monitor. The num-
bers of protons normalized to the monitor counts
detected in exposures with carbon targets of differ-
ent thickness are shown in Fig. 2. Here dark points,
stars and crosses refer to the 123- , 83- and 40-
g/cm2-thick carbon targets, respectively, and the
light points correspond to the measurements with-
out target T1. The values of these ratios averaged
for all the exposures are shown with dashed lines.
It is seen that the points corresponding to different
target thickness are grouped in different regions of
the picture. The spread of the points exceeds sta-
tistical errors that are less than point sizes. This
spread is likely to be caused by the non-stabilities
of currents in the magnetic elements of the beam
line. Considerable deviations of the points obtained
in the last exposures from the averaged values are due to the fact that the control over
the head end of the magnet-optical channel was lost during these exposures.

The possible systematic errors resulting from such current fluctuations were estimated
in the following way. It is known that the differential cross section of the proton emission
at forward angles in the deuteron breakup is a sharp function of the secondary proton
momentum [10, 11]. As to the cross section of the A(d,d’) reaction, it has considerably
smoother behaviour [12]. Thus, deviations of the proton/deuteron ratio from the constant
value can reflect changes in the currents of magnetic elements, or in the momentum of
detected particles. On the other hand, the difference ∆t in the arrival of signals caused
by protons and deuterons is also connected with the spread ∆p in the momentum of these
particles; for our experimental arrangement δp/∆t = −0.172 GeV/c/ns. The correlation
between the ratio N(p)/N(d) and the momentum p calculated from the experimental
difference ∆t was found to be

N(p)

N(d)
= (190.14± 0.54)− (53.84± 0.16)p(GeV/c). (2)

Recall that the magnetic channel was tuned to the rated momentum of 3.3 GeV/c. It
follows from Eq. (3) that correction factors to proton counts should vary from 1.26 to
0.88 as the proton momentum varies from 3.24 to 3.33 GeV/c. An estimate of the possible
systematic error is thus seen to be ±20%.

The tensor polarizations PZZ of the deuterons that passed through target T1 were
calculated in accordance with Eq. (2) for each of four channels separately, and they were
averaged thereafter; the counts without T1 were taken as σ0. The values of the tensor
polarization as a function of the target T1 thickness are shown in Fig. 3.
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3 Theory

Figure 3: Tensor polarization of
deuterons vs thickness of target T1.
The dashed region shows the error cor-
ridor, the solid curve is the calculation
result.

On the assumption that the NN scattering ampli-
tude has the form

f(q) =
kσNN

4π
(1 + αNN) exp(−1

2
Bq2), (3)

where q is the momentum transfer, and if one takes
a multi-Gaussian representation of the deuteron
wave function [13], in line with the multiple scat-
tering theory [3,14], the difference of the total cross
sections of the nuclear scattering of deuterons in dif-
ferent spin states ( 0 ) and (±1) may be written in
the form:

∆σ =
A∑

N=1

(−1)N A!

(A−N)!
∆σ(N), (4)

where the cross section difference for the Nth colli-
sion is given by

∆σ(N) = πR1R2

N∑
m=0

N−m∑
n=0

∆
(N)
m,nam+n

1 aN−m−n
2

[(m + n)R2 + (N −m− n)R1] n! m! (N −m− n)!
. (5)

Here

∆(N)
m,n = 3

5∑
i=1

5∑

k=1

CiDk

( π

τi,k

)3/2 λ
(N)
m,n

(λ
(N)
m,n + τi,k)2

+
3

2

5∑
i=1

5∑

k=1

DiDk

( π

νi,k

)3/2λ
(N)
m,n(3λ

(N)
m,n + 7νi,k)

νi,k(λ
(N)
m,n + νi,k)3

(6)
with

λ(N)
m,n =

1

4

(N −m− n

B
+

4mnR2 + (m + n)(N −m− n)R1

R1 [(m + n)R2 + (N −m− n)R1]

)
. (7)

The parameters R1, R2, a1 and a2 are expressed in terms of constants peculiar to this
problem:

R1 =
2

3
< r2

A > +2B, R2 =
2

3
< r2

A > +B, a1 =
σNN

2πR1

, a2 = − σ2
NN

16π2BR2

, (8)

where < r2
A > is the rms radius of a nucleus.

The following values of the parameters were used in the calculations: σNN = 4.40 fm2,
αNN = −0.339, B = 0.297 fm2 [15], < r2

C >= 5.86 fm2. The calculated difference of total
cross sections of d−12 C scattering in the deuteron spin states (0) and (±1) turns out to
be ∆σ = 3.87 fm2.

It can be shown that the tensor polarization of the deuteron beam arising from this
cross section difference is

PZZ =
1− exp(−N∆σx)

1 + 1
2
exp(−N∆σx)

, (9)

where N is the number of nuclei in cm3 of matter with thickness of xcm. The calculation
results for our experiment are shown in Fig. 3 by the solid curve.
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4 Conclusion

The tensor polarization of an unpolarized deuteron beam arising as deuterons pass through
carbon targets of different thickness was measured. The phenomenon of spin dichroism
(defined as production of spin polarization in an unpolarized beam) was first observed
using an extracted unpolarized 5-GeV/c deuteron beam of the Nuclotron.

A formalism was elaborated to describe the effect observed within the framework of the
Glauber multiple scattering theory. The calculation results are in qualitative agreement
with the experimental data obtained.

The observed effect can be used to produce tensor polarized deuteron beams of small
intensity at high energies.
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Discussion

Q. (S.Belostotsky, PNPI, St.Petersburg) I understand that the cross section for M =
±1 and M = 0 must be different. However, where is the quantization axis? The target is
uniform.

A. In our case the direction of the quantization axis coincides with the beam direction
because it is the only separated direction.
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Q. (A.Efremov, JINR, Dubna) Could the effect you have discovered serve as a sort of
filtering effect?

A. Of course, the observed effect of spin dichroism may be regarded as a sort of spin
filtering effect.

Q. (A.Silenko, Belarusian State Univ., Minsk) Needs the discussed effect to be taken
into account in measuring the polarization of tensor polarized deuteron beam?

A. We believe that the considered effect should be taken into account for precision
deuteron polarization measurements with thick targets.
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Abstract

The gluon polarization ∆G/G is the key to a further clarification of the spin
structure of the nucleon. The COMPASS collaboration at CERN has set out to
undertake the direct measurement of this quantity. It is being determined from the
measurement of double spin asymmetries in the scattering of polarized muons off a
polarized deuteron target.

Three different channels sensitive to the gluon distribution are explored: open
charm production and high transverse momentum (high pT ) production in either
the quasi-real (virtuality Q2 < 1 GeV2) photoproduction or the deep inelastic
scattering (Q2 > 1 GeV2) regimes. I describe their experimental and theoretical
aspects. And I report on the preliminary results and prospects for future analysis.

1 Introduction

The spin 1/2 of the nucleon can be decomposed as follows

1

2
=

1

2
∆Σ + ∆G + Lz ,

where the right hand side terms designate the contributions of the spin of the quarks, the
spin of the gluons and the angular momentum of the quarks and gluons, respectively.

In the recent years much effort has been put in determining ∆Σ. This quantity can be
derived from the measurement of the spin dependent structure function g1 by polarized
inclusive deep inelastic lepton-nucleon scattering (DIS) experiments. Measurements were
carried out at CERN, SLAC, DESY and JLAB. COMPASS itself is presently carrying
on with this program. The results lead to the conclusion that ∆Σ is surprisingly small,
significantly smaller than predicted by the Ellis-Jaffe sum rule [1] for example. An analysis
of world polarized DIS data performed by the COMPASS collaboration and including its
latest data points corroborates this conclusion, cf. [2, 3].

A solution to the problem was put forward in 1988 [4–6]. It involves a leading order
contribution to the polarized DIS cross-section originating from the axial anomaly of
QCD, αs/2π ∆G, which is anomalous in the sense that it does not vanish in the asymptotic
limit: in leading order evolution ∆G grows with ln Q2 whereas αs is inversely proportional
to lnQ2. This anomalous gluon contribution introduces some freedom in the definition
of ∆Σ, but it can in any case reconcile polarized DIS data with QCD predictions given
a large enough, positive value for the first moment of ∆G [7].

The unpolarized gluon distribution, G, can be determined from the dependence of the
inclusive DIS cross-section upon Q2. In the polarized case, however, DIS data cover
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too small a range in Q2 for this method to significantly constrain ∆G. The fit of world
polarized DIS data by COMPASS mentioned supra exemplifies this situation.

A direct measurement of the gluon polarization, ∆G/G, is therefore the most promis-
ing way to further clarify the nucleon’s spin puzzle. Several experimental projects have
recently been started to carry it out, using different approaches. In COMPASS, we access
the gluon distribution via two different channels: open charm production and high trans-
verse momentum (high pT ) hadron production. The two share a set of common features.
Factorization theorems ensure that, in the presence of a large scale, the cross-section can
be written as a convolution of partonic cross-sections, calculable pertubatively, and quark
and gluon distributions. And for both channels, this scale can be set irrespective of Q2,
by the charm mass and the pT cut, respectively. Both have also been successfully used
to directly measure the unpolarized gluon distribution at the HERA collider experiments
(with the difference that high pT refers to the production of jets there) [8, 9]. But they
represent diametrically opposed trade-offs between the conflicting requirements of statis-
tics and purity. Open charm is the purest. It provides a model-independent access to
∆G/G and for this reason remains our golden channel. I will present it first. And I will
present next the high pT case, which we subdivide into several sub-cases depending upon
the Q2 of the exchanged photon. I start with some experimental essentials.

2 Experimental essentials

The COMPASS spectrometer is described in details in [10]. I recall that it uses a beam
of 160 GeV muons, with an intensity of 2 108 per spill of ∼15 s and a polarization of
76÷80%, and a polarized deuteron target [11]. And that it comprises two stages, for
low and high momenta respectively, equipped with tracking, calorimetry and particle
identification (muon absorbers in both stages and RICH in only the first one).

Its experimental setup was designed to allow a precise determination of asymmetries.
An important point in this respect, is the control of fake asymmetries. We achieve it
thanks to the simultaneous measurement of both parallel and anti-parallel spin states in
two oppositely polarized target cells, upstream u and downstream d, and to a frequent
reversal of target spin orientations, so that fluctuations in acceptance and incident muon
flux cancel out in the formula for the counting asymmetry A:

A =
1

2

(
N⇑↑

u −N⇑↓
d

N⇑↑
u + N⇑↓

d

+
N⇑↑

d −N⇑↓
u

N⇑↑
d + N⇑↓

u

)
, (1)

where ⇑↑ and ⇑↓ denote the two spin states. (Note that weighted asymmetries are used
instead of (1) in all calculations presented below.)

The reversal of target spins is most frequently performed by field rotation. This
rotation induces a small change in the acceptances of the u and d cells, which is hence
correlated with the configuration of spin states. In order to correct for this effect, a full
re-polarization is performed periodically, allowing a spin reversal in constant field.

An even better control of the instrumental asymmetries is achieved starting with the
2006 run, where the target is divided in 3 (1/4 ↑, 1/2 ↓, 1/4 ↑ and vice-versa), so that
both spin states have permanently the same average acceptance.

The cross-section helicity asymmetry, A‖, is related to the counting asymmetry by
factors describing the polarization of the incoming particles, Pµ for the beam (∼80%), PT
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and f for the target polarization (∼50%) and for the, process dependent, dilution factor
(∼40%). It is best expressed as A‖/D,

A‖/D = A / (Pµ × PT f ×D) , (2)

where one takes also into account a kinematical factor, D, describing the polarization
transfer from the muon to the photon. D is process dependent and typically averages to
∼60%. Therefore the overall dilution factor relating the physics aymmetry of interest to
the expermimental asymmetry is ∼10%.

During its first three years of running from 2002 to 2004, the experiment has accumu-
lated ∼2 fb−1 of data with its target polarized longitudinally. In 2005, the experimental
apparatus has undergone a major upgrade, and a further ∼1 fb−1 have been recorded
in 2006. The results shown in this presentation are preliminary and correspond to the
2002÷2004 part of the data. The gain in statistics expected from 2006 is equal to the
∼50% luminosity factor times an enhancement factor brought by the upgrade. The latter
factor is channel dependent and an estimation of its magnitude is given infra for some of
the ∆G/G channels.

The upgrade concerns 3 aspects: RICH, acceptance and electromagnetic calorimetry.
The efficiency of the RICH was limited in the forward direction by the presence of a

large uncorrelated background, due to the halo accompanying the muon beam. In order to
better suppress it, the older photon detectors (viz. MWPCs with CsI photocathode) were
replaced by a much faster system based of multianode photomultipliers, in the central
region (25% of the focal plane detection), and, for the outer region, were equipped with
new faster electronics.

The aperture of the polarized target was increased from ±70 mrad to ±180 mrad by
the installation of a new solenoid magnet. And a drift chamber has been built to complete
the large area detection matching this aperture downstream.

Electromagnetic calorimetry was installed in both spectrometer stages next to the
already existing hadronic one. It is not yet included in the ∆G/G analysis.

Last, in 2007, COMPASS has taken data with a proton, NH3, target. Given the low
value of PT f that this corresponds to and the limited statistics collected in the longitudinal
mode, it will not contribute significantly to the ∆G/G measurement.

3 Open Charm

This channel was discussed by many authors [12,13] as a good candidate to access ∆G/G.
Since there is no or only a small intrinsic charm in the nucleon in COMPASS kinematical
domain [14], diagrams with an incoming charm quark do not contribute and the leading
order process is the photon-gluon fusion (PGF ) γ∗g → cc̄, which is directly proportional
to the gluon distribution.

In COMPASS we tag open charm, and hence PGF , by the reconstruction of a Do

meson. The Do → Kπ decay channel is used, with K and π identified in the RICH. The
main difficulty lies in the associated combinatorial background. This is a major concern
in our experiment, where the vertex resolution is not sufficient to resolve the decay vertex
from the primary vertex, because of the thickness of the target.

Special care is therefore taken to optimize the use of the data. First, the favorable cases
when the Do comes from a D∗ → Doπ decay are counted separately, cf. Fig. 1. Secondly,
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Figure 1. Do peak in the Kπ invariant mass distribution for all events (top) and D∗-tagged
events (bottom) for 2002÷2004 data. Seff is the effective number of events Seff = S2/(S + B)
where S and B are signal and background counts. A bump shows up at low mass in the D∗

case, attributable to Do → Kππo. It is not included in the S count.

kinematical cuts are applied, on the fraction zD of the energy of the virtual photon carried
by the D meson, and on its decay angle measured in its rest frame, relative to its direction
of flight. The signal over background ratios S/B achieved by these cuts are of the order
of 1/10 and 1/1 for the Do and D∗ samples respectively. The corresponding statistical
significances S2/(S +B) are given in Fig. 1. Thirdly, a weighting procedure is applied for
the derivation of ∆G/G:

∆G/G =
1

PT

∑⇑↑
i wi −

∑⇑↓
i wi∑⇑↑

i w2
i +

∑⇑↓
i w2

i

wi = f Pµ aLL 〈S/(S + B)〉 (3)

where aLL is the analyzing power of the γ∗g → cc̄ PGF and S/(S + B) is the signal
strength. This procedure gives a gain in precision equal to

√
〈w2〉/〈w〉2. It is particularly

welcome in the open charm case where aLL spans a large domain and even crosses zero, cf.
Fig. 2. However, when applying it, care has to be taken of a possible correlation between
variables that are averaged over, the signal strength in the present case, and variables
calculated on an event by event basis, f Pµ aLL. And indeed the signal strength turns out
to be (anti-)correlated with aLL. In order to avoid any bias, the analysis is therefore done
independently for several bins in aLL, within which the correlation vanishes.
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Figure 2. Parameterization of the analyzing power aLL of the Do production: the true value
is plotted vs. the value reconstructed from measurable quantities using the parameterization.

The correlation factor is ∼82%.
Figure 3. Kπ invariant mass for D∗ tagged events in ∼1/2 of 2006 data: the gain in effective

signal per incident muon over the 2002÷2004 case shown in Fig. 1 is ∼2.25.

A Monte Carlo simulation of the experiment is used to calculate estimates of all
quantities that cannot be directly computed from the hadron level kinematics, such as
aLL, xg, the momentum fraction carried by the gluon and µ2 the hard scale assigned to
the PGF . It is based on the event generator AROMA [15], which uses the PGF matrix
element to generate charmed hadrons. aLL is computed from parton level kinematics
using polarized matrix elements from [16] and then parameterized as a function of the
measurable hadron kinematics and a depolarization factor, D, describing the polarization
transfer to the virtual photon, so that it can be estimated on an event by event basis in
equation (3). The parameterization is obtained via a neural network. It yields an ∼82%
correlation with aLL true value, cf. Fig. 2. The determination of aLL is at present limited
to LO in perturbative QCD, and hence, so is our extraction of ∆G/G.

In these conditions, a preliminary analysis, bearing 2002÷2004 data, gives:

∆G/G = −0.57± 0.41(stat.)± 0.17(syst.) at xg = 0.15± 0.08 RMS and µ2 = 13 GeV 2.

The systematics include the statistical uncertainty on the background asymmetry, mea-
sured on side bands, and the instrumental asymmetry, which are evaluated on a higher
statistics sample, and the choice of the fit function.

This result means a clear lack of precision, which we intend to remedy in two steps.
A first step will be the inclusion of 2006 data, combined with a cleaner selection applied
to all data and a more efficient weighting method. An indication of the effectiveness of
the first two points can be seen on Fig. 3. The precision on ∆G/G expected from this
first step is 0.25. In the longer term, we plan to explore new selection channels, like Do

decays with a πo in the final state or kaons below the Cerenkov threshold.
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PGF γ∗g → qq̄ qg → qg gg → gg

QCD Compton γ∗q → qg qq → qq gq → gq

Figure 4. High pT hadron production processes in leading order pQCD.

4 High pT

The alternative channel used to access ∆G/G consists in requiring hadron production at a
high transverse momentum with respect to the virtual photon [17]. This suppresses γ∗q →
q events, where the fragmenting quark goes into the direction of the photon. Note that the
suppression is not perfect, however. The cross-sections receive then contributions from
different partonic channels, involving either direct or resolved photons. They correspond
to the leading order processes depicted in Fig. 4, where the processes sensitive to the
gluon distribution in the nucleon are shown first.

In order to gain information about the gluon distribution from this bundle of processes,
we have considered two different approaches. They ultimately differ in the way they
fold the partonic level QCD calculations into the soft fragmentation process and the
instrumental acceptance. But their actual implementations in COMPASS differentiates
them in many other ways and I will then refer to them in what follows as the Monte-Carlo
extraction and the NLO photoproduction.

4.1 Monte-Carlo extraction

The Monte-Carlo method relies on the following approximation for the LO expansion of
the cross-section helicity asymmetry:

A‖ ' ( RPGF 〈aPGF
LL 〉 +

∑
Ri 〈D ai

LLD ∆p/p〉 ) ∆G/G + ABackground (4)

where the summation runs over all resolved photon processes sensitive to the gluon distri-
bution, the R factors represent the fraction of events for a given process, aLL its analyzing
power, ∆p/p are the polarizations of the partons in the resolved photon and ABackground

is the contribution to the asymmetry of all remaining processes. In order to retrieve
∆G/G, the R fractions, Abackground and the parton level kinematics defining aLL need be
determined by a simulation of the experiment. In COMPASS, we consider independently
two different kinematical regimes, the DIS regime at Q2 > 1 GeV2 and the photopro-
duction regime at Q2 < 1 GeV2. And for the simulation, we resort to Monte-Carlo event
generators, LEPTO [18] and PYTHIA [19] respectively. The two cases share a number
of common features. As was already mentioned, they both rely on a LO approximation.
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And for both, the event selection follows a same path. In particular, two hadrons are
required, with pT > 0.7 GeV and Σ p2

T > 2.5 GeV2. But the two cases are attractive in
their own right. The photoproduction case yields much higher statistics, a factor 10. But
the DIS event generation is theoretically better grounded: Q2 provides the hard scale
and eliminates the need for modeling events from soft processes that pass the pT selection
through fragmentation. It ignores the resolved photons altogether, however.

More details about the Monte-Carlo extraction of ∆G/G can be found in these pro-
ceedings [21]. The photoproduction case alone is published so far, cf. [22].

4.2 NLO photoproduction

  [GeV]Tp
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Figure 5. Single hadron at high pT in pho-
toproduction (Q2 < 0.5 GeV2). The error bars
corresponding to ∼1/3 of recorded data are plot-
ted against two of the GRSV2000 [4] parame-
terizations. These span a large range of ∆G/G,
all compatible with DIS data. The two re-
tained here correspond to the best fit (std) and
∆G/G = 1 at the input scale of evolution (max).

In the second approach, the soft hadroniza-
tion is modeled by fragmentation func-
tions and the instrumental setup is taken
into account by applying the acceptance
cuts directly to the parton level kinemat-
ics. The calculations for the COMPASS
case have been done, at NLO, for two sub-
cases: single hadron production [23] and
hadron pair production [24]. In these cal-
culations, a parameterizations of ∆G(x) is
assumed and the differential asymmetry is
determined as a function of pT . ∆G/G can
then be extracted by adjusting the param-
eterization for the calculated asymmetry to
fit the data, either independently or via a
global fit including both high-pT and in-
clusive DIS. The analysis of the COM-
PASS data along these lines has not yet
been completed. To get an indication of
their sensitivity to the gluon polarization,
one can still compare the projected error bars with different parameterizations, cf. Fig. 5.

In order to ensure the validity of the method, one has to check the calculations in the
unpolarized case. In COMPASS, unpolarized cross-sections are measured with reasonable
accuracy. However, as is noted in [23], at the low cms energy achieved by our fixed
target setup, threshold effects become important. These can be accounted for by all-
order resummations of large logarithms, but such calculations are not yet available for the
photoproduction case. Keeping this caveat in mind, we intend to release our unpolarized
cross-section and asymmetry data beginning of 2008.

5 Conclusion

COMPASS has pursued of a broad array of ∆G/G measurements. Preliminary results
have been obtained in the open charm and high pT channels. When combined with QCD
fits of world DIS data, they are compatible with a low value for the first moment of ∆G
at a scale of 3 GeV2, cf. Fig. 6, and dismiss as very unlikely the axial anomaly scenario
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whereby a ∆G of the order of 2÷3 would account for the small value of the first moment
of g1.

Many more results are expected in view of the good quality of 2006 data and of the
improvements achieved in the analysis of older data.
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measured at much higher scale.)
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Discussion

Q. (S.Belostotsky, PNPI, St.Petersburg) What is a typical number for purity factor
in the case of open charm production?

A. This factor ranges from 0.1 to 0.2.
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Abstract

This review summarizes recent results of the analysis of HERMES experimental
data collected with longitudinally polarized hydrogen and deuterium targets. From
the precise measurement of the spin structure function g1 in inclusive deep-inelastic
scattering, the total quark contribution to the nucleon spin (the singlet axial charge)
is found to be a0 = ∆Σ = 0.330±0.025(exp.)±0.028(evol.) with the negative strange
quark contribution being equal to−0.085±0.008(exp.)±0.009(evol.). The individual
quark and anti-quark helicity distributions are extracted for the first time using the
data on semi-inclusive deep-inelastic scattering with well identified charged pions
and kaons in the final states. The gluon polarization ∆g/g = 0.075± 0.034(stat)±
0.011(syst.exp.)±0.1(syst.model.) is evaluated from the data sample with inclusive
high-pT hadrons.

1 Introduction

A measurement done by the European Muon Collaboration (EMC) in 1988 indicated that
only a small fraction of the proton spin is carried by quarks [3]. A huge number of exper-
imental and theoretical studies have been done since then using polarized deep-inelastic
scattering (DIS) with high-energy electron and muon beams as a tool for probing spin
structure of the nucleon (see, e.g., [2]). The most recent results with charged lepton beams
have been obtained in this field by the HERMES and COMPASS experiments. Besides,
the spin program successfully developed at RHIC provides very important complementary
information on the nucleon spin structure, in particular on the gluon polarization. All
these results are intensively discussed at this Conference.

The HERMES experiment at DESY studies the spin structure of the nucleon using
the 27.6 GeV longitudinally polarized positron (electron) beam of the HERA e-p collider
and a polarized (longitudinally or transversely) or unpolarized gaseous target [3]. Due to
reliable particle identification and relatively large acceptance, the HERMES spectrometer
measures both inclusive and semi-inclusive DIS, in the latter case a hadron identified
with the help of the RICH detector is detected in coincidence with the scattered positron
(electron).

The HERMES experiment was commissioned in the year 1995. In the years 1995-2000,
refered to as RUN I, HERMES accumulated experimental data with a longitudinally po-
larized target and, after the HERA luminosity upgrade, with a transversely polarized
target (2002-2005). In order to improve the selection of exclusive reactions, i.e., to bet-
ter study deeply virtual Compton scattering, a Recoil Detector (RD) was installed at
HERMES in the year 2006. HERMES kept running with the RD and unpolarized target
till June 2007 when the HERA accelerator was shutdown. The period of data taking
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2002-2007 is refered to as RUN II. Most of HERMES data are collected from polarized
hydrogen and deuterium targets, but in order to study nuclear effects 4He, 14N, 20Ne, 84Kr
and 131Xe targets are also used.

At this Conference, there are several presentations related to recent results from HER-
MES [4–8].

An overview of transverse physics at HERMES (RUN II) is done by V.Korotokov [5].
In my talk I will focus on the analysis results based on double-spin asymmetries

measured with longitudinally polarized targets (RUN I). The topics to be discussed are
listed below:

• evaluation of the singlet axial charge a0 (total contribution of the quarks to the
nucleon spin) using the precise measurement of the spin structure function g1(x,Q2)
for the proton and deuteron in inclusive DIS ( Section 2);

• extraction of the quark helicity distributions from semi-inclusive DIS data with well
identified charged pions and kaons in the final state ( Section 3);

• recent analysis of the gluon polarization ∆g
g

evaluated using a data sample of inclu-

sive charged hadrons with high transverse momenta (pT > 1 GeV) (Section 4).

2 Inclusive DIS, ∆Σ and strange sea polarization.

The low energy properties of the light baryons are well explained in the Constituent
Quark Model (CQM), in which a baryon is made up of three constituent quarks (u-up,
d-down, and s-strange) , all three quarks being in S-state. For a baryon polarized along
the z axis, one would then expect that Sz = 1

2
= 1

2
∆Σ = 1

2

∑
i

∆qi, where ∆qi is the

contribution of a quark of flavor i (∆qi = ∆u, ∆d, ∆s) to the baryon spin. Using the
non-relativistic wave function for the proton and applying SU(3) flavor symmetry one
may calculate ∆u, ∆d, ∆s for all members of the spin-1/2 baryon octet and evaluate the
magnetic moments in a good agreement with the experiment at reasonable values for the
constituent quark masses.

On the other hand, it is obvious that the naive CQM with ∆Σ = 1 cannot be used
as a basis for comprehension of the baryon spin. A partonic structure of the nucleon
suggests that the nucleon spin decomposes into contributions from quark and gluon spins
and quark and gluon orbital momenta [9]. Individual contributions to the nucleon spin
are subject to experimental study in various polarization experiments. The most effec-
tive tool for probing quark polarizations and ∆Σ is deep-inelastic scattering (DIS) with
a polarized charged lepton beam and a polarized target. In the case of inclusive DIS
the measured double-spin asymmetry is straightforwardly related to the spin structure
function g1(x,Q2). In the Quark-Parton model (QPM), i.e., in leading order QCD (α0

s)
and neglecting higher twists (1/Q2 → 0), g1(x,Q2) is expressed through the quark ∆qi(x)
and antiquark ∆q̄i(x) spin distribution functions, giving for the proton

gp
1(x) =

1

2

∑
i

e2
i (∆qp

i (x) + ∆q̄p
i (x)) =

1

2
[(2/3)2(∆u(x) + ∆ū(x)) +

(1/3)2(∆d(x) + ∆d̄(x)) + (1/3)2(∆s(x) + ∆s̄(x))]. (1)
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First moments of the spin-structure functions for the proton, neutron and deuteron are
given by integrals

Γp,n
1 =

1∫

0

gp,n
1 (x)dx =

1

36
(4a0 ± 3a3 + a8) (2)

and
Γd

1

1− 3
2
ωd

=
1

2
(Γp

1 + Γn
1 ) =

1

36
(4a0 + a8), (3)

where ωd accounts for a small correction for the D-state in the deuteron and indices p, n
and d correspond to proton, neutron and deuteron, respectively.

The fundamental singlet (a0) and non-singlet (a3, a8) axial charges in Eqs. 2 and 3
are invariants of the SU(3) flavor symmetry. They can be written as

a0 = (∆u + ∆ū) + (∆d + ∆d̄) + (∆s + ∆s̄) ≡ ∆Σ,

a3 = (∆u + ∆ū)− (∆d + ∆d̄),

a8 = (∆u + ∆ū) + (∆d + ∆d̄)− 2(∆s + ∆s̄), (4)

where ∆u, ∆ū, ... ∆s̄ are the first moments of the spin-dependent quark distribution
functions in the proton.

Under the assumption of SU(3) flavor symmetry the non-singlet quantities a3 and a8

are expressed through the two hyperon decay constants F and D, related to the flavor-
changing weak decays in the spin-1/2 baryon octet. According to a recent fit to the
hyperon decay data F = 0.464 ± 0.008 and D = 0.806 ± 0.008, and a3 = F + D =
gA/gV = 1.267± 0.0003, a8 = 3F −D = 0.586± 0.031.

A simple estimation of the singlet axial charge a0 = ∆Σ may be done assuming that
the strange sea in the proton is unpolarized (∆s + ∆s̄ = 0). In this approximation one
obtains ∆Σ = a8 = 0.586 and Γp = 0.186 Γn = −0.024 (Ellis-Jaffe sum rule). In general
case (∆s + ∆s̄ 6= 0) an additional equation is needed to specify all three axial charges. It
may be obtained in a polarized DIS experiment, e.g., by measuring the deuteron integral
Γd

1 (see Eq.3).
The HERMES experiment has measured the double-spin asymmetries in DIS of the

polarized positrons off polarized hydrogen or deuterium targets [10]. The measured asym-
metries are corrected for detector smearing and QED radiative effects. The structure
functions gp

1(x,Q2) and gd
1(x,Q2) are extracted from the data and the integrals Γp and

Γd are evaluated in the range of the Bjorken scaling variable x from xmin = 0.021 to
xmax = 0.9 for data with Q2 > 1 GeV2. For x > 0.9 the partial integrals of g1 both for the

proton and the deuteron are compatible with zero, e.g., the magnitude of
1∫

0.9

gd
1(x, Q2)dx

at Q2=5 GeV2 is estimated to be less than 10−4. In order to estimate a possible contribu-
tion from the low-x region (x < 0.021), not explored in the experiment, the integrals are
evaluated as functions of the lower limit in x. The deuteron integral appears to saturate
at x < 0.04, thus showing that the contribution from the unmeasured low-x region is neg-
ligibly small. This allows us to calculate the singlet axial charge using the experimental
values of Γd

1(Q
2) and a8:

a0(Q
2) =

1

∆CMS
S

(
9Γd

1

1− 3
2
ωd

+
1

4
a8∆CMS

NS ). (5)
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The singlet and non-singlet coefficients ∆CMS
S and ∆CMS

NS in Eq.5 are calculated in the
MS scheme up to second order in the strong coupling constant αs(Q

2) (NNLO) 1. With
αs = 0.29± 0.01 for Q2 = 5 GeV2 and ωd = 0.05± 0.01, it is found

aMS
0 = ∆Σ = 0.330± 0.025(exp.)± 0.028(evol.). (6)

The theoretical (factorization scheme) uncertainty is estimated to be about ±0.01.
The first moments of the quark helicity distributions are given by the relations (∆s +

∆s̄) = 1
3
(a0 − a8), (∆u + ∆ū) = 1

6
(2a0 + a8 + a3) and (∆d + ∆d̄) = 1

6
(2a0 + a8 − a3). In

NNLO it has been obtained

(∆s + ∆s̄) = −0.085± 0.008(exp.)± 0.009(evol.) (7)

and

(∆u + ∆ū) = 0.842± 0.008(exp.)± 0.009(evol.)

(∆d + ∆d̄) = −0.427± 0.008(exp.)± 0.009(evol.) (8)

3 SIDIS and quark helicity distributions.

The measurement of double-spin asymmetries in semi-inclusive deep-inelastic scattering
(SIDIS), in which both scattered electron and produced hadron are well identified, gives
direct access to the individual quark polarizations and helicity distributions. The double-
spin asymmetry Ah

1(x) is a linear combination of quark polarizations ∆qi(x)/qi(x) in the
pure target spin state Sz = +1/2 weighted with purity distributions P h

i (x):

Ah
1(x) =

∑
i

P h
i (x)

∆qi(x)

qi(x)
, P h

i (x) =
e2

i qi(x)
∫

Dh
i (z)dz∑

i′
e2

i′qi′(x)
∫

Dh
i′(z)dz

. (9)

Here Dh
i (z) is the fragmentation function and z = Eh/ν is the fractional energy of the

detected hadron. All quantities in Eq.9 are averaged over Q2. The purity P h
i (x) describes

the probability that the hadron h originates from the interaction of the virtual photon
with a quark of flavor i (struck quark).

HERMES has measured double-spin asymmetries in SIDIS from hydrogen and deu-
terium targets with π+, π−, K+, K− in the final state [11]. The asymmetries are ex-
tracted from the data sample under the following kinematical requirements: Q2 > 1
GeV2, W 2 > 10 GeV2, y = ν

Ee
< 0.85, 0.2 < z < 0.8. The DIS condition Q2 > 1 GeV2

restricts the minimum value of the Bjorken scaling variable to xmin = 0.023.
The measured asymmetries Ah

1(x), corrected for detector smearing and QED radiative
effects, have been used for the extraction of the quark polarizations and helicity distribu-
tions with the help of the system of equations Eq.9. The purities for hadron production
from the proton and deuteron targets are calculated using the LUND MC program which
has been tuned to the HERMES unpolarized SIDIS data, the spectrometer acceptance be-
ing taken into account. The CTEQ5L parametrization has been used for the computation
of the unpolarized quark distributions qi(x).

1In LO ( α0
s) the two coefficients are equal to unity and Eq.5 is reduced to Eq.3.
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Figure 1. The quark helicity distributions
x∆q(x) evaluated at Q2

0 = 2.5GeV2. The
theoretical curves are two variants of he-
licity distribution parameterizations taken
from [9] (the dashed line) and [13] (dashed-
dotted line), respectively. The parameteri-
zations are obtained by global QCD fit to
inclusive DIS data.

The five independent helicity distribution
functions ∆u(x), ∆d(x), ∆s(x), ∆ū(x),∆d̄(x)
have been extracted. As the data do not signif-
icantly constrain ∆s̄(x), it has been assumed
that ∆s̄(x) ≡ 0. The obtained results are prac-
tically unchanged if instead of the latter con-
straint the assumption ∆s(x)

s(x)
= ∆s̄(x)

s̄(x)
is used.

Fig. 1 shows the x-weighted distributions
x∆qi(x) extracted using the purity formalism.
The maximum value of x is chosen to be xmax =
0.6 since at higher x all the helicity distribu-
tions are compatible with zero. The systematic
uncertainties, shown with an error band at the
bottom of each panel, are dominated by the un-
certainties in the purity calculations.

The theoretical parameterizations overlaid
in Fig.1, obtained by the LO QCD global
fit to inclusive DIS data [9, 13], describe well
the HERMES semi-inclusive results. It is im-
portant to note that the analysis of inclusive
data involves the hyperon-decay constants, and,
therefore, requires validity of the SU(3) flavor
symmetry. In contrast, the semi-inclusive DIS
is a direct measurement of the quark polariza-
tions, albeit in a restricted range of the Bjorken
x variable.

In the explored range of the Bjorken x vari-
able first moments of the quark helicity dis-
tributions may be calculated and compared
with those found in the inclusive DIS analysis
(Sect.2). For the total quark contribution ∆̃Σ
it is obtained

∆̃Σ =

0.6∫

0.023

[∆u(x) + ∆ū(x) + ∆d(x) + ∆d̄(x) + ∆s(x)]dx =

0.347± 0.024± 0.066 ⇒ a0 = 0.330 (incl), (10)

showing that the integral ∆̃Σ, similar to the deuteron integral Γd
1 in inclusive DIS analysis

(Eq.5), is very likely close to saturation. On the other hand, (∆̃u + ∆̃ū) = 0.599 ±
0.022 ± 0.065, and (∆̃d + ∆̃d̄) = −0.280 ± 0.026 ± 0.057 are far from saturation (see
Eq.8) which implies a substantial contribution from the unexplored region of x < 0.023.

Similar to that, the strange quark contribution is also found compatible with zero: ∆̃s =
0.028± 0.033± 0.009, while from the inclusive DIS analysis it is a statistically significant
negative value (Eq.7).

In distinction from inclusive DIS, the purity method used in SIDIS analysis allows
the separation of q and q̄ contributions. First moments for up and down anti-quarks are
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found compatible with zero: ∆ū = −0.002± 0.036± 0.023, ∆d̄ = −0.054± 0.033± 0.011.

4 Gluon polarization.

The contribution of gluons to the nucleon spin is still poorly known to date. In principle,
information on the spin-dependent gluon distribution function ∆g(x, µ2) may be obtained
by a pertubative QCD NLO fit to the structure function g1(x,Q2). Unfortunately, not
sufficient precision and the restricted kinematic range of available data on g1(x,Q2) result
in large uncertainties in the ∆g parameterizations. In Fig. 2 Feynman diagrams for DIS
subprocesses are shown. In LO the virtual photon does not interact directly with gluons.
Sensitivity to the gluon polarization may only appear in NLO due to the Photon-Gluon
Fusion (PGF) subprocess.

γ c

g c

Figure 2. Feynman diagrams for DIS subprocesses. LO (α0
s), left panel and two NLO (α1

s)
QCD subrocesses: Photon-Gluon Fusion (middle panel) and QCD Compton scattering (right

panel).
One possibility to increase sensitivity to the gluon polarization is the detection of

charmed hadrons in the final state. Charmed hadron electroproduction is dominated by
the PGF subprocess. The scale µ, defined in this case by the mass of the charm quark
pair, is sufficiently large. Unfortunately, a typical problem of these experiments is lack of
statistics.

Another option to enhance sensitivity to the gluon contribution when measuring the
double-spin asymmetry in electroproduction is to detect inclusive hadrons with high trans-
verse momenta pT . The results on ∆g

g
of the COMPASS collaboration obtained by using

both possibilities have already been reported in details [14].
The HERMES experiment has realized the second variant (high-pT ) because there is

practically no open charm production at HERMES energy. The gluon polarization has
been evaluated from inclusively detected charged hadrons. As detection of the positron
is not required (or ”anti-tagged”) in this case, the kinematics of the virtual photon is
not defined and the hadron transverse momentum pT is measured in the respect to the
direction of the primary beam. This data sample is characterized by a small positron
scattering angle, and hence small Q2, and, therefore, for most the of events the difference
between measured pT and ”true” pT (in the respect to the virtual photon) is not large.
However, this is not true for a fraction of events with positrons scattered at large angles,
out of the HERMES acceptance. In this case a LO DIS event with a small pT of the
hadron in the respect to the virtual photon can simulate a high-pT event.

The double-spin asymmetries measured in the anti-tagged regime are shown in Fig.
3. The curves are calculated using the PYTHIA 6.2 MC for three assumptions: ∆g

g
± 1
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Figure 3. Measured double-spin asymmetries for positive and negative hadrons produced
inclusively from the hydrogen and deuterium targets. The curves are MC asymmetries

calculated for three different assumption on the gluon polarization.

and ∆g
g

= 0. As one can see, all the asymmetries in the region of pT about 2 GeV favor

the positive values of ∆g
g

.
The asymmetry calculated in the MC simulation is the weighted sum of the asym-

metries of subprocesses classified in PYTHIA as hard photon interactions (pertubative
QCD sketched in Fig. 2), soft VMD and resolved photon interactions. In order to specify
where the signal to background ratio is optimized, variations of the individual terms of the
sum with pT have been studied. The fraction of the signal subprocesses, i.e., the subpro-
cesses with asymmetries proportional to ∆g

g
, has been shown to increase with transverse

momentum reaching about 20% at pT ' 1.75 GeV.
Two methods have been applied to extract the gluon polarization ∆g

g
from the data.

Method I. It is assumed that ∆g
g

is a slow function of x and Q2 variables which results

in ”factorization”, i.e., for a bin in pT the value of ∆g
g

can be found from the following
equation

Rsig{â∆fγ
p (xp, Q

2)

fγ
p (xp, Q2)

} · ∆g

g
= Ameas − ABGR

MC . (11)

Here Ameas is the measured asymmetry, ABGR
MC is the calculated background asymmetry,

Rsig is the fraction of all signal subprocesses, â is the elementary partonic asymmetry
(e.g. the asymmetry calculated for subprocesses γq → qq̄, qg → qg, etc.), ∆fγ

p and fγ
p

are spin-dependent and spin-independent photon PDFs for a parton p. The function in
braces is averaged over all signal subprocesses.
Method II. The function ϕ(x) ≡ ∆g(x)

g(x)
is parameterized using two forms: ϕ(x) = x(1 +

p1(1 − x)2 and ϕ(x) = x(1 + p′1(1 − x)2 + p′2(1 − x)3. The free parameters p1, p′1 and
p′2 has been found by minimizing the difference between the measured and calculated
asymmetries.
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Methods I and II give very consistent results:
∆g
g

= 0.078± 0.034± 0.011± 0.1(Models) at 〈x〉 = 0.204 (Method I)
∆g
g

= 0.071± 0.034± 0.010± 0.1(Models) at 〈x〉 = 0.222 and µ = 1.35GeV2 (Method II).
The systematic error related to the ”Models” in parenthesis has been estimated by vari-
ation of the parameters controlling the PYTHIA subprocesses, JETSET fragmentation
processes and the spin-dependent and spin-averaged PDFs for the nucleon and the photon.

The HERMES results together with existing world data on ∆g
g

and theoretical curves
are presented in Fig. 4.
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∆g
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Figure 4. Compilation of world data on the gluon polarization. The HERMES data point
(method I) is compared with those of COMPASS [15] and SMC [16]. Statistical (full)

uncertainties are shown with inner (outer) error bars. The two HERMES fit functions (fct.1
and fct.2, Method II) are plotted.Also shown are the functions obtained by several NLO

perturbative QCD fits.

5 Summary.

The main HERMES results obtained from the data collected during the RUN I on in-
clusive and semi-inclusive scattering with longitudinally polarized H and D targets are
summarized as follows.

The total contribution of quarks to the nucleon spin ( the singlet axial charge a0) is

found to be aMS
0 = ∆Σ = 0.330 ± 0.025(exp.) ± 0.028(evol.) at Q2 = 5 GeV2. The first

moment of the strange quark helicity distribution is a small but statistically significant
negative value : (∆s + ∆s̄) = −0.085± 0.008(exp.)± 0.009(evol.). For the light quarks it
is obtained (∆u + ∆ū) = 0.842± 0.008(exp.) ± 0.009(evol.) and (∆d + ∆d̄) = −0.427±
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0.008(exp.) ± 0.009(evol.). As far as the contribution to the deuteron integral from the
region x < xmin = 0.021, not explored in the experiment, is shown to be negligibly small,
the obtained results are not expected to be restricted by the limited x-Bjorken range
accessed by the HERMES spectrometer. It is also important that SU(3) flavor symmetry
violation cannot seriously affect the results (see, e.g., [17]).

Five quark helicity distributions ∆u(x),∆d(x), ∆s̄(x),∆d̄(x),(∆s̄(x) ≡ 0) have been
extracted for the first time from semi-inclusive DIS data with well identified charged pions
and kaons in the final states.The LO global QCD fit to the inclusive DIS results is in good
agreement with extracted helicity distributions. In the x-Bjorken range explored by the
experiment, the sea quark helicity distributions are found compatible with zero.

The gluon polarization obtained from the data sample of inclusive hadrons produced
with high transverse momenta is found to be ∆g

g
= 0.075 ± 0.034 ± 0.010 ± 0.1(Models)

at 〈x〉 = 0.222 and µ = 1.35GeV2.
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Discussion

Q. (J.Nassalsky, SINS, Warsaw) 1. Does the new result on ∆G/G from large-pt replace
the old one? What is wrong with the old one?
2. In your semi-inclusive analysis you assume ∆s̄ = 0 but you determine ∆s - it seems to
be inconsistent.
3. Could you comment more on the discrepancy with the Bjorken Sum Rule?

A. 1. The old result includes only a part of statistics. In addition, new analysis
includes new approaches with Monte-Carlo calculations of each process contributions. In
other words, the data are fully reanalyzed. So, yes, HERMES suggests the new number
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for ∆G.
2. Yes. This has been done to reduce to a reasonable number of free parameter. This fit
also may be done assuming ∆s = ∆s̄. This would not practically affect the result.
3. HERMES has measured a3 in the region x with xmin = 0.023. In this region

∫
dxa3(x)

is not saturated and the integral is smaller than that given by gA/gV ratio. But this of
course does not mean BjSR violation.

Q. (H.Santos, LIFEP, Lisboa) Which hints do you have to explain the discrepancy
between inclusive and semi-inclusive results in what concerns strange polarization? Could
it be due to the necessary assumptions made in the inclusive case, namely SU(3)F ? Or is
more likely to be related to model-dependent fragmentation functions? What about the
purity method?

A. To my mind, there is no discrepancy at all, and, as I have realized COMPASS
and HERMES results are in excellent agreement. HERMES has measured zero strange
quark polarization in the limited x range with xmin=0.023. This is direct semi-inclusive
data. On the other hand, from HERMES inclusive measurements of gd

1 + SU(3) flavor
symmetry it is found ∆s = −0.08 ± 0.02 ± . . . . That means that all contribution from
s-quarks comes from low x range, x < 0.023, not reachable in semi-inclusive HERMES
measurements.
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Abstract

We present the measurements of the single spin analyzing power AN and the
double spin asymmetries ANN and ASS at

√
s = 200 GeV, obtained by the pp2pp

Collaboration using polarized proton beams at the Relativistic Heavy Ion Collider
(RHIC). Data points were measured in the four momentum transfer t range 0.01 <
|t| < 0.03 (GeV/c)2. The measured double spin asymmetries, which are consistent
with zero, allow us to estimate upper limits on the double helicity-flip amplitudes
at small |t| as well as on the difference between the total cross sections for collisions
of transversely polarized protons and antiprotons.

The pp2pp experiment [1] at RHIC is designed to systematically study polarized
proton-proton (pp) elastic scattering from

√
s =60 GeV to

√
s = 500 GeV, covering the

|t|-range from the region of Coulomb Nuclear Interference (CNI) to 1.5 (GeV/c)2. The
experiment pp2pp is located at the �2 o�clock� position of the RHIC ring. The two
protons collide at the interaction point (IP) and since the scattering angles are small,
the scattered protons stay within the beam pipe until they reach the detectors. The
measured coordinates are related to the scattering angles by the beam transport matrix.
The coordinates are measured by silicon microstrip detectors (SSD) positioned just above
and below the beam orbits by insertion devices � Roman Pots (RP) [2]. Each RP contains
four planes of SSDs (two vertical and two horizontal) to provide redundancy for the track
reconstruction. The identification of elastic events is based on the collinearity criterion,
hence it requires the simultaneous detection of the scattered protons in a pair of RP
detectors on either side of the IP. The background originates from particles from inelastic
interactions, beam halo particles and products of beam-gas interactions. The estimated
background fraction varies from 0.5% to 9% depending on the y-coordinate. Since in our
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analysis the coordinate area was essentially limited to y > 30 strips, the background in
the final sample does not exceed 2%. The sample of 1.14 million events, for N↑↑ and N↓↓

bunch combinations was used to determine AN , and sample of 2.3 million elastic events
was collected for analysis of double spin asymmetries in the t-interval 0.010 ≤ −t ≤ 0.030
, subdivided into three intervals 0.010 ≤ −t < 0.015, 0.015 ≤ −t < 0.020, 0.020 ≤ −t ≤
0.030. In each t-interval the asymmetry was calculated as a function of azimuthal angle
φ using 5◦-bins. Then the square root formula [4] for the single spin raw asymmetry ε(φ)
can be written as

ε(φ)=
(PB + PY )AN cos φ

1+PBPY (ANN cos2 φ+ASS sin2 φ)
=

√
N↑↑(φ)N↓↓(π − φ)−

√
N↓↓(φ)N↑↑(π − φ)√

N↑↑(φ)N↓↓(π − φ)−
√

N↓↓(φ)N↑↑(π − φ)
(1)

Beam polarizations for our run were PY = 0.345± 0.066 and PB = 0.532± 0.106, leading
to an upper constraint of 0.028 for the term PBPY (ANNcos2φ + ASSsin2φ), even if both
double-spin asymmetries ANN and ASS were as large as 0.15. This term is small in
comparison to the systematic errors on AN and was therefore neglected in (1). A cosine
fit to the raw asymmetry was used to determine values of AN .

The values of AN obtained in this experiment and their statistical errors for the three
t-intervals are summarized in Table I.

Table I. AN results.

−t interval (GeV/c)2 0.010-0.015 0.015-0.020 0.020-0.030 0.010-0.030
< −t > (GeV/c)2 0.0127 0.0175 0.0236 0.0185
AN 0.0277 0.0250 0.0178 0.0212
∆AN - stat. ±0.0061 ±0.0043 ±0.0030 ±0.0023
∆AN - syst. ±0.0023 ±0.0021 ±0.0015 ±0.0018

The general formula for AN in the CNI region is given by Eq. 28 of [5]. With
reasonable assumptions that the amplitude φ2 and the difference φ1−φ3 could be neglected
at collider energies, the formula becomes simpler

AN =

√−t

m

[k(1− ρδ) + 2(δRer5 − Imr5)]
tc
t
− 2(Rer5 − ρImr5)

( tc
t
)2 − 2(ρ + δ) tc

t
+ (1 + ρ)

(2)

In this formula tc = −8πα/σtot, k is the anomalous magnetic moment of the proton, ρ is
the ratio of the real to imaginary parts of forward (nonflip) elastic amplitude, and δ is
the relative phase between the Coulomb and hadronic amplitudes. Since the total cross
section σtot and the ρ parameter have not been measured in this energy range, we have
used values of σtot = 51.6 mb and ρ = 0.13. These values come from fits to the existing
pp data taken at energies below 63 GeV and world pp data. The Coulomb phase δ is
calculated as in Ref. [5],

δ = αln
2

|t|(b + 8/Λ2)
− αγ (3)

where b is the slope of the forward peak in elastic scattering, α is the fine structure
constant, Euler�s constant γ = 0.5772 and Λ = 0.71GeV 2. The value of b comes from
our previous measurement [1].
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To quantify a possible contribution of the single helicity- flip amplitude φ5, the formula
given by (2) was fitted to the measured AN values with Re r5 and Im r5 as fit parameters.
The statistical and systematical errors (except the beam polarization error) of AN were
added in quadrature for the fit. The results of the fit are following: Re r5 = −0.033±0.035
and Im r5 = −0.43± 0.56. The double spin raw asymmetry δ(φ) is

δ(φ) = PBPY (ANN cos2 φ + ASS sin2 φ) (4)

=
N↑↑(φ)/L↑↑ + N↓↓(φ)/L↓↓ −N↑↓(φ)/L↑↓ −N↓↑(φ)/L↓↑

N↑↑(φ)/L↑↑ + N↓↓(φ)/L↓↓ + N↑↓(φ)/L↑↓ + N↓↑(φ)/L↓↑

where Li,j is the relative luminosity for the sum of bunches with a given spin combination.
The raw asymmetry δ(φ) was calculated as a function of the azimuthal angle φ using 5◦-
bins in the three t-intervals same as for ε(φ). ANN and ASS are the fit parameters and
PBPY = 0.198 ± 0.064. The raw asymmetry was obtained using bunch intensities for
an estimate of the relative luminosities. In order to facilitate separation of contributions
of the helicity amplitudes φ2 and φ4 to the double spin asymmetries, we performed also
alternative fits to δ(φ) = PBPY (a1 + a2cos

2φ) using a1 = (ANN + ASS)/2 and a2 =
(ANN − ASS)/2 as fit parameters. The results on the double spin asymmetries for the
whole t-interval 0.010 ≤ −t ≤ 0.030(GeV/c)2, at an average < −t >= 0.0185(GeV/c)2,
are presented in Table II. The most accurately determined asymmetry is ASS = 0.0035±
0.0081, which is consistent with zero at 1σ confidence level. The asymmetry ANN =
0.0298 ± 0.0166 as well as the combinations (ANN + ASS)/2 = 0.0167 ± 0.0091 and
(ANN − ASS)/2 = 0.0131± 0.0096 are also small and consistent with zero.

Table II.Double spin asymmetries ANN , ASS , (ANN + ASS)/2 and (ANN −ASS)/2 for the
t-interval 0.010 ≤ −t ≤ 0.030(GeV/c)2 at < −t >= 0.0185(GeV/c)2.

ANN ASS (ANN + ASS)/2 (ANN + ASS)/2
Asym 0.0298 0.0035 0.0167 0.0131
∆Asym(stat. + norm.) ±0.0166 ±0.0081 ±0.0091 ±0.0096
∆Asym(syst.) ±0.0045 ±0.0031 ±0.0034 ±0.0072

At collider energies one expects [5] the two helicity conserving amplitudes φ1 and φ3 to
be equal, φ1 ≈ φ3 = φ+ = (φ1+φ3)/2. A more precise limit on Imφ2 at t close to zero and
therefore on ∆σT = σ↑↓tot−σ↑↑tot tot can be obtained using the t-dependence of the asymme-
try ASS and extrapolating ASS to t = −0.01 (GeV/c)2 where the term containing the real
parts of amplitudes vanishes. For that purpose the corresponding experimental distribu-
tions δ(φ) in the three t-intervals were fitted with a function PPY ASS + (ANN − ASS)cos2φ
with ASS as a fit parameter. Here the term ANN −ASS was not fitted, but calculated as
a predefined function of t. At small |t| this term is proportional to t, ANN − ASS = Ct,
because of the kinematical factors in φ5 and φ4 resulting from angular momentum con-
servation [5]. The constant C was calculated using the value of ANN −ASS from the δ(φ)
fit for the combined t-interval. With the linear extrapolation to t0 = −0.01 (GeV/c)2

we obtain ASS(t0) = 0.0037 ± 0.0104. Neglecting the contribution of φ4 to ASS and the
variation of φ2 over the small range of t one obtains Imφ2/Imφ+ = 0.0037 ± 0.0104,
Imr2 = 0.0019± 0.0052 and ∆σ = 0.19± 0.53 mb.
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We consider the effect on ASS of a possible contribution of the Pomeron-Odderon cut
exchange in the t-channel as discussed in [6] and [7]. In case of such exchange the
phase of the φ2 amplitude is shifted by 90◦ relative to the amplitude φ+, and Imφ2 =
−ρReφ2 and thus ASS ≈ tc/tReφ2/Imφ+. Using the ASS value at t = -0.185 (GeV/c)2

one obtains Re φ2/Imφ+ = −0.050 ± 0.130 or Rer2 = −0.025 ± 0.065. Though this
value is well consistent with zero it leaves wide room for a possible Pomeron-Odderon cut
contribution. Theoretical predictions for double-spin asymmetries in elastic proton-proton
scattering at high energies and small momentum transfers have been recently presented
in Ref. [7]. The magnitudes of ANN and ASS have been estimated using results from
an earlier determination of the spin-couplings of the leading Regge poles [8] and the
required Regge cuts were estimated using the absorptive Regge model. As the Odderon
spin coupling is totally unknown, the predictions are given for various assumptions: (a)
no Odderon, (b) weak Odderon spin coupling - equal to that of the Pomeron, (c) strong
Odderon spin coupling - equal to the ρ Reggeon spin coupling. For none or a weak
Odderon coupling the predicted values of the ANN and ASS asymmetries are very small.
At

√
s = 200GeV and 0.01 ≤ |t| ≤ 0.03(GeV/c)2 their values are in the range 0.001

- 0.002. On the contrary, for a strong Odderon spin coupling (like ρ) the double-spin
asymmetries become significantly larger, at least by a factor of 10. Our results on the
t-dependence of ASS support predictions of Ref. [7] which assume none or a weak spin
coupling of the Odderon.

In conclusion, these are the first measurements of the transverse double spin asym-
metries and the first results on the double helicity-flip amplitudes in the small |t| region
in elastic pp scattering at collider energies. From the measured double spin asymme-
tries we determined the parameters Imr2 = 0.0019 ± 0.0053 and ∆σT = −.0.19 ± 0.53
mb, both being consistent with zero within errors. We also estimated the upper limit
on Imr4 which is Imr4 < 1.25. Assuming the Pomeron-Odderon cut exchange one finds
Rer2 = .0.025 ± 0.065. The signs and central values of the real and imaginary parts of
r2 agree with expectations for Pomeron-Odderon cut exchange. Their magnitudes are
consistent with an assumption of about 5 ratio of the cut amplitude to the dominant one.
The fitted r5 is compatible, at about one σ level, with the hypothesis of no hadronic spin
flip.
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Discussion

Q. (M.Grosse Perdekamp, Univ. of Illinois, Upton) In testing the hypothesis that no
hadron spin flip is required it seems that the statistical significance of the data sample is
not sufficient?

A. Yes. To improve our results we are going to continue measurements in STAR
collaboration.

Q. (J.Soffer, Temple Univ., Philadelphia) I assume you also have measured the differ-
ential cross section in this experiment in the same kinematical region?

A. Yes, also we measured slope parameter b of the diffractive peak of the elastic cross
section, but this is not a subject of my talk.

Q. (M.Sapozhnikov, JINR, Dubna) Is the sensitivity to ∆s̄ large enough to be mea-
sured at RHIC?

A. Yes, it is large enough.
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Abstract

Exclusive diffractive production of light vector mesons (ρ0 and φ) on Hydrogen
and Deuterium targets is measured in the HERMES kinematic region of 0.5 < Q2 <
7 GeV2 and 3.0 < W < 6.3 GeV. Data for Q2 and W dependences of longitudinal
cross sections are presented and compared with GPD based calculations and world
data. Spin density matrix elements have been determined for exclusive ρ0 and φ
production. Within the given experimental uncertainties a hierarchy of relative
sizes of helicity amplitudes is observed. Non-conservation of s-channel helicity is
observed for ρ0, but not for φ mesons. An indication of a contribution of unnatural
parity exchange amplitudes in exclusive ρ0 production is seen for proton data.

1 Introduction

Exclusive production of vector mesons such as ρ, ω or φ in deep-inelastic lepton scat-
tering, see Fig. 1 a, is of particular interest as measurements of angular and momentum
distributions of the scattered lepton and the vector meson decay products allow the study
of the production mechanism and, in a model-dependent way, the nucleon structure. In
the context of perturbative QCD (pQCD), the formalism of Generalized Parton Distribu-
tions (GPDs) has been introduced to describe the structure of the nucleon [1]. Here, at
sufficiently large values of the factorization scale, exclusive meson production is assumed
to be dominated by handbag-diagrams, see Fig. 1b, which involve various GPDs, e.g. H,
H̃, E, Ẽ. Experimentally, GPDs can be investigated assuming certain functional forms
for GPDs with a number of adjustable parameters, and fitting these parameters through a
comparison of calculated observables with experimental data [2]. The HERMES data on
hard-exclusive production of vector mesons (ρ0 and φ) are compared with the calculations
of the GK model [3]- [6] which is based on the ‘handbag factorization’.

The determination of the longitudinal cross section (σL) of ρ0 [7] and φ meson produc-
tion allows the estimation of the contributions of the two major production mechanisms
involved: quark-exchange and gluon-exchange, see Fig. 1b. For these two mechanisms,
the amplitudes of ρ0 and φ meson production have been calculated in the GK model and,
from properly normalized bilinear combinations of amplitudes, the spin density matrix
elements (SDMEs) have been obtained and compared with HERMES data.

The spin transfer from the virtual photon to the vector meson is commonly de-
scribed [5] in terms of SDMEs. Those are usually described in the center-of-mass system
of the virtual photon and target nucleon by the helicity amplitudes TλV λ′N ,λγλN

where λV

(λγ) is the helicity of the vector meson (virtual photon). For longitudinal polarization
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Figure 1a. Generic process γ?p → ρ0p.
Figure 1b. Two-gluon exchange diagram and quark-exchange diagram.

of virtual photon (vector meson) λγ(V ) = 0, and λγ(V ) = ±1 for transverse polarization.
Helicities of incident (λN) and outgoing nucleon (λ′N) are summed over. The full ex-
pression for the decay angular distribution is given in Ref. [5] in terms of SDMEs rα

ij,
which are related to the initial spin density matrix elements ρα

λV λ′V
of the vector me-

son: ρα
λV λV ′

= 1
2Nα

∑
λγλγ′

TλV λγΣ
α
λγλ′γ

T ∗
λ′V λ′γ

. Here Nα denotes a normalization factor, and

Σα
λγλ′γ

(α = 0, 1,. . . , 8) are nine Hermitian matrices defined in Ref. [5]. The index val-

ues α = 0, 1, 2, 3 represent transverse photons: unpolarized, the two directions of linear
polarization, and circular polarization. Pure longitudinal photons correspond to α = 4,
while the remaining values α = 5, 6, 7, 8 are attributed to the interference of longitudinal
and transverse photons. Summation over final nucleon helicities and averaging over initial
proton helicities is implied. As the contributions of longitudinal and transverse photons
are not distinguishable at fixed beam energy, the following matrix elements (referred to
SDMEs) are used [5]: r04 ≡ (ρ0 + εRρ4)/(1 + εR), rα ≡ ρα/(1 + εR) for α = 1, 2, 3,
and rα ≡ √

Rρα/(1 + εR) for α = 5, 6, 7, 8, where ε is the virtual-photon polarization
parameter and R ≡ σL

σT
is the longitudinal-to-transverse cross section ratio.

In the case of s-channel helicity conservation (SCHC), the helicity of the vector me-
son is the same as that of the virtual photon. The validity of SCHC was tested and,
as shown below, the observation of several non-zero SDMEs for ρ0 production indicates
contributions from SCHC-violating helicity-flip amplitudes. In addition, the relative con-
tributions of natural and unnatural-parity exchange were estimated from the combination
of certain SMDEs. Natural-parity exchange (NPE) indicates that the interaction between
the virtual photon and the target nucleon is mediated by a particle of ‘natural’ parity
(JP = 0+, 1−, ... e.g. ρ0, ω, A2), while ‘unnatural’ parity exchange (UnPE) denotes the
contribution of exchanged mesons with JP = 0−, 1+, ..., e.g. π or A1.

2 Detection of ρ0 and φ Mesons and their

Longitudinal Cross Sections

In the HERMES spectrometer [9] ρ0 and φ mesons are observed by detecting their decay
products in the following channels: ρ0 → π+π− (100%) and φ → K+K− (49%), respec-
tively. The ρ0 mesons are identified [7] by requiring 0.6 < Mππ < 1 GeV, with Mππ being
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the invariant mass of the π+π− system. The φ → K+K− background in the ρ0 spectrum
is removed by the requirement that MKK > 1.04 GeV, if the hadrons are assumed to be
kaons. The φ mesons are selected by requiring 0.99 < MKK < 1.04 GeV. The absence of a
signal in the Cherenkov threshold detector is required to identify kaon tracks in 1996-1997
data samples. For 1998-2000 data information from RICH detector [10] was used for kaon
identification.

In order to extract information on the longitudinal production cross section, data
on r04

00, the longitudinal fraction of the ρ0 cross section, have been used [7]. Using a
parameterization of R, the longitudinal cross section for ρ0 and φ production has been
determined using σL = R

1+εR
σtotal, where σtotal represents the total measured cross section

[7]. The resulting values for ρ0 and φ production are shown in Figs. 2 a and b, respectively,
and are compared to the calculations of Ref. [4] and world data. The calculations for ρ0 are
in agreement with the data if the quark-exchange, two-gluon and sea quark interference,
and the gluon-exchange contributions are included. For φ meson production only the
gluon-exchange mechanism is expected to contribute, as the proton contains only a small
population of s-quarks. Calculations based on this assumption [4] are in agreement with
the data as presented in Fig. 2b. Contributions of different mechanisms to the longitudinal
cross section of ρ0 and φ meson leptoproduction are also related to the following results
on SDMEs.

3 Spin Density Matrix Elements

In exclusive vector meson production, the angular distributions of the scattered lepton and
the vector meson decay products are described in terms of the angles: Φ, the angle between
the scattering plane and the ρ0 production plane, Θ and φ, the polar and azimuthal angles
of the decay π+ in the vector meson rest frame with the z-axis aligned opposite to the
outgoing nucleon momentum in the γ∗p center-of-mass system [5], see Fig. 3a.

The SDMEs are obtained from the measured angular distributions by minimizing the
difference between the 3-dimensional (cos Θ, φ, Φ) decay angle matrices of the data and
of a sample of fully reconstructed Monte Carlo events, using the maximum likelihood
method. An 8 × 8 × 8 binning was used for the variables cos Θ, φ, Φ. The Monte
Carlo events were generated with uniform angular distributions and were reweighted in
an iterative procedure with the angular distribution W (cos Θ, φ, Φ, rα

ij) [5], where the
SDMEs were treated as free parameters. These SDMEs were determined without the
assumption of SCHC. The best fit parameters were obtained using a binned maximum
log-likelihood method. The minimization itself and the error calculation were performed
using the MINUIT package. Angular distributions from Monte Carlo, weighted with the
final SDMEs, are compared with the data in Fig. 3b.

3.1 Hierarchy of SDMEs

The extracted SDMEs will be presented below based on the hierarchy of NPE helicity
amplitudes:

|T00| ∼ |T11| À |T01| > |T10| ∼ |T1−1|, (1)

where the subscripts denote the helicitites of vector meson and virtual photon. This
hierarchy was established for the first time in Ref. [17]. It is experimentally confirmed [12,
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Figure 2a [4]. The longitudinal ρ0 electroproduction cross section at Q2=3.8 GeV2. Data are
from HERMES [7] (solid circles), E665 [11] (open triangles), ZEUS [12] (open square) and

H1 [13] (solid squares). The dashed (dash-dotted,dash-dot-dotted) line represents the gluon,
gluon+sea interference, and valence quark contribution [4]. The full line represents the sum of
all contributions. The shaded area represents the error band resulting from the uncertainty in

the CTEQ parton distributions.
Figure 2b [4]. The longitudinal φ meson electroproduction cross section at Q2=4 GeV2. Data
are from HERMES [14] (solid circles), ZEUS [15] (open triangles), and H1 [16] (solid squares).
The solid line represents the gluon contribution [4]. The shaded area represents the error band

resulting from the uncertainty in the CTEQ parton distributions.

13] at the HERA collider and discussed in Refs. [3–5]. The measured 23 SDMEs are
subdivided into five classes according to the hierarchy shown above. Class A includes
SDMEs dominated by the helicity-conserving amplitudes T00 and T11 which describe the
transitions γ∗L → ρ0

L and γ∗T → ρ0
T , respectively. Class B contains SDMEs corresponding

to the interference of the above two amplitudes. Class C consists of all those SDMEs
in which the main term contains a linear contribution of the s-channel helicity non-
concerving amplitude T01, corresponding to the γ∗T → ρ0

L transition, except r1
00 for which

the T01 contribution described above is quadratic. The classes D and E represent the
SDMEs in which the main terms contain a linear contribution of the small helicity-flip
amplitudes T10 (γ∗L → ρ0

T ) and T−11 (γ∗T → ρ0
−T ), respectively.

The SDMEs extracted for the kinematic region 1 < Q2 < 5 GeV2, 3 < W < 6.3
GeV (corresponding to 0.03 < xBj < 0.25), and 0 < −t′ < 0.4 GeV2, are presented for
ρ0 and φ meson data in Fig. 4. The shown SDMEs are multiplied by certain factors in
order to present them according to the dominant amplitudes. The elements of class A are
presented in the figure in such a way that their main terms are proportional to |T11|2, in
particular 1−r04

00. The coefficients for class B are chosen to have the main contribution for
the SDMEs proportional to Re{T11T

∗
00} and Im{T11T

∗
00}, respectively. This corresponds

to the general rule which is applicable to classes B to E: the dominant contribution of
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Figure 3a. Definition of angles in the process γ?p → ρop. Here Φ is the angle between the ρ0

production plane and the lepton scattering plane, Θ and φ are polar and azimuthal angles of
the decay π+ in the vector meson rest frame.

Figure 3b. Angular distributions of ρ0 meson production and decay. Data points represent
used in the fit subsample of the proton data with positive polarization of the beam. The

dotted lines are the Monte Carlo input distributions, the dashed lines are the results of the
23-parameter fit.

any element presented in Fig. 4 is equal to the real or imaginary part of a product of
two amplitudes. Class C contains products T01T

∗
00 (for r5

00/
√

2 and r8
00/
√

2) and T01T
∗
11.

The dominant contributions for classes D and E contain products T10T
∗
11 and T1−1T

∗
11,

respectively.
The unpolarized SDMEs of class B have large values, very similar to those of class

A. This suggests the presence of a substantial interference between the two dominant
amplitudes T00 and T11 for ρ0 and φ meson production. The two polarized class B SDMEs
are significantly non-zero for ρ0 and φ as well. As seen from Fig. 4, the values of elements in
class C which contains the dominant term T01T

∗
11 are close to each other for the unpolarized

SDMEs (Re{r04
10}, Re{r1

10}, Im{r2
10}). While they are much smaller than class B SDMEs,

they are still significantly larger than class D and class E SDMEs. This shows that the
anticipated hierarchy is supported by the data.

3.2 Test of the SCHC Hypothesis

Elements of classes C,D,E indicate non-conservation of s-channel helicity in ρ0 production
if they are non-zero. In particular, the SDME r5

00 is observed to be non-zero at the level
of eight standard deviations in the combined uncertainty, proving s-channel helicity non-
conservation. This was already observed earlier by the HERA collider experiments [12,13]
at a lower significance level, and with high significance very recently [12]. For the first
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Figure 4. The 23 SDMEs extracted for ρ0 production on proton (squares) and φ meson
production on proton and deuteron (circles) in the entire HERMES kinematics with

〈x〉 = 0.08, 〈Q2〉 = 1.9 GeV2, 〈−t′〉 = 0.13 GeV2. The SDMEs are renormalized to represent
the leading contribution of the corresponding amplitude. The inner error bars represent the

statistical uncertainties, while the outer ones indicate the statistical and systematic
uncertainties added in quadrature. The unshaded (shaded) areas indicate beam-polarization
independent (dependent) SDMEs. The vertical dashed line at zero corresponds to SDMEs

expected to be zero under the hypothesis of SCHC.

time, HERMES observes s-channel helicity non-conservation also in other class C SDMEs,
in particular Re{r04

10}. The beam-polarization dependent elements r8
00 and Im{r3

10} are
determined using information on the longitudinally polarized lepton beam, for the first
time. Both elements are consistent with zero within large uncertainties, indicating only
a small possible contribution from the term Im{T01T

∗
11}.
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Contrary to ρ0 production, φ meson SDMEs are in agreement with s-channel helicity
conservation.

3.3 Phase Difference between T11 and T00

The phase difference δ between the amplitudes T11 and T00 can be evaluated as follows:

cos δ =
2
√

ε(Re{r510} − Im{r610})√
r04
00(1− r04

00 + r1
1−1 − Im{r21−1})

. (2)

This results in the precise determination of |δ| = 28.1 ± 2.8stat ± 3.7syst degrees for ρ0

data on proton. Using beam-polarization dependent SDMEs, also the sign of δ can be
determined:

sin δ =
2
√

ε(Re{r810}+ Im{r710})√
r04
00(1− r04

00 + r1
1−1 − Im{r21−1})

. (3)

In this way, the HERMES experiment for the first time determines the sign of δ to be
positive: δ = 24.4± 5.2stat ± 2.1syst degrees for ρ0 production.

3.4 Unnatural-Parity Exchange

Disregarding the assumption of SCHC, the hypothesis of the absence of unnatural-parity
exchange (UnPE) in the t-channel implies that U1 ≡ 1 − r04

00 + 2r04
1−1 − 2r1

11 − 2r1
1−1 = 0.

The HERMES result for ρ0 production on the proton, U1 = 0.132±0.026stat±0.053syst, is
different from zero at a level of 2σ of the total uncertainty, demonstrating the significance
of the unnatural-parity-exchange contribution. A signal of UnPE is important as evidence
of quark-antiquark exchange, corresponding to a description of the polarized GPDs. The
kinematic dependences of U1 for the proton on Q2, t′ and xbj are presented in Fig. 5a.
Although the errors are large due to the large number of SDMEs involved, all measured
values of U1 are positive. Note that a positive U1 value of about 0.1 was recently obtained
including the GPD H̃ in GK model calculations [5].

Contrary to ρ0 production, U1 values calculated from φ meson SDMEs are consistent
with zero, see Fig. 5b. This is in agreement with corresponding calculations in the GK
model [5] where only two-gluon exchange was considered.

4 Summary

Using a maximum likelihood fit, 15 beam-polarization-independent SDMEs and, for the
first time, 8 beam-polarization-dependent SDMEs are determined. The measured SDMEs
are grouped according to their theoretically expected hierarchy which is observed within
given experimental uncertainties. This facilitates the investigation of the relative impor-
tance of various helicity amplitudes describing different γ∗ → ρ0(φ) transitions.

Non-zero values of ρ0 SDMEs corresponding to the amplitude T01 indicate a small but
statistically significant deviation from the hypothesis of s-channel helicity conservation.

The phase difference between the helicity-conserving amplitudes T00 and T11 is con-
firmed to be significantly non-zero. For the first time, the sign of the phase difference is
precisely determined using the beam-polarization-dependent ρ0 SDMEs.
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Figure 5a. The Q2, t′, and xBj dependence of the SDME combination
U1 = 1− r04

00 + 2r04
1−1 − 2r1

11 − 2r1
1−1 for ρ0 production on the proton. The data given in the

open point for the first Q2 bin (< 1 GeV2) are not included in the t′ and xBj plots, which
represent data with a Q2 > 1 GeV2. The error bars represent the statistical uncertainty while
the bands below indicate the systematic uncertainties. For the integrated point, the inner error

bar represents the statistical uncertainty while the outer one indicates the additional
systematic uncertainty.

Figure 5b. The Q2 dependence of the enumerated on the SDME combinations U1, U2, U3 for
φ meson production. The values integrated in the range 1 < Q2 < 7 GeV2 are shown as closed
symbols. The data given as open point are for the first bin, Q2 < 1 GeV2. The inner (outer)

error bars represent the statistical (total) uncertainty.

The evaluation of certain relations between SDMEs provides an indication for the exis-
tence of unnatural-parity-exchange amplitudes for ρ0 production, supporting a significant
role of the quark-exchange mechanism in ρ0 production at intermediate energies.

For the first time HERMES results on light vector meson production (ρ0 and φ) are
comprehensively compared with model calculations [3]- [6] based on GPDs at kinematic
values of W = 5 GeV and Q2=3 GeV2. It is remarkable to note that these calculations are
in fair agreement with the longitudinal and full cross sections of ρ0 and φ mesons, the val-
ues of most of the SDMEs and hierarchy of corresponding amplitudes, violation of SCHC
in ρ0 production, the W -dependence of ρ0 and φ SDMEs and with the σL/σT ratios [5,6].
Nevertheless, HERMES data provide several constraints for a further development of this
model, in particular for the phase difference in the interference of γ∗L → ρ0

L and γ∗T → ρ0
T

transitions, the H̃ contribution in the unnatural parity exchange amplitude, and the E
contribution in the transverse target-spin asymmetry of exclusive ρ0 electroproduction
discussed in [18].

This work is supported in part by the Heisenberg-Landau program.
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Discussion

Q. (L.Jenkowzsky, ITP, Kiev) Are the elements of your spin density matrix constant
parameters, or they are functions of the dynamical variables: W , t and Q2?

A. They are functions. What I have shown, is only in the first approximations. Here
(a slide shown) you can see their functional dependence.
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Abstract

The RHIC spin program, colliding polarized protons to study the spin structure
of the proton, is underway. For 2006 we have achieved high luminosity collisions at√

s=200 GeV, with 55 to 60% polarization. We present sensitive measurements on
the gluon polarization in polarized protons, large observed transverse spin asymme-
tries, and discuss the future program.

1 Introduction
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Figure 1: Final polarization by RHIC fill, for 2006, weighted
by collision luminosity. The left panel is for the clockwise
(from above) beam, right panel for the counter-clockwise
beam. Measurements for fill numbers from 8000 are for√

s=62 GeV runs. These measurements use polarized
proton-carbon scattering from an ultra-thin carbon target
that is rotated into the RHIC beams a few times per fill.

The goal of the RHIC spin
program is to study the spin
structure of the proton, us-
ing strongly interacting probes
of polarized quarks and gluons
by colliding beams of polarized
protons [1]. We began polarized
proton collisions in 2001, with
about 15% beam polarization
and ran for an integrated lumi-
nosity of 0.15 pb−1. In 2006,
the Renaissance Run, the po-
larization was 55-60%, and the
luminosity delivered to the ex-
periments was 46 pb−1. In this
report, I will discuss the beau-
tiful results from this run, from
RHIC and from the three spin
experiments, PHENIX, STAR, and BRAHMS. RHIC polarization for 2006 is shown in
Figure 1.

2 The Polarization of the Gluons

The collisions of (polarized) protons, producing jets and particles of sufficiently high trans-
verse momentum pT , are described by perturbative QCD. For example, at

√
s=200 GeV,

the π0 cross section vs. pT is described by the next to leading order (NLO) pQCD predic-
tion [2] with no free parameters, for over seven orders of magnitude [3], at mid-rapidity.
Similarly for jet production [4] and direct photon production for pT above 5 GeV/c [5].
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At forward rapidity, the cross section for π0 production at
√

s=200 GeV is also described
by pQCD [6].

Double beam helicity asymmetries (ALL) for production of jets, direct photons, and
fragmentation products of the jets, are sensitive to the polarization of the gluons in po-
larized protons. The gluon-gluon scattering subprocess and the quark-gluon scattering
subprocess both depend on the helicities of the initial state partons, basically due to
angular momentum conservation. This is the approach used to constrain the gluon po-
larization at RHIC. Lower pT production of π0 or jets is dominated by the gluon-gluon
graph, and ALL at mid-rapidity is essentially quadratic in the gluon polarization. At
higher pT , the quark-gluon graph dominates, and ALL is linear in gluon polarization. For
direct photon production, the dominant graph is quark-gluon Compton scattering, and
ALL is linear in gluon polarization. So far, sensitive measurements have been made for
π0 and jet production; the direct photon measurements require accumulating significantly
higher luminosity.
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Figure 2: The double beam helicity asymme-
try for π0 production, at

√
s=200 GeV, mid-

rapidity. These are preliminary results from the
PHENIX experiment, 2006 RHIC run, and pub-
lished results from 2005. The curves are dis-
cussed in the text.

The data for ALL for jet production, ob-
tained by the STAR collaboration, was pre-
sented by J. Dunlop here. Figure 2 shows
the preliminary result for π0 from the 2006
run, from the PHENIX collaboration [7],
as well as published data from the 2005
run [8].

Both the jet and π0 results indicate lit-
tle or no asymmetry, and therefore little
or no gluon polarization in the measured
region. The measured region corresponds
to a gluon momentum fraction of xgluon

from about 0.02 to 0.3. Each point in pT

in Fig. 2 corresponds to a broad range in
xgluon. To be more quantitative, we have
used a model for the kinematic behavior of
the gluon polarization to provide limits on
the level of gluon polarization (within the
context of the model).

The curves on Fig. 2 show the asymmetry expected for two levels of gluon polarization,
following the GRSV model [9]. The GRSV model assumes that the gluon polarization
does not change sign over xgluon. The curve GRSV-std uses the best fit to DIS data, and
has an integral over xgluon of ∆G=0.4 for the scale Q2=1 GeV2. The curve GRSV-∆G=0
sets the gluon polarization, ∆G(x)=0, at a low input scale of Q2=0.4 (GeV/c)2. Deep
inelastic scattering results are fit with this level of gluon polarization, which is evolved to
the scale of the data. The combination of gluon and refit quark polarization is then used
to obtain the expected asymmetry for RHIC, in this case for π0 production. Note that the
∆G=0 curve does not give zero ALL. This is due to evolution–the splitting of polarized
quarks to polarized gluons at higher scales. The curve GS-C [10] assumes a node in the
gluon polarization vs. xgluon. The sign change gives an average gluon polarization in the
measured region near zero, with a calculated ALL near zero.

The proton spin crisis began with the 1988 result from the EMC experiment [11]
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which indicated nearly zero quark spin contribution to the proton spin. The modern
result for the level of quark spin contribution to the proton spin is about 0.15 for Q2=3
and 5 GeV2 [12] [13]. Therefore, the level of gluon polarization of 0.4 for GRSV-std
corresponds (roughly) to the remainder of the proton spin being carried by the gluons,
with no additional contribution from orbital angular momentum.

)2=1 GeV2 (Q 0.3]→x=[0.02 

GRSVG∆

-1 -0.5 0 0.5 1

2 χ

5

10

15

20

25

PHENIX Preliminary

G=-G"∆" G=0"∆" "std" G=G"∆"

No theoretical
uncertainties
included

 ~ 
 0.3]→x=[0.02 

GRSVG∆
 1]→x=[0 

GRSVG∆~ 0.6 

Run5: hep-ex-0704.3599
Run6: Preliminary

Figure 3: χ2 vs. the gluon polarization for one
model, integrated over the measured region in
xgluon, from the preliminary 2006 data of Fig. 2.
Also shown is the curve from the 2005 data.

Figure 3 shows a χ2 distribution vs.
the integral of the gluon polarization over
the measured region, for the π0 data from
Fig. 2, and for the 2005 data. This ap-
proach is described in the paper on the
2005 results [8]. The curve is generated
by creating a range of curves for ALL(pT ),
from a range of gluon polarizations follow-
ing the GRSV model, each refitting the
DIS data to obtain new quark polariza-
tions. The χ2 values used for the curve of
Fig. 3 are then obtained by comparing the
ALL(pT ) data to these curves for different
gluon polarizations.

Within the context of the model, the
data prefer small to zero, or negative, gluon
polarization. It should also be emphasized that this statement applies to the measured
range in gluon polarization, as is indicated on the figure. For the GRSV model, the
measured region corresponds to about 60% of the integral of gluon polarization. However,
for a model with a node in gluon polarization, for example GS-C, the measured region
corresponds to nearly zero integral, whereas the integral over all xgluon is of order 1 (next
to leading order, at Q2=4 GeV2).

From Fig. 3, we see that, for the GRSV model for gluon polarization, a small or zero
(or negative) gluon polarization is preferred. It will be important to further constrain the
gluon contribution, through more data. Higher pT inclusive data will provide sensitivity
where the RHIC asymmetry is linear in gluon polarization, and where gluon polarization
is expected from evolution from quark polarization. Lower xgluon data can be obtained
from forward production, particularly from forward direct photon production; also, data
from higher energy running at RHIC will contribute lower xgluon data. A major focus
will also be on correlations, for example photon plus jet events, where the kinematics
of the partons can be obtained at lowest order. These measurements are planned for
2008 through 2009 or 2010, for

√
s=200 GeV, and for 500 GeV running after that. The

500 GeV running will provide a lower xgluon reach, and also data for the parity-violating
production of W bosons. The W production will provide direct measurements of the
polarization of the anti-u and anti-d quarks.

3 Transverse Spin Renaissance

Large transverse spin asymmetries and polarizations in inclusive production have been
observed for over thirty years [14] [15]. However, for many years it was argued that these
effects were from (unknown) complicated soft physics scattering processes. Three results
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changed this view. The first was from the HERMES experiment, where a significant and
unexpected azimuthal asymmetry was observed in the production of pions in deep inelastic
scattering of electrons from polarized protons [16]. The second was the observation at
RHIC by the STAR experiment of large transverse spin asymmetry in the production of
π0 at

√
s=200 GeV, at forward rapidity, and where the cross section was described by

pQCD [17]. The third result was the observation by the BELLE experiment that, for q-q̄
production in electron-positron annhilation, the azimuth of the leading pion in one quark
jet is correlated with the azimuth of the leading oppositely-charged pion in the other
(anti)quark jet [18]. This correlation indicates an analyzing power for the fragmentation
of transversely polarized quarks.

F  x-0.6 -0.4 -0.2 0 0.2 0.4 0.6

N
A

-0.4

-0.2

0

0.2

0.4
+π-π

BRAHMS Preliminary

Figure 4: AN vs. xF for inclusive production
of charged pions, at

√
s=62 GeV, preliminary

data from 2006, from the BRHAMS experiment.
The data are for production angles of 2.3 and 3
degrees.

At the same time, partly a result of
the new transverse spin experimental re-
sults, and partly driving the experimental
measurements, there has been a remark-
able theoretical effort in the field. I will
not try to present a comprehensive dis-
cussion of this work. However, for exam-
ple, the measurements at HERMES and at
BELLE were partly driven by the sugges-
tion of Efremov [33] and Collins and Hep-
pelmann [20] that a possible quark fragme-
nation analyzing power would give access
to measuring the contribution of the quark
spin to the transverse spin of the proton
(transversity).

New results from RHIC include precise
measurements of π0 asymmetries for for-
ward production, by the STAR experiment, and presented here by J. Dunlop. These
results were for collisions at

√
s=200 GeV. Figure 4 shows preliminary results from the

BRAHMS experiment for charged pion asymmetries, at
√

s=62 GeV [21]. This experi-
ment has previously presented results for 200 GeV. The asymmetries at 62 GeV are very
large, and significantly larger than the asymmetries at 200 GeV. This is presumably due
to the dependence of the asymmetry on xF . At the lower energy, the BRAHMS detector
is sensitive to signficantly higher xF . These asymmetries are remarkable.

4 A Transverse Spin Drell-Yan Experiment

A very exciting direction for the transverse spin program is connecting semi-inclusive DIS
and RHIC results. The existence of a transverse spin asymmetry requires the interfer-
ence of production amplitudes, and a key paper by Brodsky, Hwang, and Schmidt [22]
presented an argument that this interference can occur at leading twist (the asymmetry
is not suppressed as 1/Q when Q is large) through initial and final state interactions
that generate the necessary interfering amplitude and phase. Collins [23] suggested that
for DIS, a final state interaction is involved, between the struck quark and the proton
remnant (see Figure 5). For Drell-Yan production, an initial state interaction is required,
between the anti-quark from the unpolarized hadron and the remnant from the polarized
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Figure 5: The bottom diagrams present, at lowest order, the argument that the initial state
interaction for DIS (left graph), and the final state interaction for Drell-Yan (right graph), give
a color force that is attractive (left) and repulsive (right). The argument holds at all orders, and
results in the prediction that the transverse spin asymmetries for DIS and for Drell-Yan should
be of opposite sign. The top diagrams present a QED analog.

proton (see Fig. 5). The final state interaction of DIS and the intitial state interaction of
Drell-Yan have different color interactions, giving in general an attractive force for DIS
and a negative force for Drell-Yan, resulting in opposite sign transverse spin asymmetries.

Figure 6: Asymmetry for π+ and π− produc-
tion in DIS, for a transversely polarized proton
target, from the HERMES experiment.

This can be seen for lowest order in Fig. 5,
where the color charge of the quark and
remnant in DIS are necessarily opposite,
producing an attractive force for the final
state interaction. For Drell-Yan, for the
lowest order graph shown in Fig. 5, the
initial state interaction has necessarily the
same color charge for anti-quark and rem-
nant, resulting in a repulsive force. Al-
though shown at lowest order, the predic-
tion holds at all orders.

Figure 6 shows the DIS transverse spin
asymmetry for π+ and π− production, cor-
responding to the initial state kT suggested
by Sivers [24], reported by HERMES [16].
Figure 7 shows the predicted Drell-Yan
asymmetry, for RHIC with one beam transversely polarized and one beam unpolar-
ized [25]. The statistics shown require 250 pb−1 for collisions at

√
s=200 GeV. Both

PHENIX and STAR could do this, with the uncertainties shown. The PHENIX experi-
ment would need an active nose cone absorber to provide necessary isolation requirements
for the identification of forward direct muons (that is, to reject muons from heavy quark
decays, with the heavy quarks embedded in jets). The STAR experiment would require a
forward charged particle spectrometer set-up, to measure the charge signs of the electron-
positron pair. This luminosity is high–it requires significantly higher luminosity than
available now, but which may be available in the future with luminosity upgrades to
RHIC.
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Figure 7: Predicted transverse spin asymmetry
and sensitivities, for RHIC, for Drell-Yan pro-
duction.

A Drell-Yan measurement with trans-
verse spin at RHIC, testing this predic-
tion, tests our understanding of the trans-
verse spin asymmetries. A successful out-
come would also confirm the color inter-
action of QCD with attraction for oppo-
site color charges and repulsion for like
color charges. Failure of the test would
not challenge QCD, but would challenge
our understanding of these asymmetries,
and likely challenge our pQCD description
of these interactions, both DIS and RHIC.
Therefore, this should be done, and the re-
sults of the measurement would have con-
sequences.

5 Final Remarks

The past six or so years have resulted in great progress toward understanding the spin
structure of the proton.

The helicity structure now appears to have little contribution from the gluon spin;
however, there is a lot more work to do here to be confident of such a conclusion. We need
measurements at lower gluon momentum fraction, measurements with direct photons,
and measurements of correlated observables to pin down the momentum fraction of each
colliding parton. Another direction which is likely to give surprises is to measure the
polarization of the anti-u and anti-d quarks directly, using parity-violating W production
at RHIC. This program should start around 2010.

The field of the transverse spin structure of the proton is blossomming. There are ma-
jor new experimental results from DIS, hadron probes, and for fragmentation. There are
major new theoretical advances connecting these measurements to a pQCD description,
to orbital angular momentum of the quarks (and gluons) in the proton, and connecting
DIS and hadron probe results. Personally, I am particularly looking forward to a theoreti-
cal understanding of the simplest (in principle) QCD spin process–the observed analyzing
power for fragmenting polarized quarks.
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Discussion

Q. (L.Jenkowzsky, ITP, Kiev) Given the flexibility in the definition of jets, to what
extent can the polarization of a jet be identify with that of the parton - quark or gluon -
of which it is a footprint?

A. The correlation between the polarizations of the jets and partons can be best seen
in e+e− annihilation.

250



Q. (J.Nassalski, SINS, Warsaw) What are your plans concerning single-photon asym-
metries?

A. My personal view is that direct photon production will only be valuable if the pion
and jet ALL are nonzero. This is due to the small cross section for direct photon. An
exception is that forward (direct photon + jet) asymmetries may constrain ∆G at lower
momentum fraction.

Q. (I.Ginzburg, IM, Novosibirsk) What is the absolute precision in the luminosity
monitoring (i.e. in total x-sections)?

A. It is now ∼9% from the scan method (measuring beam size by moving one beam
across the other). However, we have had a recent advance in our understanding for this
technique and may be able to reduce this uncertainty considerably. A few % is possible.

Q. (S.Belostotsky, PNPI, St.Petersburg) High pT region looks free (practically) from
gluon-gluon contribution and, in such way, qg (quark-gluon) starts dominating. What are
the prospects than to reach much better statistical accuracy in this high pT region.

A. If we have a non-zero positive ALL, the uncertainty for negative ∆G will be greatly
reduced. If we continue to have ALL = 0, there will still be a larger uncertainty for
negative ∆G. (The uncertainty for positive ∆G would be small in this case).
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Abstract

The Generalized Parton Distribution (GPD) framework is a novel and powerful
tool for the investigation of the nucleon structure. Accessible through hard exclu-
sive reactions the GPDs provide a three-dimensional picture of how the quarks and
the gluons build up the nucleon. The high energies available at CERN, and the
option of using either positive or negative polarized muon beams, make the fixed-
target COMPASS set-up a unique place for studying GPDs, through Deeply virtual
Compton scattering (DVCS). This contribution presents the goal of such experi-
ments as well as the detectors necessary to complement the high resolution forward
spectrometer COMPASS.

1 Quark and gluon imaging of the nucleon with GPDs

The GPD functions have been introduced 10 years ago [1, 21, 3] and they provide a com-
prehensive description of the quark and gluon structure of the nucleon (see Ref. [4–6] for
reviews). GPDs describe the quantum-mechanical amplitude for ”taking out” a parton
(quark or gluon) of the wave function of the fast-moving nucleon and ”putting it back”
with a different momentum, giving a small momentum transfer to the nucleon (see Fig. 1).
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Figure 1. Handbag diagram for the
DVCS amplitude at leading twist.

Such a process can be probed by hard exclusive
reactions such as Deeply Virtual Compton Scattering
(DVCS) or meson production where a photon of vir-
tuality Q2 interacts with the active quark and where
a real photon or a meson is ejected in order to com-
pensate the energy flow in the hard scattering. The
short-distance information specific to the process can
be unambiguously separated from the long-distance
information about nucleon structure contained in the
GPDs (factorization theorem). The GPDs depend
upon three kinematical variables: x, ξ and t. x is
the average longitudinal 1 momentum fraction of the
active quarks. 2ξ = 2xBj/(2 − xBj) is the longitudi-
nal momentum fraction of the transfer to the nucleon. t = ∆2 = (∆L + ∆T )2 is the
squared transfer between the initial and final nucleons. The transverse transfer ∆T leads
to information about the spatial transverse distribution of partons.

1”Longitudinal” refers to the direction of the fast moving nucleon for example in the centre of mass
of the virtual photon-nucleon collision

252



At leading twist four GPDs are necessary to parametrize the nucleon structure infor-
mation. H and H̃ are generalizations of the parton distributions measured in DIS. In the
forward limit, corresponding to ξ = 0 and t = 0, Hq, for a quark of flavor q, reduces to the
quark distribution q(x) and H̃q to the longitudinally polarized quark distribution ∆q(x)
while for the gluon sector Hg(x, 0, 0) = g(x) and H̃g(x, 0, 0) = ∆g(x). H and H̃ conserve
the helicity of the proton, whereas E and Ẽ allow for the possibility of the proton helicity
flip. In such a case the overall helicity is not conserved: the proton changes helicity but
the massless quark does not, so that the angular momentum conservation implies a trans-
fer of orbital angular momentum. This is only possible for nonzero transverse momentum
transfer, which is new with respect to the ordinary parton distributions. The Ji sume rule
relates the GPDs and the total angular momentum of the partons [21]:

1

2

∑
q

∫ +1

−1

dxx(Hq(x, ξ, t = 0) + Eq(x, ξ, t = 0)) = Jquark (1)

The second moment at t = 0 gives the total (spin + orbital) angular momentum carried
by the quarks. There is an equivalent sum rule for the gluons. The first moments of the
GPDs are related to the nucleon elastic form factors. For example:

∑
q

eq

∫ +1

−1

dxHq(x, ξ, t) = F1(t) (2)

where F1 is the Dirac form factor. However the GPDs contain much more information than
the parton densities and the elastic form factors. They describe the correlation between
a parton longitudinal momentum fraction, x, and the transverse momentum transfer to
the nucleon, ∆T . For ξ = 0, H(x, 0,−∆2

T ) is the Fourier transform of the probability
density to find a quark with momentum fraction x at a given distance b from the center
of momentum in the transverse plane: H(x, 0,−∆2

T ) =
∫

d2be−i∆T .bf(x, b). This 1+2-
dimensional ”mixed” longitudinal momentum and transverse coordinate representation
corresponds to a set of tomographic images of the parton distribution in the nucleon at a
fixed longitudinal momentum fraction x (see Fig. 2).

Figure 2. Nucleon tomography: (a) The transverse Fourier transform of the GPD describes
the distribution of quarks with longitudinal momentum fraction x with respect to transverse

position, (b) It produces a set of 1+2-dimensional ”tomographic” image of the quark structure
of the nucleon which allows to separate the contributions from the valence quarks or from the

pion cloud or sea quarks. (The figures are from Refs [7, 8].)
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Figure 3. The average squared trans-
verse radius of the gluon distribution in
the nucleon (extracted from J/ψ pho-
toproduction data) and the COMPASS
kinematical domain.

The width of the b distribution goes to zero as
x → 1 since the active quark becomes the center of
momentum. At x ∼ 0.3 one mainly ”sees” the core
of the valence quarks distributed over transverse
distances b << 1 fm. At x < 0.1 the pion cloud
becomes visible, extending over larger transverse
distances b ∼ 1 fm. At even smaller momentum
fractions, x < 0.01 the observed partons are mostly
the gluons and flavor singlet quarks produced by
gluon radiation.

A large effort in the community since 10 years
on both experimental and theoretical aspects has
been undertaken and has provided more than 300
publications so far. Several models are emerging
and the complex task of extracting information on
the GPDs from the experimental observables is ex-
tensively discussed in the recent literature. Predic-
tions made from lattice QCD [9–11] for the first moments of the nucleon GPDs confirm
that the transverse size of the nucleon depends significantly on the momentum fraction x.
In the chiral dynamics approach [12], the gluon density is generated by the ”pion cloud”
of the nucleon, and a significant increase in the overall transverse size of the nucleon is
observed for x below the ratio of pion and proton masses mπ/mp (see Fig. 3). The favored
domain to see a transition in the transverse size is ranging from 10−2 to 10−1, which is
the kinematical COMPASS domain.

Experimental information about GPDs comes from hard exclusive processes, such as
DVCS or meson production. The factorization [13] is valid when the finite momentum
transfer t = ∆2 to the target remains small compared to the photon virtuality Q2. For
meson production the factorization implies the extra condition that the virtual photon
be longitudinally polarized. For DVCS, the experience with inclusive DIS and other
two-photon processes suggests that the leading-twist approximation should be reliable
at Q2 ∼ 1 GeV2, which seems consistent with the first experimental results. For meson
production, data on the pion form factor at high Q2 suggest that higher-twist effects could
give significant corrections to the GPD description up to Q2 larger than a few GeV2.

2 Role of COMPASS with the unique availability of

high energy positive and negative muon beams

Thanks to the high energy of the muon beam available at COMPASS (between 100 and
190 GeV) the kinematical range covered by the proposed GPD programme experiment
will be large enough to provide a bridge between the HERA collider experiments [14–17]
at very small xBj and the JLAB [18–21] and HERMES [22–24] fixed target experiments
at large xBj. Since the shutdown of HERA, the availability of positive and negative
polarized muons at CERN gives to COMPASS the opportunity to measure the different
configurations of charge and spin of the beam.

The experimental programme using COMPASS at CERN with a muon beam of 100
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GeV will give access to three bins in xBj (presented in Fig. 4):
xBj = 0.05± 0.02 xBj = 0.1± 0.03 xBj = 0.2± 0.07

in a large range of Q2 from 1 to 7 GeV2 in order to control the Q2 independence (scaling)
predicted by the QCD factorization. Assuming 6 months of data taking and a muon flux
of 2 · 108 µ per SPS spill, a reasonable statistics can be obtained for Q2 values up to 7
GeV2. It is worth noting that an increase of the number of muons per spill by a factor 2
would result in an increase in the range in Q2 to about 11 GeV2.
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Figure 4. Kinematical coverage for all the experiments. Three bins in xBj can be investigated
at COMPASS around 0.05, 0.1 and 0.2 and each one can be subdivided in sub-bins in Q2 from

1 to 7 GeV2.

3 The DVCS measurements at COMPASS

3.1 Experimental method

The DVCS amplitude at leading order has the form:

H ∼
∫ +1

−1

H(x, ξ, t)

x− ξ + iε
dx ∼ P

∫ +1

−1

H(x, ξ, t)

x− ξ
dx− iπH(ξ, ξ, t) (3)

where H stands for a generic GPD and P for Cauchy’s principal value integral.
Since GPDs are real valued due to time reversal invariance, the real and imaginary

parts of the DVCS amplitude contain distinct information on GPDs. The imaginary part
depends on the GPDs at the specific values x = ξ. The real part is a convolution of the
GPDs with the kernel 1/(x−ξ) (see Eq. 3). To extract the GPDs from this convolution the
strategy will be similar to the one used in DIS. The GPDs will be adequately parametrized
and the parameters will be determined by a fit to the data. The real and imaginary parts
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can be accessed separately through the azimuthal dependence of the interference between
DVCS and BH.

With muon beams one naturally reverses both charge and helicity at once. Practically
µ+ are selected with a polarization of -0.8 and µ− with a polarization of +0.8. The precise
method to extract these quantities with polarized positive and negative muon beams has
been proposed by Diehl et al. [25, 26] and well established up to twist-3 contributions by
Belitsky, Mueller and Kirchner [27]. Let us consider an unpolarized target and a muon
beam of charge e` and longitudinal polarization P`. We can write:

dσ(`p → `pγ)

dϕ
= dσBH + dσDV S

unpolarized + P` × dσDV S
polarized

+ e` ×Re(IntC) + e`P` × Im(IntS) (4)

Considering the sum or the difference of the cross section given by muons of opposite
charge and polarization and using also the azimuthal angular dependence in ϕ the angle
between the leptonic and hadronic planes, we can get the dominant twist-2 contributions
of the Beam Charge and Single Spin Asymetries for DVCS:

dσ(µ+↓, ϕ) + dσ(µ−↑, ϕ) ∝ =m(F1H + ξ(F1 + F2)H̃ − t/4m2F2E) · sinϕ + · · ·
dσ(µ+↓, ϕ)− dσ(µ−↑, ϕ) ∝ Ree(F1H + ξ(F1 + F2)H̃ − t/4m2F2E) · cosϕ + · · · (5)

F1, F2 are the Dirac, Pauli form factors, ReeH = P ∫ +1

−1
H(x,ξ,t)

x−ξ
dx, =mH = −iπH(ξ, ξ, t)

Thanks to these last equations we can see that the small values of the kinematical
factors ξ and t give a dominant contribution of the GPD H when using a proton target.
In contrary with a neutron (or deuterium) target F1 is negligible and this is a good case
for a measurement of the GPD E contribution.

3.1.1 Projections for DVCS Beam Charge & Spin Asymmetry measurements

We propose to measure at COMPASS the quantities

σ(µ+↓)− σ(µ−↑) , σ(µ+↓) + σ(µ−↑) and
σ(µ+↓)− σ(µ−↑)
σ(µ+↓) + σ(µ−↑)

(6)

This last ratio is called in the following, the Beam Charge & Spin Asymmetry (BC&SA).
Figure 5 shows the azimuthal distribution of the Beam Charge & Spin Asymmetry

which could be measured at COMPASS using the 100 GeV muon beams for different
(xBj, Q2) domains. Statistical errors are evaluated for 150 days of data taking with a
25% global efficiency. The data allow for a good discrimination between different models.
Predictions are made using the VGG model with different parametrizations.

The VGG model relies on the double distributions in x and ξ proposed by Radyushkin [3]
to respect polynomiality conditions. Model 1 [28,29] uses a simple ansatz to parametrize
GPDs based on nucleon form factors and parton distributions and fulfills the GPD sum
rules. Model 2 [28, 4, 29] is more realistic because it correlates the x and t dependence
with a simple Regge-motivated ansatz. This takes into account the fact that the slow
partons tend to stand at a larger distance from the nucleon centre than the fast partons.
A gradual increase of the t-dependence of H(x, 0, t) is seen as one goes from larger to
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smaller values of x. The parameterization: H(x, 0, t) = q(x)et<b2⊥> = q(x)/xαt is used
where < b2

⊥ >= α · ln1/x represents the increase of the nucleon transverse size with en-
ergy. α is considered as a slope in Regge theory and is evaluated to 0.8 GeV2 (Model 2)
and 1.1 GeV2 (Model 2∗) (values which give rather good description of the proton Dirac
form factor). α is related to the transverse size of partons inside the nucleon and a precise
determination of the α parameter can be done at COMPASS. Other models including
gluons contributions are under study.

4 The other measurements at COMPASS

4.1 The observables to get a spin/flavor decomposition
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Figure 5. Projected error bars for a measure-
ment of the azimuthal angular distribution of the
BC&SA measurable at COMPASS at Eµ= 100
GeV and |t| ≤ 0.6 GeV2 for 2 domains of xBj

(0.05 on left and 0.10 on right) and 3 domains of
Q2 (2,4,6 GeV2) obtained in 150 days of data tak-
ing with a global efficiency of 25% and with 2·108

µ per SPS spill (Pµ+ = −0.8 and Pµ− = +0.8)
and a 2.5m long liquid hydrogen target. Pre-
dictions are made using the VGG model with
different parameterizations (see the text).

The GPDs reflect the structure of the nu-
cleon independently of the reaction which
probes the nucleon. In this sense they
are universal quantities and can be ac-
cessed, through DVCS or through the
hard exclusive leptoproduction of mesons
as π0,±, η, ..., ρ0,±, ω, φ, ....

The longitudinally polarized vector
meson channels ρ0,±, ω, φ, ... are sensi-
tive at leading order only to the GPDs
H and E while the pseudo-scalar chan-
nels π0,±, η, ... are sensitive only to H̃
and Ẽ [13]. In comparison we recall
that DVCS depends on the four GPDs.
This property makes the hard meson pro-
duction reactions complementary to the
DVCS process as it provides an additional
tool or filter to disentangle the different
GPDs.

Both quark and gluon GPDs con-
tribute to the meson production at the
same order in αs. The decomposition on
quark flavor and gluon contributions can
be realized through the different combina-
tions obtained with a set of mesons. For
example:

Hρ0 =
1√
2
(
2

3
Hu +

1

3
Hd +

3

8
Hg); Hω =

1√
2
(
2

3
Hu − 1

3
Hd +

1

8
Hg); Hφ = −1

3
Hs − 1

8
Hg

The complete experimental programme at COMPASS will comprise the measurement
of DVCS cross section with polarized positive and negative muon beams and at the same
time the measurement of a large set of mesons (ρ, φ, ω, π, η,...). This will provide different
and complementary facets of the GPDs study.
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4.2 The observables to get the GPD E

This GPD E is of high importance to determine the angular orbital momentum contri-
bution to the nucleon spin puzzle. It enters in the Ji sum rule (1):

1

2

∑
q

∫ +1

−1

dxx(Hq(x, ξ, t = 0) + Eq(x, ξ, t = 0)) = Jquark

which is ξ-independent. Polarized DIS determines the forward limit of Hq. So:

Mq =

∫ +1

−1

dxxq(x) =

∫ +1

−1

dxxHq(x, ξ = 0, t = 0)

meaning that the contribution of Hq to the Ji sum rule is known. Constraints on Eq come
from the Pauli form factor

F2(t) =
∑

q

eq

∫ +1

−1

dxEq(x, ξ, t)

where eq is the quark charge in units of the elementary charge [30,31]. Further constraints
on Eq will provide information related to the quark orbital momentum in the nucleon (see
predictions in [4, 32]).

At leading order there are several promising ways to get the GPD E at COMPASS:

1. the Beam Charge and Single Spin Asymmetry for DVCS on the neutron (see Equ.(5));

2. the Transverse Target Spin Asymmetry for DVCS on the proton:

dσ(ϕ, ϕS)− dσ(ϕ, ϕS + π) ∝ =m(F2H− F1E) · sin(ϕ− ϕS) · cosϕ

+=m(F2H̃ − F1ξẼ) · cos(ϕ− ϕS) · sinϕ

3. the Transverse Target Spin Asymmetry for vector meson (M) production induced
by longitudinal virtual photon2 on the proton:

dσ(ϕ, ϕS)− dσ(ϕ, ϕS + π) ∝ =m(E∗MHM) · sin(ϕ− ϕS)

where ϕ is the azimuthal angle between the lepton and hadron planes and ϕS the azimuthal
angle of the target spin vector around the virtual photon direction.

Method 1 has been successfully investigated at JLab [21] on a deuterium target while
the transverse asymmetries of methods 3 and 4 have been studied at HERMES both for
DVCS and rho vector meson production [24].

Preliminary studies on the transverse target spin difference (see Fig.6) were already
made with the present COMPASS set-up and the 6LiD polarized target [33]. Contributions
from coherent scattering from the target nuclei and incoherent scattering from the quasi-
free nucleons inside the target, have to be disentangled. Separation between longitudinal
and tranverse photon contributions is being performed thanks to the method proposed
by Diehl et al. [34].

2For which factorization is valid.
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Figure 6. Transverse Target Spin Asymmetry obtained for the full 2002-3-4 sample with the
6LiD target, which contains both, coherent contributions of the target nuclei and incoherent
contributions of protons and neutrons. It contains also longitudinal and transverse virtual

photon contributions.

5 General Request for the COMPASS apparatus

The goal of a GPD experiment is to measure absolute cross sections for the exclusive
production of photons (DVCS) and a large set of mesons. This implies an accurate
determination of the luminosity and acceptance and several tests will be done to achieve
this objective.

The most demanding GPD measurement is the DVCS µp → µpγ which requires to
select events with one (and only one) muon in the very forward direction, one (-id-)
photon at moderate forward angle and one (-id-) slow recoiling nucleon. Many competing
reactions can generate background:

• Deep π0 production µp → µpπ0 where the high energy γ from π0 decay mimics the
DVCS photon,

• Dissociation of the target µp → µ(pπ0)γ where the extra π0 is accompanying the
slow proton,

• DIS with many outgoing particles such as π0 which have to be identified.

The resolution in missing mass required to reject an extra pion is (mp + mπ)2−m2
p =

0.25 GeV2. The experimental resolution which can be achieved at COMPASS energy is
larger than 1 GeV2, therefore the missing mass energy selection using the energy balance
of the scattered muon and photon is not accurate enough. The background from π0 decay
has to be removed directly by rejecting the associated low energy photon. The COMPASS
spectrometer comprises two forward stages (see Fig. 7), one for angles up to 2o (after SM2)
and one for angles up to 10o (after SM1). The photon detection has to be performed with
excellent energy resolution and with high efficiency in a harsh environment of high flux
and background. This puts strong constraints on the existing calorimetry and justifies
the construction of a new calorimeter ECAL0 [35] to access larger angles of up to about
20o. In addition a 4m long recoil detector has to be built, surrounding the 2.5 m long H2
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(or D2) target to measure precisely the type, number and momenta of charge particles, in
order to ensure exclusivity of the selected reaction.

ECal0 ECal2ECal1

beamµ
A

B
TOF counters

Target

Neutral detection SM2

SM
1

Figure 7. General principle of the COMPASS layout. At present COMPASS is a two stage
spectrometer comprising many tracking and particle identification detectors grouped around
the 2 dipole magnets SM1 and SM2. Only upgraded and new detectors (ECAL0, ECAL1,

ECAL2, ToF, detector for neutral particles) discussed and specified in this report are shown.

6 Conclusion and Roadmap

For the GPD programme for 2010 and beyond, a 2.5 m long hydrogen target, a 4 m long
recoil detector and a high-performance calorimetry are mandatory. Presently, a 40 cm
long hydrogen target, and a 1 m long recoil detector are being designed for the hadron
programme setup. The two existing calorimeters will be used to collect neutral particles
such as π0 and η in order to identify exotic mesons or glueballs. Since recoil proton
detection and photon reconstruction are the two key experimental points of any DVCS
experiment, the present hadron programme setup provides an excellent opportunity for
a thorough preparation of the future DVCS setup. Although not optimized for a DVCS
experiment, the available detectors can be used for preliminary studies and for quantitative
evaluation of their performances. In addition, the versatility of the SPS M2 beam line
makes it extremely easy to switch from a hadron beam to either positive or negative muon
beam. Very preliminary tests will be requested during the 2008-9 COMPASS run. The
goal is to demonstrate the feasibility of the DVCS experiments at COMPASS and to be
ready for a complete GPD program after 2010 and before the outcome of other facilities
as JLab 12 GeV around 2014. This gives an excellent opportunity for a unique program
at COMPASS.
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Discussion

Q. (X.Artru, IPN, Lion) 1) Did you show lattice result with quenched quarks?
Comm 2) The model which have no dependence on ξ imply that the nucleon has zero

thickness in ξ.
A. 1) The first results were unquenched (mπ = 870MeV ), the second ones (published

at the end of May 07) are done at mπ = 350MeV and take into account chiral consider-
ation.
2) No, the models are always function of (x, ξ, t) it was just for simplicity that I have
written H(x, ξ, t) = q(x)F (t). I would have written = q(x)R(xξ)F (t).
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Abstract

The CLAS collaboration at Jefferson Lab is pursuing a broad program of mea-
surements with polarized electrons incident on polarized proton and deuteron tar-
gets. Our data include inclusive, semi-inclusive and exclusive inelastic scattering
over a wide kinematical range in momentum transfer Q2. These data will be re-
viewed, with an emphasis on new results. Experiments planned for the proposed 12
GeV upgrade to the CEBAF accelerator will also be discussed.

At Jefferson Lab a vigorous program of spin structure measurements has been un-
derway in all three experimental halls over the past decade. These experiments have
employed longitudinally polarized electron beams incident on polarized proton (NH3),
deuteron (ND3) and 3He targets. The primary goal of these experiments is the deter-
mination of the spin structure functions g1 and g2, along with their moments. As part
of this program, the CLAS collaboration has collected a vast data set for g1 over a wide
kinematic range, which includes momentum transfer Q2 from 0.05 to 5 GeV2 and invariant
mass W from the nucleon mass to 3 GeV. Recent results from this program and plans for
the future are presented in this note.

In the EG1 experiment in Hall B, longitudinally polarized electrons with energies of
1.6, 2.4, 4.2 and 5.7 GeV were scattered from longitudinally polarized frozen amonia tar-
gets (NH3 and ND3) [1]. Data were also taken with 12C, 4He and frozen 15N to determine
the dilution from unpolarized material. The product of beam and target polarization was
determined from the data through comparison with the known elastic scattering asym-
metry and ranged from 0.50 to 0.60 for the NH3 target and from 0.12 to 0.23 for the
ND3 target. Scattered electrons and other particles were detected in the CEBAF Large
Acceptance Spectrometer (CLAS) [2], which covers a range in polar angles from 8◦ to
135◦. The heart of the CLAS is a toroidal magnetic field produced by six superconduct-
ing coils which divide the 2π azimuthal phase space into six sectors, each consisting of
three layers of drift chambers, time-of-flight scintillators, a gas Čerenkov counter and an
electromagnetic calorimeter.

The raw inclusive double spin asymmetry was corrected for polarization, dilution,
beam charge asymmetry, e+e− pair production, pion contamination and radiative effects
to determine A// = D(A1 + ηA2), where A1 and A2 are the virtual photon asymmetries
and η and D are kinematic factors. Using a parametrization of the world data [3] to model
F1, A2 and R, the ratio of transverse to longitudinal structure functions, we extracted
A1(x,Q2) as well as g1:

g1(x,Q2) =
F1

1 + γ2
(A1 + γA2), (1)
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Figure 1. Results for A1 on the proton.
Filled circles show the CLAS data [3] while
data from previous experiments are indicated
with open symbols [4–7]. The solid line is our
parametrization of the world data at Q2 = 10
GeV2. The calculations of SU(6) symme-
try breaking by Isgur [8] using a hyperfine-
interaction model is shown as the grey band.
Three calculations by Close and Melnitchouk
[9] are shown as the dashed, dotted and dash-
dotted lines.
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Figure 2. Results for A1 for the deuteron.
The symbols and calculations are the same
as for Figure 1. The data are divided by
0.925 to correct for the deuteron D-state
probability. The model calculations are de-
rived from proton and neutron calculations
assuming an isoscalar (proton plus neutron)
target.

where γ2 = Q2

ν2 and ν is the difference in energy between the beam and scattered electron.
Figs. 1 and 2 show the EG1 result for A1 on the proton and deuteron as a function of

Bjorken x using only deep inelastic scattering (DIS) data, as defined by the requirements
that Q2 > 1 GeV2 and W > 2 GeV [3]. Our data are consistent with the expectation that
A1 should approach 1 as x → 1 and are in best agreement with the hyperfine-interaction
model of Isgur [8]. Using these data in the naive quark model to estimate the quark
polarizations, we find that ∆d/d remains negative up to x = 0.6, consistent with results
from Hall A using a 3He target [10]. Perturbative QCD requires that ∆d/d change sign
and go to +1 at x = 1. However, according to a recent paper by Avakian et al., the
inclusion of orbital angular momentum in the nucleon wavefunction may delay the zero
crossing to at least x = 0.7 [11].

Our data have also been used to improve the Next-to-Leading Order (NLO) Parton
Distribution Function (PDF) fit of Leader, Sidorov and Stamenov (LSS) as shown in
Fig. 3. Inclusion of these data in the fit reduces the uncertainty on quark PDF’s in the
valence region by approximately one-third, while ∆G shows an even greater improvement.
This reduction in uncertainty is attributable to the accuracy of the CLAS data at low Q2,
which decreases the uncertainty on higher twist corrections for g1. The central values of
the fits are not much affected by inclusion of the CLAS data, with the exception of ∆G,
which decreases by approximately one-third [13].

We also studied the onset of quark-hadron duality in spin structure functions. Quark-
hadron duality refers to the observation that the unpolarized structure function F2, in the
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Figure 3. Expected uncertainties for polarized quark distributions ∆u, ∆d, ∆G and ∆s from
an NLO analysis of all world data. The outermost line (green) represents the fit by Leader,
Sidorov and Stamenov [12] and the blue line is an updated fit [13] that includes the CLAS

data [3]. The red line represents the projected uncertainties after taking data with CLAS12 for
80 days [23].

resonance region, averages to the smooth scaling curve for F2 at high Q2 [14]. This effect
has been confirmed with high statistics data from Hall C [15].

In Fig. 4 we show xg1 for the proton and deuteron as a function of x for various Q2

bins [16]. The high Q2 “scaling” curve is shown by the hatched area and indicates the
range of xg1 given by the PDF fits from the AAC [17] and GSRV [18] collaborations. At
low Q2 one can see that the data are negative in the region of the ∆(1232) resonance, as
expected for a spin 3/2 excitation. Since the scaling curve is positive, one does not expect
duality to hold under these circumstances. However, as Q2 increases and the ∆(1232)
loses strength, the resonances do indeed appear to oscillate about the scaling curve.

One can also examine “local” duality in which one averages g1 over a particular region
in the nucleon excitation spectrum. Fig. 5 shows gp

1 averaged over four different regions
in invariant mass W . In the ∆(1232) region (top left) the data clearly fall below the
scaling curve even at large Q2. The elastic peak was included (open circles) to look for
the possibility that duality holds when one sums over states of both spins, but in that
case the data lie well above the scaling curve. In the second resonance region (top right)
spin 1/2 resonances dominate and the data fall above the scaling curve. The other two
regions include many overlapping resonances and show evidence of local duality, even for
Q2 below 1 GeV2. We observe the onset of “global” duality (integrated over the whole
resonance region) at approximately Q2 = 1.7 GeV2.

It is also interesting to study the first moment of g1, Γ1(Q
2) =

∫ x0

0
g1(x, Q2)dx, where

the upper limit excludes the elastic peak (which would otherwise dominate the behaviour
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of the integral at low Q2). Γ1(Q
2) is expected to be negative with a negative slope at very

low Q2, in order to be consistent with the predictions of the extended GDH Sum Rule [19].
However, at high Q2, Γ1 becomes positive as measured in previous DIS experiments [4–7].
Because of the large kinematic range of our data, we are able to compute Γ1 without
interpolation over a range in Q2 from 0.05 to 3 GeV2. For the extrapolation to the
unmeasured region at low x we use our parameterization of world data. Our preliminary
analysis of Γ1 indicates, for the first time, the negative slope in the integral at low Q2 for
both the proton and the deuteron [20]. At very low Q2 one expects Chiral Perturbation
Calculations (χPT) to be valid, but their range of validity in Q2 is not clear. We see that
χPT calculations by Ji [21] and Bernard [22] are consistent with our data for Γ1 up to a
Q2 of approximately 0.06 GeV2 [20].

Figure 4. CLAS data for xg1 [16] in several
bins of Q2 for the proton (left) and deuteron, per
nucleon (right). The errors include statistical
and systematic contributions added in quadra-
ture. The hatched band represents the range
of g1 predicted by Next-to-Leading Order Par-
ton Distribution Function fits [18,17], evolved to
the Q2 of our data and corrected for target-mass
effects.

We have also examined one higher mo-
ment, the generalized forward spin polariz-
ability of the proton [24]

γp
0(Q

2) =
16αM2

Q6

∫ x0

0

x2
{
g1(x,Q2)

− 4M2

Q2
x2g2(x,Q2)

}
dx, (2)

where α is the fine structure constant and
M is the mass of the nucleon (see Fig. 6).
Here we find a large discrepancy between
our preliminary analysis and the χPT cal-
cuations even at our lowest Q2. It is im-
portant to note that γ0 is a more strin-
gent test of χPT than Γ1 because Γ1 is
constrained at low Q2 by the extended
GDH sum. Presently available χPT cal-
culations do not seem to describe our data
well. New experiments to investigate spin
structure functions in more detail down to
Q2 = 0.015 GeV2 have recently been com-
pleted at Jefferson Lab in Hall A with a
3He target and in Hall B with NH3 and
ND3 targets. These data are currently un-
der analysis. At high Q2 we expect g2 to
decrease significantly and g1 to vary log-
arithmically with Q2, so that γ0 weighted
by Q6 should be largely independent of Q2.
In the right-hand panel of Fig. 6 we show
γp

0 weighted by Q6, which shows evidence of the anticipated scaling at approximately
Q2 = 1.5 GeV2.

Because of the large acceptance of CLAS, our data include pions and other hadrons
in addition to scattered electrons. Therefore, we are able to investigate single and double
spin asymmetries for exclusive pion production from polarized protons and deuterons.
There are three channels currently under investigation: (a) pπ0 from polarized protons,
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Figure 5. CLAS results for Q2g1(x,Q2) for
the proton, averaged over various regions of
x, corresponding to the W range shown in the
panels. The inner error bars are statistical and
the outer error bars include both statistical
and systematic contributions added in quadra-
ture. The addition of the ep elastic contribu-
tion to the data is shown by the open circles.
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(b) nπ+ from polarized protons, and (c) ppπ− from polarized deuterons. These channels
are identified using missing mass techniques and the asymmmetries are determined as a
function of Q2, W , θ∗, the polar angle of the emitted pion in the center-of-mass frame,
and φ, the angle between the leptonic and hadronic planes. These asymetries will provide
important constraints for phenomenological models of resonance transition amplitudes,
especially since there are almost no data for the n → π−p channel and only limited
polarization data for the proton [25].

Another topic of high current interest is semi-inclusive pion production. One hopes to
gain insight into the flavor and transverse momentum dependent distribution functions of
the quarks in the nucleon by tagging the leading hadrons. Although the EG1 experiment
was not optimized for such studies, we do have semi-inclusive data. For example, Fig. 7
shows preliminary results for the double-spin asymmetry with longitudinal beam and
target Aπ

LL for semi-inclusive π+, π− and π0 production as a function of the transverse
momentum of the detected hadron. Shown for comparison are calculations by Anselmino
et al. [26] which reproduce the trend of the data for the π+ and π0 channels, but not as
well for the π− channel. New experiments are planned with CLAS at 6 GeV [27] and with
CLAS12 at 11 GeV [28], which will hopefully shed some light on these results.

We look forward to continuing our investigation of nucleon spin structure at Jefferson
Lab with the planned 11 GeV beam in Halls A, B and C. The energy upgrade project is
on track with the recent approval by the Department of Energy of the project planning
milestone known as CD-2. This project was named in the recent Nuclear Science Advi-
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sory Committee report as the highest priority for nuclear science in the United States.
Construction is expected to start at the end of 2008 and the first high energy beam will
be available in 2015. In Hall B, we plan to have longitudinally and transversely polarized
proton and deuteron targets, along with an upgraded CLAS12 detector, designed for a
luminsity of 1035 /cm2/s. We will measure inclusive and semi-inclusive DIS up to Q2 = 10
GeV2 and x = 0.8. This will enable us to extend our measurements of Ap

1 and Ad
1 to larger

x. Fig. 3 indicates the expected improvement in uncertainty on the PDF fits by Leader,
Sidorov and Stamenov once CLAS12 data become available. Spin physics will continue
to play an important and high profile role in the experimental program at Jefferson Lab
in the next decade.
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Discussion

Q. (O.Tereaev, JINR, Dubna) Is it possible to test quality for the function gT = g1+g2

rather than g1?
A. That is an interesting idea. Since gT is smooth and positive duality may work

down to lower Q2. However, we cannot look at that with the EGI data since we do not
have a transversely polarized target, which means that we do not extract g2.

Q. (J.Nassalsky, SINS, Warsaw) What are uncertainties involved in the extrapolations
of g1 to the non measured region?

A. We estimate the uncertainties on the extrapolation to the unmeasured region by
comparing the result for γ0 or Γ1 using different parameterizations of world data. For γ0

the uncertainty on the extrapolation is very small, smaller than the systematic uncertainty
on the measured data. Please note that the systematic error bands on the γ0 plot were
mislabeled.
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RECENT RESULTS FROM STAR ON THE SPIN OF THE PROTON

J.C Dunlop1† for the STAR collaboration
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Abstract

The measurement of the origin of proton spin is a major program in the STAR
experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National
Laboratory (BNL). RHIC is the first collider able to collide polarized protons. The
current status of the use of these polarized beams to probe the polarization of
the partons within the proton will be reviewed, along with prospects for future
measurements of higher precision and differential analyzing power.

1 Introduction

The Relativistic Heavy Ion Collider (RHIC) can accelerate and collide beams of polarized
protons at center of mass energies up to

√
s = 500 GeV. Two large-scale experiments,

STAR and PHENIX, and one smaller experiment, BRAHMS, are capable of sampling
and measuring the results of these collisions with high precision. There have been four
major runs to date with these beams, mainly focusing on collisions at

√
s = 200 GeV,

with with the most recent occuring in 2006. The stable polarization state in the collider
has the protons polarized vertically, transverse to the direction in which they travel, but
rotators outside the interaction regions of STAR and PHENIX allow the beams to be
polarized both longitudinally and transversely at the collision vertex at the center of the
experiment. Both types of polarization have been analyzed extensively.

2 Longitudinal Polarization

The focus of the longitudinal program to date has been on the measurement of the dou-
ble longitudinal asymmetry, ALL, in the production of jets at mid-rapidity. STAR re-
constructs jets through a mid-point cone algorithm, using tracking in the STAR Time
Projection Chamber (TPC) for the charged portion of the jet and signals in the Elec-
tromagnetic Calorimetry (EMC) for the neutral portion. The unpolarized differential
cross-section for jet production has been measured up to approximately 50 GeV, and is in
good agreement with calculations from perturbative QCD [1]. This agreement is critical
to the interpretation of polarization of jets in the final state in terms of the polarization
of the partons in the initially incoming protons.

At the time of the conference, the highest quality measurement from STAR of ALL

came from the 2005 run, which sampled an integrated luminosity of 2 pb−1 with average
beam polarization of approximately 50%, and with a pseudorapidity coverage over 0.2
< η < 0.8. Final results from this analysis were recently submitted for publication [3],
and are reproduced in figure 1.
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The utility of this type of measurement lays in its comparison to models, and its use
in global fits. The kinematics of the incoming parton-parton collisions are not strongly
resolved by simply measuring the transverse momentum (pT ) of a jet in the final state;
instead, jets within a given pT range sample a broad set of different kinematic conditions,
as shown in Figure 2a. The precision of the data allows for strong constraints on model
parameters, an example of which is shown in Figure 2b. In this model comparison, the
dependence of the gluon polarization in the proton on momentum fraction and scale,
∆g(x), is constrained, while the integrated value of ∆G at one scale is allowed to vary.
Strongly positive values for ∆G appear to be strongly excluded in this model framework.
Stronger constraints will come from the 2006 dataset, in which the pseudorapidity coverage
increased by more than a factor of 2, the polarization increased to more than 60% on
average, and the integrated luminosity increased by a factor of 3.

While inclusive measurements provide a great amount of information towards con-
straining models, it is somewhat unsatisfying to depend so strongly on the models for
the shape of the dependence of ∆g on scale and momentum fraction. The way forward
is to measure double spin asymmetries with more differential probes, such as dijets and
photon-jet coincidences, across a broad range of pseudorapidity and momentum. These
allow much tighter constraints on the momentum fraction of the parton probed, and will
allow for high precision determination of ∆g(x) for momentum fraction x from approxi-
mately 10−3 to 0.3.

GRSV-std
g=g∆GRSV 
g=0∆GRSV 
g=-g∆GRSV 

 (GeV/c)
T

p
5 10 15 20 25 30

-0.05

0

0.05

0.1

0.15 GRSV-std
g=g∆GRSV 
g=0∆GRSV 
g=-g∆GRSV 

LLA

STAR Data

9.4% scale uncertainty from±
   polarization not shown

jet+X→pp

Figure 1. Longitudinal double-spin asymmetry ALL for inclusive jet production at
√

s = 200
GeV versus jet pT . The points show results for jets, with pT corrected for detector effects but

not hadronization effects, with statistical error bars, while the curves show predictions for
NLO parton jets from one global analysis [2]. The gray boxes indicate the systematic

uncertainties on the measured ALL values (vertical) and in the corrections to the measured jet
pT (horizontal). Figure from [3]
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for scale Q2 = 100 GeV2/c2. The histograms show the xgluon sampled in the lowest and highest
jet pT bins. (b) Confidence levels for several gluon polarization distributions, characterized by

their ∆G at an input scale of 0.4GeV2/c2 [4, 2]. Figure from [3]

3 Transverse Polarization

The first, and possibly the most unexpected, polarized measurement at RHIC came in the
forward direction in STAR, in which it was found that the large single-spin asymmetries
in pion production at high xF seen at lower energies persisted to RHIC at

√
s = 200

GeV [5]. In run 6, the apparatus for measuring these asymmetries was extended, and
the luminosity sampled dramatically increased. This allowed for simultaneous separation
of the xF and pT dependence of the single spin asymmetry AN , as shown in figure 3 [6].
The behavior of this single-spin asymmetry with pT is quite surprising, since essentially
any perturbative explanation will predict that AN should fall with increasing pT , while
there is no sign for this decrease in the data measured to date. Future runs with the fully
upgraded STAR Forward Meson Spectrometer, which covers the pseudorapidity range
from 2.5 to 4 with full azimuthal coverage, should allow for exquisite precision in this
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Figure 3. π0AN vs. pt for different bins in xF , at
√

s = 200 GeV. Figure from [6].

type of measurement, and distinguish between different scenarios (e.g. Collins vs. Sivers)
for the production of these large single-spin asymmetries.

Another method was used to search for Sivers effects in run 6. These were predicted to
create a strong and measurable correlation between the transverse momentum of a parton
within the proton and the direction of transverse polarization. This can be measured by
the azimuthal opening angle between dijet pairs, ζ, signed with respect to the polarization
direction. Results have been published and are shown in figure 4 [7]. The measured value
of ζ is consistent with zero in all kinematic regimes, counter to original calculations
based on measurements of the Sivers effect in the HERMES experiment. This difference
has led to a re-examination of the factorization assumptions underlying the application of
perturbative QCD to this specific process in hadron-hadron collisions, with the conclusion
that initial- and final-state effects are large

4 Summary and outlook

The spin program in STAR at RHIC is beginning to place world-class constraints on the
spin of gluons in the proton with longitudinally polarized protons, and is making ground-
breaking measurements with transversely polarized beams. The program is continually
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state parton-parton collisions as function of the sum of the dijet pseudorapidities, η1 + η2.
Middle row: single spin asymmetry in signed azimuthal opening angle. Bottom row: —sin

ζ—-weighted single-spin asymmetry. Figure from [7].

evolving, with luminosities and polarizations providing order-of-magnitude improvements
in the figure of merit for polarization measurements from year to year. STAR’s plan is
to finish the program at

√
s = 200 GeV by 2010, with precision measurement of ∆g(x)

via coincidence measurements, both with jet-jet correlations and photon-jet correlations.
Beyond that, we plan to switch predominantly to

√
s = 500 GeV, which provides a lower

momentum fraction x reach for ∆g(x) measurements, along with a critical test of the
applicability of factorization in the region of kinematic overlap with the

√
s = 200 GeV

beam. With this set of measurements, the contribution of the gluon spin to the proton
spin will be precisely measured.

At 500 GeV, the cross section for W production is large enough that a new line of
investigation becomes available. One can use parity violation in W decays to measure
the flavor-separated polarization of quarks, ∆u/u, ∆d/d, and their respective antiquarks.
Upgrades of reasonable scope are necessary to both STAR and PHENIX to facilitate these
measurements.

The understanding of dffects from transversely polarized beams is still rapidly pro-
gressing. Measured effects are large, but much theoretical and experimental work remains
to clarify the origin of these effects. An interesting possibility is that these effects may
be related to orbital angular momentum of partons in the proton, which may become
increasingly important if the gluon spin polarization ends up as a small contribution to
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the spin of the proton. This will clearly be an active and fruitful region of inquiry in
future years.
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Discussion

Q. (D.Sivers, Portland Phys. Inst.) Could you give a reference for the QCD prediction
of exotic bound states?

A. The answer depends on what you mean by exotic bound states. If you are discussing
glueballs, pentaquarks, etc. that occur at zero temperature that is outside my realm of
expertise. If you are discussing bound states in the hot QGP, Shuryak first proposed this
in E.V. Shuryak and I. Zahed, hep-ph/0307267, Phys. Rev. C 70, 021901(2004).

There is a bit of discussion and controversy on this subject, especially in the rebuttal
from lattice data in V. Koch, A. Majumder and J. Randrup, Nucl. Phys. A 774 (2006)
841 and V. Koch, A. Majumder and J. Randrup, Phys. Rev. Lett. 95, 182301 (2005)
[arXiv:nucl-th/0505052] with the conclusion: ”The analysis of present lattice results above
the critical temperature severely limits the presence of qq̄ bound states, thus supporting
a picture of independent (quasi)quarks”.
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Abstract

In this work the experimental results on analyzing powers at energy Td = 140,
200 and 270 MeV for 12C(

−→
d , p)13C∗ reaction with excitation of levels of a nucleus

13C and d(
−→
d , p)3H reaction at emission angle Θcm=0◦ are presented. The data on

the tensor Ayy and vector Ay analyzing powers for the 12C(
−→
d , p)13C∗ reaction at

energy Td = 270 MeV in the angular range from 4◦ to 18◦ in laboratory system are
also obtained. The experimental data for these reactions are sensitive to the spin
structure of the deuteron.

Inrtoduction
The interest in the experimental and theoretical study of few nucleon transfer reactions

has been renewed in the past years mainly due to the possibility to obtain the information
of astrophysical relevance from these reactions [1-4]. Direct measurement of the capture
reactions at energies of astrophysical interest is, in some cases, nearly impossible due to
the low reaction yield, especially, if the capture involves exotic nuclei. Alternative indirect
methods, such as the asymptotic normalization coefficient (ANC) method, based on the
analysis of breakup or transfer reactions [1], have been used as a tool to obtain astro-
physical S-factors. Single-nucleon transfer reactions that probe the degrees of freedom of
single particles have been extensively used to study the structure of stable nuclei. The
analysis of such reactions provides the angular momentum transfer, which gives informa-
tion on the spin (j) and parity (π) of the final state. The sensitivity of the cross sections
to the single-nucleon components allows for the extraction of spectroscopic factors. The
recent indications of reduced occupancies of single-particle states [5, 6] reveal that reliable

measurements of spectroscopic factors in exotic nuclei are highly desirable. The (
−→
d , p)

stripping reaction has long been use as a means of probing the single particle structure
of nuclei. In particular, through distorted wave Born approximation (DWBA) analyses it
has been used to determine the orbital angular momentum and spectroscopic factors of

specific states in the recoil nucleus [7]. The d(
−→
d , p)3H and d(

−→
d , p)X processes concern
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to single-nucleon transfer reactions too. These reactions are the simplest processes with a
large momentum transfer, so they could be used as a tool to study the deuteron structure
at short distances. The polarization observables of these reactions are sensitive to the
D/S wave ratio in the deuteron within One-Nucleon Exchange (ONE) aproximation.

In this report we present the experimental results on the tensor Ayy and vector Ay

analyzing powers for the 12C(
−→
d , p)13C∗ reaction at energy Td = 270 MeV in the angular

range from 4◦ to 18◦ in laboratory system. The data on the tensor analyzing power T20

for 12C(
−→
d , p)13C∗ and d(

−→
d , p)X reactions at energy Td = 140, 200 and 270 MeV and

emission angle Θcm=0◦ are also obtained.

Experiment
The experiment was performed at RIKEN Accelerator Research Facility (RARF).

The direction of symmetric axis of the beam polarization was controlled with a Wien
filter located at the exit of polarized ion source (PIS). In this experiment, four spin modes
were used: the mode 0 - unpolarized mode, mode 1 - pure tensor mode, mode 2 - pure
vector mode and mode 3 is mixed mode. The obtained polarization values were ∼ 75%
of the ideal values. The polarized deuteron beam was accelerated up to 140, 200 and
270 MeV by the combination of the AVF cyclotron and Ring cyclotron. The beam po-
larizations were measured with D-room polarimeter (DroomPOL) located at D-room and
Swinger polarimeter (SWPOL) just before the target. Both polarimeters utilize d + p
elastic scattering for polarimetry and value of polarization were derived using known ana-
lyzing powers Ay, Ayy, Axx and Axz [8, 9]. The scattering angle of the polarized deuteron
beam were controlled by rotating the Swinger magnet. Scattered particles (3H, 3He or
p) were momentum analyzed with quadrupole and dipole magnets (Q-Q-D-Q-D) and de-
tected with MWDC followed by the three plastic scintillators at the second focal plane.

Criteria used for the identification of the scattered protons from the 12C(
−→
d , p)13C∗

and d(
−→
d , p)X reactions are the following: particle must be registered in the all three

scintillation detectors and it was selected by the correlation of the energy losses in the
1st and the 2nd and the 1st and the 3rd scintillation detectors; radio frequency signal
of the cyclotron was used as a reference for time-of-flight measurement. The number of
useful events were obtained by the subtraction of the momenta spectra on C from CD2

for d(
−→
d , p)3H reaction.

The events considered for the analysis were selected within polar angle acceptance

≤ 1.4◦. Typical momentum spectra for 12C(
−→
d , p)13C∗ reaction are shown in fig. 1.

Results and discussion
Monte Carlo (MC) simulation was performed for the d(

−→
d , p)X reaction at 270 MeV

initial deuteron energy and small proton emission angles in accordance with 2 and 3 par-
ticle phase space. It is shown that MC simulation for 2 particle phase space (p−dn in the
final state) reproduces well the excitation energy spectra near threshold. The contribution
of 3 particle phase space is quite small within the acceptance of the spectrometer.

A peak obliged to the Final State Interaction (FSI) near breakup threshold for the
3-nucleon unbounded state is not observed in contrast with np state. Thus, it gives the
opportunity to conclude that FSI for the dn system is insignificant or much weaker than
for the np one.[10]
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The experimental results on the tensor an-

alyzing power T20 for d(
−→
d , p)X reaction are

presented by the squares and triangles in fig-
ure 2. Squares are plotted for the events
near breakup threshold with effective values
of excitation energy of ≈ 7 MeV . Trian-
gles correspond to the events with higher
Ex ≈ 10 MeV . Filled symbols correspond

to the data for d(
−→
d , p)3H reaction.

Effective excitation energy for T20 of the

d(
−→
d , p)X reaction at the energy Td = 140

and 200 MeV is close to Ex ≈ 4, 7 and
5, 7 MeV for np channel and Ex ≈ 6 and
8 MeV for dn channel respectively.
The comparison of these polarization observ-
ables for the breakup reactions gives an op-
portunity to conclude that they are in an
agreement within achieved experimental er-
rors.

0

1000

2000

3000

4000

5000

6000

0.5 0.505 0.51 0.515 0.52 0.525 0.53 0.535

P, GeV/c

N

3.
08

9

0.
0

3.
85

4
3.

68
5

12
.4

4
12

.1
1

11
.9

5
11

.7
5

11
.0

8
10

.8
2

10
.7

5
10

.4
6

9.
9

9.
5

8.
86

8.
2

7.
67

7.
55

7.
49

6.
86

4

Figure 1: Typical momentum spectra
for 12C(

−→
d , p)13C∗ reaction and Θcm=0◦

(Td=140 MeV). Peaks corresponding to the
13C states are labeled by their excitation en-
ergies in MeV.

Td, MeV

T20 ● - d
→

 d  → p 3H
 ■ - d

→
 d  → p dn

 ▲ - d
→

 d  → p pnn

Figure 2: The experimental results on T20

analyzing power for d(
−→
d , p)X reactions at

energy Td = 140, 200 and 270 MeV and emis-
sion angle Θcm=0◦.

Td, MeV

T20 ● - d
→

 12C  → p 13C (g.s)
 ■ - d

→
 12C  → p 13C* (3.089 MeV)

 ▲ - d
→

 12C  → p 13C* (3.6845+3.854 MeV)

Figure 3: The experimental results on T20

in 12C(
−→
d , p)13C∗ reactions at the energy Td

= 140, 200 and 270 MeV and emission angle
Θcm=0◦.

The results on the tensor analyzing power T20 for 12C(
−→
d , p)13C∗ reaction are

presented in figure 3. The circles, squares and triangles represent the data on T20 for
12C(

−→
d , p)13C(g.s.), 12C(

−→
d , p)13C(3, 089MeV ) and 12C(

−→
d , p)13C(3, 6845 + 3, 854MeV )

reactions, respectively.
The experimental results on the vector Ay and tensor Ayy analyzing powers of the

12C(
−→
d , p)13C∗ reaction at Td = 270 MeV are presented by the filled symbols in fig-

ure 4. The sign of Ayy analyzing power is positive in accordance with the sign of the
D/S wave ratio of deuteron. The experimental data on vector Ay analyzing power for
12C(

−→
d , p)13C(g.s.) and 12C(

−→
d , p)13C∗ are negative and positive, respectively.
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Summary
The results can be summarized as following.
The results on the tensor analyzing power T20

in the 12C(
−→
d , p)13C∗ and d(

−→
d , p)X reactions

at energy Td = 140, 200 and 270 MeV and
emission angle Θcm=0◦ are obtained. The
experimental data on T20 for these reactions
show the sensitivity to the spin structure of
deuteron. The experimental results on the
vector Ay and tensor Ayy analyzing powers

of the 12C(
−→
d , p)13C∗ reaction at energy Td

= 270 MeV in the angular range from 4◦ to
18◦ in laboratory system are also obtained.
The negative sign of analyzing power T20 for
12C(

−→
d , p)13C∗ and d(

−→
d , p)X reactions and

positive sign of Ayy for 12C(
−→
d , p)13C∗ reflect

the sign D/S ratio a components of wave
function of deuteron.

Figure 4. The experimental results on
Ay and Ayy analyzing powers of the
12C(

−→
d , p)13C∗ reaction at energy Td =

270 MeV.
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Abstract

One of the main goals of the COMPASS experiment is a precise determination
of ∆G/G. This will lead to better understanding of the nucleon spin structure. The
polarization of the gluons in the nucleon is measured by tagging the Photon Gluon
Fusion (PGF) process in scattering of polarized muons off a polarized deuteron
target. One of the methods used to tag PGF events is a selection of a pair of high
pT hadrons in the final state. In the analysis presented here, the Q2 < 1 (GeV/c)2

region is considered. The preliminary value of ∆G/G, ∆G
G = 0.016± 0.058(stat.)±

0.055(syst.), is currently the most precise measurement available.

1 Introduction

In the frame of the Quark Parton Model the nucleon spin is described by a sum rule:

1

2
=

1

2
∆Σ + ∆G + Lq + Lg, (1)

where ∆Σ is the contribution from quark helicities, ∆G the contribution from helicities of
gluons and Lq,g are the orbital momenta of quarks and gluons, respectively. A value of ∆Σ
was first determined by the EMC [1]. That result was confirmed by several experiments
[2–4]. All measurements indicate that ∆Σ cannot account for the whole spin of the
nucleon. Recent results show that the value of ∆Σ is close to 30%, e.g. ∆Σ(Q2 =
3(GeV/c)2) = 0.30± 0.01(stat.)± 0.02(evol.) [4]. Therefore it is clear that the rest of the
nucleon spin originates from polarised gluons and orbital motion of partons in the nucleon.
The COMPASS experiment aims to further study the nucleon spin structure. A direct
measurement of the gluon polarization is performed using cross-section asymmetries for
PGF events in the scattering of polarized leptons on polarized nucleons which probes ∆G
in the region of xg ' 0.1.

In the COMPASS experiment we study interactions of a µ+ beam of 160 GeV/c
momentum and a polarization PB ' 80% with a polarized deuteron target. The target
material is 6LiD which provides a good compromise between the dilution factor, f ' 0.4,
and the achieved deuteron polarization of PT ' 50%. For more information about the
COMPASS experimental setup see [5].

2 Experimental asymmetry

We measure a counting rate asymmetry as Aexp = N↑⇓−N↑⇑
N↑⇓+N↑⇑ , where N↑⇓(↑⇑) are number of

events with nucleons polarized anti-parallel (parallel) to muon spin direction. A two-cell
target with cells polarized oppositely is used. This allows for a simultaneous measurement
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of both spin configurations with the same beam flux. Due to that the flux as well as many
other systematic effects will cancel out in the asymmetry calculation.

The raw counting asymmetry is related to cross-section asymmetry by

A|| = fPT PBAexp. (2)

To decrease statistical errors a weighting method of asymmetry extraction is used [6]. In
this method a weight w = fDPB, where D is the depolarization factor, is applied on an
event by event basis instead of using average values.

3 ∆G/G measurement at COMPASS

A direct measurement of the gluon polarization in the nucleon can be performed using
events originating from the PGF process. In this process a virtual photon emitted by
an incoming lepton interacts with a gluon from a nucleon. The photon retains a part of
the lepton polarization and thus provides a probe to sample the polarized gluons in the
nucleon.

The PGF events have to be selected from a background originating from other pro-
cesses. In LO QCD the following processes should be taken into account: the Leading
Process (LP) where γ∗ interacts with a quark from the nucleon, the QCD Compton
(QCDC) process where an additional gluon is radiated and the PGF process. A hadron
from LP obtains a transverse momentum with regards to the virtual gamma only from
the fragmentation or from the intrinsic transverse momentum of the struck quark. This
means that such hadrons will have a rather small pT . Thus, by selecting high transverse
momenta, a fraction of LP in the sample is greatly reduced.

The high pT sample selection is based on a set of cuts. First, at least two hadron tracks
are required to be reconstructed in a primary vertex. The pT of two fastest hadrons should
be above 0.7 GeV/c and their

∑
p2

T exceed 2.5 (GeV/c)2 to suppress the contribution from
the LP. To remove regions with low sensitivity to ∆G and regions with large radiative
corrections events with 0.35 < y < 0.9 are selected. Finally, to ensure that mainly events
from the current fragmentation region are selected and to remove the ρ resonance three
additional cuts are imposed: xF , z > 0 and Minv > 1.5 GeV/c2.

In the region of Q2 < 1 (GeV/c)2 there is an additional contribution from the resolved
photon processes. In Fig. 1 the fractions of the contributing processes are presented. They
were estimated from a MC simulation based on the PYTHIA generator [7]. Apparatus
behaviour is simulated by the GEANT3 [8]. Although Q2 is small we can treat our sample
as being in the perturbative region as the hard scale is set by pT cuts. The PGF and
two resolved photon processes that probe gluons from the nucleon - gq, gg are treated as
signal. LP and so called “low pT ” sample, which consists of nonperturbative processes
are neglected as they contribute only a small fraction of events. Finally we obtain:

A||
D

= RPGF

〈
aPGF

LL

D

〉
∆G

G
+ RQCDC

〈
aQCDC

LL

D

〉
∆q

q
+ Rqq

〈
aqq

LL

D

〉
∆q

q

∆qγ

qγ

+ Rqg

〈
aqg

LL

D

〉
∆q

q

∆Gγ

Gγ
+ Rgq

〈 q

D

〉 ∆G

G

∆qγ

qγ
+ Rgg

〈
agg

LL

D

〉
∆G

G

∆Gγ

Gγ
(3)
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where Ri is the fraction of the process i, ai
LL is the partonic level asymmetry [9], q and

∆q are the Parton Distribution Functions (PDFs) in the nucleon, qγ, Gγ are unpolarized
PDFs in the photon and ∆qγ, ∆Gγ are polarized PDFs in the photon.

Figure 1: Relative contributions of the dominant
high pT processes at Q2 < 1 (GeV/c)2 as obtained
by the PYTHIA MonteCarlo. Left: direct pro-
cesses, right: resolved photon processes.

In the expression (3) ∆G/G is the
quantity we would like to extract, and
A|| is the measured asymmetry (2). The
fractions of processes Ri and the aver-
age values of aLL are taken from the MC
simulation. The parton distributions in
the nucleon are obtained from param-
eterizations to world data [10]: GRV98
and GRSV2000. Also unpolarized PDFs
are taken from parameterization [11].
For polarized PDFs in the photon there
are no measurements available. From
theory we know that these PDFs are
sums of a nonperturbative (VMD) term,
and of a perturbative (point-like) term.
The point-like PDFs are calculable in
QCD but the VMD part is not. To cope with that we use the minimal ∆fγ

V MD = −fγ
V MD

and the maximal ∆fγ
V MD = fγ

V MD scenarios [12]. This model uncertainty is taken into
account in the systematic error.

The main contribution to the experimental systematic error originates from false asym-
metries. It is estimated on a sample of low pT events with much larger statistics. Other
sources of systematic errors, including the error on the beam and target polarizations, are
proportional to the (small) measured asymmetry and as such were neglected.

As the ∆G/G extraction is based on quantities obtained from MC simulations, a good
agreement between data and MC is crucial. It is presented in Fig. 2. In order to esti-
mate the systematic error originating from MC simulations, the ∆G/G was determined
for different values of most important parameters: parameters of the parton fragmenta-
tion model, the primordial transverse momentum of partons within the nucleon and the
photon, the renormalization and factorization scales and switching on and off the parton
showers.

From the data collected in years 2002-2003 the following value of the gluon polarisation
is measured ∆G/G = 0.024±0.089(stat.)±0.057(syst.) at xg ≈ 0.095+0.08

−0.04 [10]. The scale
at which measurement is made was estimated to be 3(GeV/c)2. Analysis of combined
data from years 2002-2004 provides us with a more precise preliminary result:

∆G

G
= 0.016± 0.058(stat.)± 0.055(syst.)

4 Conclusions and outlook

The method for extracting ∆G/G from high pT hadron pairs for the Q2 < 1 (GeV/c)2

was presented. The result indicates that the gluon polarisation is small, compatible with
zero, in the region of xg ' 0.1.
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Figure 2: Comparison of data and MC for the
high pT Q2 < 1 (GeV/c)2 sample. The upper
plots present the pT distribution of a leading
hadron for two selected triggers. On the bottom
plots the ratio data/MC is presented.

During a technical stop of the SPS ac-
celerator in 2005 our spectrometer has un-
dergone a major upgrade. The most im-
portant one for the considered channel is
the installation of a new target solenoid
magnet with larger aperture. Data tak-
ing was restarted in 2006 and provided a
considerable gain in the collected statistics.
Analysis of 2006 data is ongoing. Other
means of increasing available statistics are
also considered e.g using Neural Networks
as a tool for selecting PGF events.

If the gluon polarization is indeed small
it would be very interesting to measure the
contribution of the parton orbital angu-
lar momentum to the nucleon spin. Such
a measurement using the Deeply Virtual
Compton Scattering to access the Generalized Parton Distributions is considered for the
COMPASS successor.

References

[1] European Muon Collaboration, J. Ashman et. al. Phys. Lett. B206 (1988) 364.

[2] Spin Muon Collaboration, B. Adeva et. al. Phys. Rev. D58 (1998) 112002.

[3] E155 Collaboration, P. L. Anthony et. al. Phys. Lett. B493 (2000) 19–28.

[4] COMPASS Collaboration, V. Y. Alexakhin et. al. Phys. Lett. B647 (2007) 8–17.

[5] COMPASS Collaboration, P. Abbon et. al. Nucl. Instrum. Meth. A577 (2007)
455–518.

[6] COMPASS Collaboration, E. S. Ageev et. al. Phys. Lett. B647 (2007) 330–340.

[7] T. Sjostrand, S. Mrenna and P. Skands JHEP 05 (2006) 026.

[8] R. Brun et. al. CERN-W5013 (1994).

[9] C. Bourrely, J. Soffer, F. M. Renard and P. Taxil Phys. Rept. 177 (1989) 319.

[10] COMPASS Collaboration, E. S. Ageev et. al. Phys. Lett. B633 (2006) 25–32.

[11] M. Gluck, E. Reya and I. Schienbein Phys. Rev. D60 (1999) 054019.

[12] M. Gluck, E. Reya and C. Sieg Eur. Phys. J. C20 (2001) 271–281.

283



TRANSVERSE SPIN PHYSICS AT HERMES

V.A. Korotkov†

(on behalf of the HERMES Collaboration)

Institite for High Energy Physics, Protvino, Russia
† E-mail: Vladislav.Korotkov@ihep.ru

Abstract

The HERMES experiment at DESY collected data with a transversely polarized
hydrogen target from 2002 to 2005. Azimuthal asymmetries were measured in the
semi-inclusive production of pions and kaons. These asymmetries provide informa-
tion on the quark transversity and the Sivers distribution functions. A two-hadron
azimuthal asymmetry provides additional information on the quark transversity and
on the interference fragmentation function. A study of the transverse target-spin
asymmetries (TTSA) in hard exclusive electroproduction of real photons and vector
mesons allows to set a model-dependent constraint on the total angular momentum
of quarks in the nucleon.

1 Introduction

A description of the nucleon quark structure at leading twist requires three quark dis-
tribution functions: the unpolarized f q

1 (x), the helicity gq
1(x), and the transversity hq

1(x)
distribution. In contrast to its chiral-even partners, f q

1 (x) and gq
1(x), the transversity

distribution is chiral-odd, and can therefore not be probed in inclusive deep-inelastic scat-
tering. However, it may be probed in a semi-inclusive deep-inelastic process involving an
additional chiral-odd structure, i.e., a chiral-odd fragmentation function. Two examples
of such processes were investigated at HERMES. Semi-inclusive hadron production which
involves the Collins fragmentation function [1] and semi-inclusive two-hadron production
which involves an interference fragmentation function [2].

An important piece in understanding the spin structure of the nucleon is the total angu-
lar momentum of partons, Ja, an elusive quantity up to now. Ji noted [3] that generalized
parton distributions (GPDs) can be utilized to determine the total angular momentum

of partons through the relation Ja = limt→0
1
2

∫ +1

−1
dx x [Ha(x, ξ, t) + Ea(x, ξ, t)]. Here,

H(x, ξ, t) and E(x, ξ, t) are parton spin non-flip and spin flip GPDs, respectively. The
ordinary parton distributions represent the probability to find a parton with specific lon-
gitudinal momentum fraction x in the fast moving hadron. GPDs, in contrast, represent
the interference of different wave functions, one with a parton having momentum fraction
x+ ξ and one with a parton having momentum fraction x− ξ. In addition, GPDs depend
on a third variable, the momentum transfer −t = (p − p′)2 between two hadron states
with momenta p and p′, respectively. The GPDs combine the characteristics of both the
ordinary parton distributions and of nucleon form factors. GPDs can be measured in hard
exclusive processes, such as deeply virtual Compton scattering (DVCS) (ep −→ epγ).

The results presented here are based on data obtained by the HERMES experiment
in 2002–2005 running period using a transversely polarized hydrogen gas target internal
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to the 27.6 GeV lepton (e+ and e−) beam of the HERA storage ring. The HERMES
dual-radiator ring-imaging Čerenkov detector allows full π±, K±, p separation in the
momentum region 2 ÷ 15 GeV. Further details of the experiment might be found in
Ref. [4]. The average value of the proton polarization S⊥ was 0.74±0.06. The data
was summed over both lepton beam helicity states, corresponding to a study of single
target-spin asymmetries with an unpolarized lepton beam.

2 Semi-Inclusive Single Hadron Production

Results on the transverse target-spin asymmetry based on data collected by HERMES in
2002 were published in Ref. [5]. Below, results based on the full statistics are presented.

Figure 1: Definitions of azimuthal angles
of the hadron production plane φ and the
target spin φS relative to the lepton scat-
tering plane.

The Collins mechanism [1] produces a corre-
lation in the fragmentation process of the trans-
verse target spin vector S⊥ with the vector
P h × q (see Fig. 1). The corresponding Collins
fragmentation function H⊥

1 describes the influ-
ence of the transverse polarization of the struck
quark on the transverse momentum P h⊥ of the
produced hadron. Another source of azimuthal
asymmetries is the chiral-even Sivers distribu-
tion function f⊥1T (x), which describes the corre-
lation of the transverse polarization of the tar-
get nucleon with the transverse momentum of
the struck quark [6]. The polarized part of the
semi-inclusive cross section for unpolarized beam
(U) and a transversely polarized target (T) with contributions from both mechanisms is
proportional to a sum of two terms [7]:

dσUT ∝ sin(φ + φS) ·
∑

q

e2
q · I

[
P h⊥ · kT

Mh

· hq
1(x, p2

T ) ·H⊥,q
1 (z, k2

T )

]

+ sin(φ− φS) ·
∑

q

e2
q · I

[
P h⊥ · pT

M
· f⊥,q

1T (x, p2
T ) ·Dq

1(z, k
2
T )

]
, (1)

where the azimuthal angles φ and φS are depicted in Fig. 1, while hq
1(x, p2

T ), f⊥,q
1T (x, p2

T )
and H⊥,q

1 (z, k2
T ), Dq

1(z, k
2
T ) are transverse-momentum dependent quark distribution and

fragmentation functions, respectively. I[...] denotes a convolution integral over transverse
momentum of the initial quark, pT , and transverse momentum of fragmented hadron, kT .
The Collins and the Sivers mechanisms produce a different dependence of the azimuthal
asymmetry on the two angles φ and φS. This permits one to use the variation of φ and
φS to disentangle the two contributions experimentally.

Semi-inclusive DIS events were selected subject to the kinematic requirements Q2 >
1 GeV2, y < 0.95, W 2 > 10 GeV2, 2 < Ph < 15 GeV, 0.2 < z < 0.7 and θγ∗h > 0.02 rad,
where θγ∗h is the angle between the direction of the virtual photon and the hadron. The
selected range in x is 0.023 < x < 0.4.

The Collins 2 〈sin (φ + φS)〉hUT and the Sivers 2 〈sin (φ− φS)〉hUT azimuthal amplitudes
were extracted simultaneously using maximum likelihood fits. To allow for contribution
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from all theoretically possible Fourier modulations [7] the terms for sin φS, sin (2φ− φS)
and sin (3φ− φS) were added in the probability density function.

The extracted Collins and Sivers amplitudes for charged pions and kaons, and neutral
pions are presented in Fig. 2 as a function of x, z, and Ph⊥. The error bands represent
the systematic uncertainties due to acceptance and detector smearing effects and due to
a possible contribution from the 〈cos φ〉UU moment in the unpolarized cross section. In
addition, there is a common overall 8.1% scaling uncertainty due to the target polarization
uncertainty. The present results are based on nearly ten times larger statistics than the
previously published results for charged pions [5], and are consistent with them.
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Figure 2: Collins (left panel) and Sivers (right panel) amplitudes for charged pions and kaons,
and neutral pions (as labelled) as a function of x, z, and Ph⊥. The bands represent the systematic
uncertainties.

The average Collins amplitude is positive for π+, compatible with zero for π0, and
negative for π−. This is expected if the transversity distribution hu

1 is positive and hd
1

is negative, the latter being analogous to the relation between the helicity distributions.
However, the magnitude of the π− amplitude appears to be as large as the π+ amplitude,
which was unexpected. This could be explained by a substantial unfavored (e.g., u → π−)
Collins fragmentation function with the opposite sign to that of the favored function, i.e.,
H⊥,unf

1 ≈ −H⊥,fav
1 . For charged kaons the Collins amplitudes are compatible with zero.

At the same time, the Collins amplitudes for K+ are consistent to the π+ amplitudes
within the statistical accuracy.
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The results for the Collins amplitudes have been analyzed [33,9] simultaneously with
data from the BELLE experiment [10] on azimuthal asymmetries between two hadrons
produced in a fragmentation of a quark and antiquark, e+e− → qq̄ → h1h2 + X. The
analysis demonstrated a compatibility of results on the Collins fragmentation function be-
tween HERMES and BELLE experiments. Using this Collins function the first extraction
of the transversity distributions hu

1(x) and hd
1(x) was achieved.

The average Sivers amplitude are significantly positive for π+, π0, and K+. This result
implies a non-zero Sivers distribution function f⊥1T (x) and non-vanishing orbital angular
momentum of the quarks inside the nucleon. The average Sivers amplitude for K+ is by
a factor 2.3 ± 0.3 higher in magnitude than the amplitude for π+. This suggests that
sea quarks provide an important contribution to the Sivers function. Such conclusion
was confirmed by a direct fit to all available data on the Sivers amplitudes [9]. The first
extraction of the Sivers distribution functions for u−, d−, and sea quarks was performed
[33,9].

3 Semi-Inclusive Two-Pion Production

A measurement of the single spin asymmetry in semi-inclusive two-hadron production
provides an independent method to access the quark transversity distributions. The
method has an advantage with respect to that presented in the previous section as it
doesn’t require a deconvolution procedure because the asymmetry is a product of the
transversity distribution and corresponding fragmentation function. An extraction of the
hq

1(x) distribution, however, requires the knowledge of the involved two-hadron interfer-
ence fragmentation function. Although it is unknown at present, it can be measured, in
principle, in e+e− experiment.

The polarized part of the differential cross section dσUT can be written as [11]

dσUT = −|S⊥|
∑

q

e2
q

α2

4πQ2y
(1− y)

√
1− 4m2

π/M2
ππ (2)

× sin(φR⊥ + φS) · sin θ · hq
1(x) ·

[
H<),sp

1,q (z, M2
ππ) + H<),pp

1,q (z, M2
ππ) · cos θ

]
,

where z is the fraction of available energy carried by the two pions, Mππ the invariant
mass of the pion pair, and mπ the pion mass. The angle φS is defined in Fig. 1 while the
angle φR⊥ is explicitly defined by

φR⊥ =
(q × k) ·RT

|(q × k) ·RT | arccos
(q × k) · (q ×RT )

|q × k| · |q ×RT | , (3)

where q = k − k′, k and k′ are the initial and scattered lepton momenta, respectively.
Vector RT is the component of R = (P 1 − P 2)/2 perpendicular to P h = P 1 + P 2

and P 1, P 2 are the pions momenta. The angle θ is defined as the polar angle of the
pion pair in their center of mass system with respect to their direction in the target rest
frame. The cross section depends on the product of the transversity distribution hq

1(x)
and a combination of the two-pion interference fragmentation functions, H<),sp

1,q and H<),pp
1,q .

These functions describe the interference between different production channels of the
pion pair, the interference between s and p wave states, and the interference between two
p wave states, respectively.
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Experimentally, the single target-spin asymmetry is defined as

AUT (φR⊥, φS, θ) =
1

|S⊥|
N↑(φR⊥, φS, θ) − N↓(φR⊥, φS, θ)

N↑(φR⊥, φS, θ) + N↓(φR⊥, φS, θ)
, (4)

where N↑(↓)(φR⊥, φS, θ) is the semi-inclusive luminosity-normalized yield of π+π− pairs in
the corresponding target spin state.
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Figure 3: Asymmetry amplitude A
sin(φR⊥+φS) sin θ
UT as

a function of the π+π− pair invariant mass. The lower
panel shows the average 〈sin θ〉 and the average 〈z〉 for
each invariant mass bin.

The asymmetry amplitude cou-
pled to H<),sp

1,q , A
sin(φR⊥+φS) sin θ
UT , is pre-

sented in Fig. 3 as a function of the
pion pair invariant mass Mππ. The
amplitude is positive over the entire
mass region and does not show a sign
change at the ρ0 mass as predicted in
Ref. [12]. In contrast, the model pre-
dictions of Ref. [13] are qualitatively
compatible with the data.

Bottom panel of Fig. 3 also shows
the average values of sin θ and z for
each invariant mass bin. The data
collected by HERMES corresponds to
large values of sin θ, i.e., to angles
around θ = π

2
. This currently pre-

vents the extraction of the part of the
asymmetry amplitude that is coupled
to H<),pp

1,q .
The results presented in this sec-

tion are based on 2002-2004 data
only.

4 Total Angular Momentum of Quarks

An evaluation of the total angular momentum of quarks in the nucleon requires, according
to Ji’s relation, a knowledge of GPDs H and E. The GPD H is accessible through many
observables coupled to DVCS or to meson electroproduction. In contrast, a contribution
of GPD E is usually suppressed. The two most promising observables to access GPD E
are transverse target-spin asymmetries in DVCS and vector meson electroproduction.

The possibility to access the total angular momentum of u- and d-quarks in the nu-
cleon with a study of the TTSA in DVCS and exclusive ρ0 production at the HERMES
experiment was considered in Ref. [14]. The authors use a parametrization [15] of GPD
Eq(x, ξ, t) based on chiral quark soliton model. In such a parametrization the total an-
gular momenta carried by u and d quarks enter directly as free parameters. The TTSA
associated with DVCS on the proton represents an observable that is particulary sensitive
to GPD Eq(x, ξ, t). The azimuthal amplitude of the TTSA can be approximated as

A
sin (φ−φS) cos φ
UT ∝ Im[F2H− F1E ]. (5)
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Here, H and E are convolutions of the corresponding GPDs H and E with hard scattering
kernels, F1 and F2 are the Dirac and Pauli nucleon form factors, and the angles φ and φS

are defined in Fig. 1 where P h is the real photon momentum now.
The recoil proton in the DVCS process escapes the HERMES acceptance and the

missing-mass technique was applied to select a sample of events containing the scattered
positron and a real photon. Exclusive events are identified by the requirement that the
missing mass of the reaction ep −→ eγX corresponds to the proton mass.

The TTSA amplitude A
sin(φ−φS) cos φ
UT is presented in Fig. 4 as a function of −t, xB, and

Q2. The main contributions to the systematic uncertainty come from the background
correction, the target polarization measurement uncertainties and acceptance effects. The
curves in Fig. 4 represent the TTSA amplitudes evaluated for a set of u-quark total
angular momentum values, Ju, as a model parameter and a fixed value of the d-quark
total angular momentum Jd = 0 [14]. The average value of the TTSA amplitude was

found to be 〈Asin (φ−φS) cos φ
UT 〉 = −0.149 ± 0.058(stat) ± 0.033(syst). The measurement

corresponds to the average kinematics 〈−t〉 = 0.12 GeV2, 〈xB〉 = 0.095, 〈Q2〉 = 2.5 GeV2.
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Figure 4: The TTSA amplitude A
sin(φ−φS) cos φ
UT as a function of −t, xB, and Q2. The bands

represent the systematic uncertainties of the measurement. The curves represent the predictions
from a GPD model with various u-quark total angular momentum values, Ju, while fixing the
d-quark total angular momentum Jd = 0.

The sensitivity of the amplitude to the total angular momenta of quarks, demonstrated
in Fig. 4, allows to set a model-dependent constraint on the total angular momenta of
u- and d-quarks in the nucleon (see Fig. 5). This was achieved by a comparison of the
measured TTSA amplitude to the theoretical calculation based on the GPD model [15]
containing the values of the u- and d-quark total angular momenta as free parameters.
The resulting one-standard-deviation constraint is Ju + Jd/2.9 = 0.42± 0.21± 0.06. The
first uncertainty originates from the experimental uncertainty of the measured TTSA am-
plitude. The second uncertainty is a model uncertainty obtained by varying the parameter
that controls the skewness dependence of GPDs [15].

The leading-order amplitude for hard exclusive electroproduction of longitudinally
polarized vector mesons, VL, by longitudinally polarized virtual photons, γ∗L + N −→
VL + N , depends on the unpolarized GPDs H and E only [15]. Even more interestingly,
the transverse target spin asymmetry for such processes depends linearly on GPD E.
Thus, this TTSA provides an additional with respect to that from DVCS method to
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Figure 5: Model-dependent constraint on the u- and d-quark total angular momentum Ju and
Jd. A lattice calculation result (valence contributions only) from the QCDSF collaboration is
shown also.

extract Jq. One should also note that because the transverse target spin asymmetry
involves a ratio of cross sections, it is expected to be a useful observable even at Q2 values
accessible at HERMES, as the precise form of the t-dependence of the GPDs, the NLO
corrections and higher twist effects cancel to a large extent [15].

For the selection of exclusive events, ep −→ epρ0 (ρ0 → π+π−), the following cuts were
applied to a sample of π+π− pairs produced in coincidence with the scattered lepton:

0.6 < Mππ < 1.0 GeV, ∆E =
M2

x−M2
p

2Mp
< 0.6 GeV, and −t′ = t0 − t < 0.4 GeV2. Here, Mx

is the missing mass, and t0 is the maximum kinematically allowed value of t.
The transverse target-spin asymmetry is defined as

AUT (φ− φS) =
1

|S⊥|
N↑(φ− φS) − N↓(φ− φS)

N↑(φ− φS) + N↓(φ− φS)
, (6)

where N↑(↓)(φ − φS) is the luminosity normalized yield of the vector meson production
events in the corresponding target polarization state. The angles φ and φS are defined as
in Fig. 1 where P h is the ρ0 momentum now.

Since the factorization theorem for vector meson electroproduction holds for longitu-
dinal photons only, the asymmetry of ρ0 mesons induced from longitudinal photons is
of theoretical interest. Under the assumption of s-channel helicity conservation (SCHC),
which implies that a longitudinal vector meson originates from a longitudinal photon, the
longitudinal component of the asymmetry is obtained experimentally through the decay
angular distribution of ρ0 (ρ0 → π+π−). Each ρ0 helicity state (L, T) results in a char-
acteristic dependence of the γ∗p cross-section on the polar angle θπ of π+ in the ρ0 rest
frame. More details on the isolation of the asymmetry due to the longitudinal photons
can be found in Ref. [16].

The dependence of the transverse target-spin asymmetry amplitude A
sin(φ−φS)
UT for lon-

gitudinal ρ0 mesons on variables xB and −t′ is presented in Fig. 6. Results of calcula-
tions [14] for different values of Ju at fixed value of Jd = 0 are shown also. One may
conclude that in spite of quite low statistical accuracy the data favor positive values of
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Figure 6: Transverse target spin asymmetry amplitude A
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UT for exclusive production of
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Ju, compatible with the constraint on Ju and Jd obtained from the DVCS TTSA.

5 Summary

The measurement of the azimuthal asymmetry for pions and charged kaons, produced in
semi-inclusive DIS, leads to a number of important conclusions: i) the Collins fragmenta-
tion function is non-zero – this allows a measurement of the transversity distribution hq

1(x);
ii) unfavored Collins fragmentation function is about the same magnitude as favored one,
but with an opposite sign: H⊥,unf

1 ≈ −H⊥,fav
1 ; iii) the Sivers distribution function f⊥u

1T (x)
is non-zero – this implies that there is non-vanishing orbital angular momentum of the
quarks inside the nucleon; iv) sea quarks play an important role in the Sivers distribution
function. The HERMES data on these azimuthal asymmetries have been analyzed by
two groups [33, 9] and first extractions of the quark transversity distribution, the Collins
fragmentation function, and the Sivers distribution function were performed.

A first observation of the azimuthal asymmetry on a transversely polarized target due
to an interference fragmentation function was presented. The data provide additional
information about the quark transversity distribution and the interference fragmentation
function.

A measurement of the transverse target-spin asymmetry in deeply virtual Compton
scattering was performed for the first time. This asymmetry provides a unique observ-
able to evaluate the total angular momentum of quarks in the nucleon. Although the
experimentally available statistical accuracy of the present data is still not sufficient for
an extraction of the GPD, an approach [14] based on a direct comparison of the mea-
sured asymmetries with theoretical predictions using a model [15] for E(x, ξ, t) has been
pursued. In this approach the total angular momenta of quarks can be considered as fit
parameters, which led to a first, though model-dependent, constraint on the total angular
momenta of u- and d-quarks in the nucleon.
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A measurement of the TTSA in a process, γ∗L + p → ρ0
L + p, was performed for the

first time. A validity of the SCHC hypothesis for an isolation of the process was assumed.
The data favor positive values of Ju and are compatible with the constraint on Ju and Jd

obtained from the DVCS TTSA.
In 2003–2005 running period the lepton beam was longitudinally polarized. The av-

erage value of the product of the longitudinal beam polarization, PB, and the transverse
target polarization, PT , was 〈PB · PT 〉 ≈ 0.30. This allows an extraction of the polarized
structure function g2(x) and new types of azimuthal asymmetries in semi-inclusive DIS.
These studies are underway.
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Discussion

Q. (A.Efremov, JINR, Dubna) To what extent the data on Sivers K+ asymmetry are
finite?

A. The analysis is based on the full statistics collected by HERMES with the trans-
versely polarized hydrogen target. The result is under preparation for a publication.

Q. (J.Nassalski, SINS, Warsaw) What improvements do you expect for the analysis
of data taken with the RPD in 2006 and 2007?
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A. HERMES run in 2006 and 2007 years with an unpolarized target.
Q. (A.Prokudin, Univ. Torino) In your analysis of Collins and Sivers asymmetries you

include also other harmonics that may appear in a general formulae for polarized cross
section. Do you have results on those new asymmetries?

A. A study of the systematic uncertainties on extraction of other harmonics has not
been finished yet.

Q. (N.d’Hose, CEA Saclay) Statistics for TTSA and DVCS will be increased by a
factor 2.5. Statistics for TTSA and % will not be increased.

A. Yes.
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Abstract
Deeply virtual Compton scattering, cross sections and asymmetries for the π0

and η exclusive electroproduction in a very wide kinematic range of Q2, t and
xB have been measured with CLAS (JLab). Initial analyses are already showing
remarkable results. These data will help us to better understand the transition from
soft to hard mechanisms.

Deeply virtual exclusive reactions offer a unique opportunity to study the structure
of the nucleon at the parton level as one varies both the size of the probe, i.e. the
photon virtuality Q2, and the momentum transfer to the nucleon t. Such processes can
reveal much more information about the structure of the nucleon than either inclusive
electroproduction (Q2 only) or elastic form factors (t = −Q2 ). The characterization of
deeply virtual exclusive reactions in terms of their common nucleon structure is one of
the major objectives of the Jefferson Lab 12 GeV upgrade.

There have been two commonly used theoretical tools which relate exclusive reactions
to the structure of the nucleon. At lower Q2, where the probe is on the order of the size of
hadrons and the interactions are strong, Regge phenomena have proved effective. At high
Q2 the probe interacts with individual quarks, and in the limit Q2 →∞ and −t/Q2 → 0
the QCD factorization theorem [3] unifies all exclusive reactions in terms of their common
nucleon structure encoded by generalized parton distributions (GPDs). In this article we
consider deeply virtual meson production (DVMP), specifically the reaction γ∗p → pM ,
where M is a meson (π, η, ρ, ω, φ, etc). In the GPD approach, which is schematically shown
in Fig. 1, the ingredients involve a hard interaction between a virtual photon and quark
which produces a meson whose internal structure is given by the distribution amplitude
Φ(z), and the remaining nucleon whose structure is represented by GPDs. A caveat is
that the proof for factorization applies only to the case when the virtual photon has
longitudinal polarization. In that case, in the limit Q2 → ∞ the cross section scales as
σL ∼ 1/Q6 and the ratio as σT /σL ∼ 1/Q2.

While most theoretical work on the GPD approach has focused on the high Q2 and
low |t| kinematic region, exclusive production of photons and mesons at large |t| can also
be described in terms the nucleon GPDs. Theory also predicts σL and σT in the high −t
low Q2 region. For example for the pseudoscalar meson electroproduction we have:

dσ

dt
∝

(
R(t)

∫
dzΦ(z)f(z, s, Q2, t)

)2

(1)

R(t) ∝ (euR
u(t)− edR

d(t)d) Rq(t) =

∫
dx

x
eαt((1−x)/2x [∆q(x)−∆q̄(x)]
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where Φ(z) is the meson distribution amplitude, f(z, s,Q2, t) is parton level amplitude and
the R(t)s describe new form factors which are the 1/x moments of the GPDs. ∆q and ∆q̄
are the polarized parton and antiparton distributions for u, d and s quarks. The constant

in the exponent α is approximately 1 GeV−2. The Fourier transforms with respect to
−→
∆⊥

(∆2 = −t) describe the correlation between the transverse spatial distribution of quark
impact and xB in the proton.

γ*

P P'

GPD

ξx+ ξx-

1-z

z
z)Φ(

Meson

Figure 1. Schematic illustration of
the GPD approach to meson electro-
production.

Deeply virtual Compton scattering (DVCS) is the
cleanest way of accessing GPDs. However, DVCS
does not access the helicity dependent GPDs and it
is difficult to perform a flavor separation. In the case
of pseudoscalar meson production the amplitude in-
volves the axial vector-type GPDs H̃ and Ẽ. These
GPDs are closely related to the distribution of quark
spin in the proton, and H̃ reduces to the polarized
quark/antiquark densities in the limit of zero momen-
tum transfer. Vector and pseudoscalar meson pro-
duction allows one to separate flavor and isolate the
helicity-dependent GPDs. This is summarized in Ta-
ble 1.

π+ ∆u−∆d

H̃, Ẽ π0 2∆u + ∆d
η 2∆u−∆d
ρ+ u− d

H, E ρ0 2u + d
ω 2u− d

Table 1: GPDs and quark flavor selectivity of pseudoscalar and vector meson electroproduction.

Figure 2. Predictions of the ratio of cross sections for
π0 to η electroproduction from protons and neutrons [4]
utilizing the concept of precocious factorization.

The extraction of GPDs from
electroproduction data is a chal-
lenging problem. A detailed un-
derstanding of the reaction mech-
anism is essential before one can
compare with theoretical calcula-
tions. It is not yet clear at what
values of Q2 the application of
GPDs to meson electroproduction
becomes valid. However, detailed
measurements of observables may
test model-independent features of
the reaction mechanism, such as t-
slopes, flavor ratios, and generally
by studying the variation of observables over a wide range of Q2 and t. Even though
current experiments are limited in Q2 and t, it has been argued [4] that precocious fac-
torization ratios of cross sections as a function of xB could be valid at relatively lower Q2
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(a) (b)

Figure 3a. Photograph of the new CLAS lead-tungsten electromagnetic calorimeter.
Figure 3b. 2γ invariant mass spectrum in which the π0’s and η’s are clearly observed (note

log scale).

than for cross sections themselves. For example, the ratio of cross sections for π0 and η
electroproduction from a proton is related to the helicity structure of the quark flavors as

π0/η =
1

2

[
2

3
∆u +

1

3
∆d

]2

/
1

6

[
2

3
∆u− 1

3
∆d +

1

3
∆s

]2

(2)

The results of a calculation of this ratio as a function of xB is shown in Fig. 2.

Figure 4. The kinematic coverage in
Q2, t, xB and W for neutral pions of the
CLAS DVMP experiment.

Recent CLAS measurements of π0

and η production.

Cross section data for DVCS [1] and DVMP [2] have
recently been obtained at Jefferson Lab with the
CLAS spectrometer, up to a Q2 ∼ 5 GeV2. This
has been made possible by constructing a high qual-
ity electromagnetic calorimeter consisting of 424
lead-tungsten glass crystals covering an angular range
from 4.5◦ to 15◦, which was positioned into the ex-
isting CLAS large acceptance detector. The pions
and etas are identified through their 2γ decays. A
photograph of the new detector and the 2γ invari-
ant mass distribution is shown in Fig. 3. One can
see that the pions and etas are clearly observed,
even before all final data selection cuts are per-
formed. The kinematic coverage in the variables
Q2, xB, t and W is shown in Fig. 4. The virtual
photon cross section can be written in well known notation as

dσ

dΩπ

= σT + εσL + εσTT cos2φ +
√

2ε(1 + ε)/2σLT cosφπ + h
√

ε(ε− 1)σ′LT sinφ (3)
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where φ denotes the azimuthal angle between the hadronic and leptonic scattering planes
and h is the electron beam polarization. t=0.3
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Figure 5. The angular distribution
for t = 0.3 GeV2 integrated over
Q2 > 1 GeV2 and W > 2 GeV.

The large acceptance of CLAS enabled the data
to be grouped into intervals in Q2, t xB and φ. For
unpolarized electrons (h = 0) the separation of the
φ dependence in moments of a constant, cosφ, and
cos2φ allows us to obtain σT + εσL, σTT and σLT . An
example of a φ distribution for t = 0.3 GeV2 integrated
over Q2 are shown in Fig. 5.

The separated structure functions versus t for Q2

= 2.3 GeV2 is shown in Fig. 6. The cross sections
are in arbitrary units and radiative corrections have
not been applied. It is observed that all the struc-
ture functions have significant non-zero values. σLT is
comparable to σT + εσL which implies that there are
significant contributions of transverse amplitudes at
these relatively low values of Q2, so the factorization
cannot be applied. However, one may analyze these
data in terms of a hadron based models such as Regge phenomenology [5]. Fig. 6 shows
the results of such a calculation, which qualitatively follows the sign of the separated
structure functions, but not always the shape.

The Fourier transformation of the GPDs gives information about the impact parameter
b⊥ dependence of parton distributions. The Fourier transformations are given by

F (x, b⊥) ∝
∫

d2∆⊥
2π

ei∆⊥b⊥H̃(x, 0, ∆2
⊥) (4)

Due to the significant contribution of transverse amplitudes at the current kinematics we
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Figure 6a. The separated structure functions σT + εσL, σTT and σLT as a function of −t at
Q2 = 2.3 GeV2 obtained with the CLAS spectrometer (very preliminary, arbitrary units).

Figure 6b. The results of a Regge model calculation [5].
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do not have access to GPDs.

Figure 7. The experimental slope
parameters B (very preliminary)
obtained from fits to the data for
various values of Q2 and xB with the
function dσ/dt ∝ exp

(
B(xB, Q2)t

)
.

The solid curve is the Regge in-
spired parametrization B(xB) =
2αln(1/xB) with α = 1.1.

However, we can apply a Fourier transformation
to the cross sections to get impact parameter infor-
mation. Slope parameters B have been extracted by
fitting the t distributions using the parametrization
dσ/dt ∝ exp (B(xB, Q2)t). The result is shown in
Fig. 7. Note that B does not appear to significantly
depend on Q2.

In a Regge inspired GPD model, the xB depen-
dence of the slope parameter is given by B(xB) =
2αln(1/xB), with α ∼ 1. The curve in Fig. 7 is a
plot of this parametrization for B. Remarkably, this
curve appears to accurately account for the data with
no further parameters or normalization applied.

For the interpretation in terms of the impact
parameter, the ∆2

⊥ slope is relevant, where ∆2
⊥ is

the transverse component of the momentum transfer
(∆2 = t), and the slope parameter is B⊥ = B

1−xb
[6].

The fact that the t-slope goes to zero for large xB may
be purely kinematical. However, even taking into ac-
count this factor, we note that B⊥ falls with xB in
the region xB from 0.1 to 0.5 where we have experi-
mental data. This implies that the impact parameter
distribution is broadest at lowest xB and becomes narrower at increasing xB.
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Figure 8. η to π0 cross sections ratio as a function of xB for different values of Q2 and t (very
preliminary).
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The ratio of cross sections for η and π0.

As it was noted in the introduction the ratio of cross sections may play an important
role due to the precocious factorization. This ratio is presented in Fig. 8 for the different
values of t and Q2 as a function of xB. Note that this ratio is almost independent of xB

and varies from 0.3 to 0.4 with increasing t. This is in contrast with the prediction [4]
(see Fig. 2), where this ratio is equal to 1. However, we can not compare directly with [4]
since σL and σT were not separated.

Beam spin asymmetry.

The beam spin asymmetry (BSA) is defined by

A =

→
σ − ←

σ
→
σ +

←
σ
∼ αsinφ. (5)

Figure 9. The angular distribution
of the BSA for π0 at Q2 = 2 GeV2,
t = −0.3 GeV2, and xB = 0.25. The
dashed curve is a fit to the function
A = α sinφ and the solid curve is
the result of a Regge model [5] cal-
culation.

From Eq. 3 the beam spin asymmetry directly yields
the L−T interference structure function σ′LT . Any ob-
servation of a non-zero BSA would be indicative of an
L-T interference. If σL dominates, then σLT , σTT , and
σ′LT should be small. An example of a φ distribution
of the BSA for π0 and η production at a particular
kinematic bin is shown in Fig. 9.

Sizable beam-spin asymmetries for exclusive π0

and η mesons electroproduction have been measured
above the resonance region for the first time. These
non-zero asymmetries imply that both transverse and
longitudinal amplitudes participate in the process.
However, the results of a Regge model calculation
qualitatively describe the experimental data too.

Conclusion.

Cross sections and asymmetries for the π0 and η exclu-
sive electroproduction in a very wide kinematic range
of Q2, t and xB have been measured and initial anal-
yses already are showing remarkable results. These
data will help us to better understand the transition
from soft to hard mechanisms. Initial results show that both transverse and longitudinal
amplitudes participate in the exclusive processes at currently accessible kinematics. The
π0/η cross section ratio will check the hypothesis of precocious scaling.

We view the work presented here as leading into the program of the Jefferson Lab 12
GeV upgrade. The increased energy and luminosity will allow us to make the analysis
presented here at much higher Q2 and xB as well as to perform Rosenbluth L/T sepa-
rations. In parallel, we pose the following theoretical questions. What does the t-slope
B(Q2, xB) tell us? What can we learn from the Q2 evolution of the cross sections? Can
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the measurement of σL, σT ,σLT , σTT and R ≡ σL/σT constrain GPDs within the approx-
imations and corrections which have to be made due to non-asymptotic kinematics? How
big are the corrections?
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Abstract

The behavior of the vector Ay and tensor Ayy, Axx, Axz analyzing powers in
the

−→
d d → 3Hp reactions at 200 MeV has been investigated. The data on polar-

ization observables in the angular range of 0 - 95 degrees in the c.m.s have been
obtained. These polarization observables are sensitive to the momentum distribu-
tion of the proton spin in 3H at the small internucleonic distances in the framework
of one-nucleon exchange approximation. The experimental data are compared with
theoretical calculations in the framework ONE with the use of Urbana, Paris and
RSC wave functions of three-nucleon bound state.

Introduction. The dd →3H p and dd →3He n processes with large momentum transfer
are the simplest ONE reactions where the three nucleon structure is relevant and, there-
fore, can be used as an effective tool to investigate the structure 3H and 3He at short
distances.

These reactions can be described within the framework of the ONE model. Analysis
of the polarization effects have shown that the tensor analyzing powers for these reactions
at the forward angles are connected to D/S ratio of wave functions 3He and 3H [1].

Three-nucleon bound states are of interest, because even such constant as a binding
energy of system is not reproduced by the calculations, which use modern pairwise NN
potentials. Calculations with the use of local potentials such as Nijm-2, Reid’93, AV18
predict result of approximately 7.62 MeV while the experimental value is 8.48 MeV.

The spin structure of light nuclei has been extensively investigated during the last
decades [2]- [9]. There are only few data, which sensitive to the spin structure of the
three-nucleon bound state, especially, in the connection with the polarization studies.
The large part of these data is dedicated to the spin structure of 3He [10]- [11]. An
experimental study of tritium is difficult because of its radioactivity.

In spite of the sensitivity of the polarization observables to the spin structure of light
nuclei, difference from the predictions of the ONE is observed already of the relatively
small internal momentum ≈ 200 MeV/c. This difference can be connected both with the
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inadequate description of the spin structure of light nuclei at short distances and with
the contribution of the mechanisms additional to ONE. In this respect new experimental
data sensitive to the spin structure of light nuclei is the great importance.

In this report the data on the tensor Ayy, Axx, Axz and vector Ay analyzing powers

for the
−→
d d → 3Hp reactions obtained in R308n experiment at RIKEN are presented.

Experiment. Experiment was performed at the acceleration complex at RIKEN. The
polarized beam of deuterons was ensured by the polarized ion source(PIS) and accelerated
by AVF and Ring Cyclotrons up to the energy of 200 MeV. The measurement of the
polarization of beam was carried out with the help of Swinger polarimeter (SwingerPOL)
and Droom polarimeter (DroomPOL). Two kinds of deuterized polyethylene(CD2) sheets
were used as the target. The carbon target were used for evaluating the background
events.

The scattered particles (3He, 3H and p ) were registered by spectrometer SMART.
The identification of particles was based on the time-of-light and the value of ionization
losses in the plastic of scintillation detectors. Scattering angle and momentum of the
particle were determined by the information of multiwire drift cambers (MWDC) and
optical characteristics of the spectrometer. Further details on the experiment can be
found in [12]- [13].
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Figure 1. The quality of the CD2-C subtrac-
tion procedure for the

−→
d d → 3Hp reaction at

200 MeV for several angles in the c.m.s.

The criteria used for the identification
of the scattered particle 3H from the

−→
d d →

3Hp reactions are the following. Particle
must be registered in the all three scin-
tillation detectors. The amplitudes must
be correlated. The Radio Frequency sig-
nal of the cyclotron (TDRF) must be syn-
chronized with the signals from the plastic
scintillators.

The energy spectrum was measured on
carbon target to take account for the con-
tribution of CD2 target carbon content.
The quality of the CD2 − C subtraction

procedure for the
−→
d d → 3Hp reactions at

200 MeV is demonstrated in Fig.1. The
spectra are plotted versus excitation en-
ergy Ex. The quality of subtraction is rep-
resented in Fig.1 a, b, c and d for the angles
12◦, 36◦, 56◦ and 87◦ in the center of mass
system, respectively.

To obtain the analyzing powers Ayy, Axx, Axz and Ay for the
−→
d d → 3Hp reaction the

asymmetries and beam polarization values for the three different spin modes of PIS was
used.

Results. The experimental results on the vector Ay and tensor Ayy, Axx, Axz analyzing

powers
−→
d d → 3Hp reactions at 200 MeV are presented in Fig.2. The errors of the

experimental values shown in these figures include both the statistical and the systematic
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errors. The systematic errors were derived from the errors of the beam polarizations
measurements.

Figure 2. The results of the vector Ay and
tensor Ayy, Axx, Axz analyzing powers in the
center of mass system. The curves are explained
in the text.

The solid, long-dashed, and dotted
curves are the results of ONE calculations
[13] using Urbana [14], Paris [15] and Reid
soft core [16] 3He wave functions. All cal-
culations have been performed with the use
of Paris deuteron wave function [17]. One
can see the strong sensitivity to the 3H spin
structure when 3H is emitted in the for-
ward angle in the centre of mass system
and strong variation of analyzing powers
versus an angle.

ONE calculation predicts that the ten-
sor analyzing powers at the forward scat-
tering are sensitive to the spin structure
3H. For the angles near 90 degrees in the
center of mass system analyzing powers
are sensitive to the both deuterons and 3H
wave functions.

As can be seen, the experimental data
for Ayy, Axx, Axz analyzing powers strongly
disagree with the predictions of ONE
model calculations. The predictions of
ONE model calculations qualitatively re-
produce the angular distributions of the
tensor analyzing powers at small angles
only. These results imply that there might be some problems in the descriptions of the
realistic 3He(3H) wave functions used in ONE calculations.

ONE calculation predicts a zero value of the vector analyzing power, but some struc-
ture in the angular distribution of the vector analyzing power is observed. Since ONE
calculations does not produce non-zero vector analyzing powers, this result will be a clue
to investigate of the reaction mechanism beyond the ONE model.

Conclusion. The results of the vector Ay and tensor Ayy, Axx, Axz analyzing powers

in the
−→
d d → 3Hp reactions at the energy of deuterons 200 MeV in the angular range of

0 - 95 degrees in the center of mass system have been obtained. The data demonstrate
large values of the analyzing powers.

The experimental data were compared with theoretical predictions of ONE calcula-
tions based on Urbana, Paris and RSC 3He wave functions. The predictions of ONE
model calculations qualitatively reproduce the angular distributions of the tensor analyz-
ing powers at small angles only. However, the ONE calculations cannot reproduce the
data in the whole angular range of the measurements.

The obtained experimental data require further development of the theoretical ap-
proaches either for adequate description of the structure of light nuclei at short distances
or taking into account mechanisms in addition to ONE.
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Discussion

Comm. (N.Piskunov, JINR, Dubna) The data strongly disagree with different model
calculation. Models reproduce the angular differential cross section for unpolarized deuteron
beam?

A. We did not calculate the cross section. However, the similar model by Laget
reproduce the cross section in the dd → Hp reaction measured in Saclay. In this model
apart from ONE, the ∆-isobar excitation is taken into account. At our energy, ONE
dominates.

Q. (N.Piskunov, JINR, Dubna) Experimental values strongly disagree with theoretical
curves. Are the cross-section of this reaction with the calculations will agree?

A. The cross-section was not measured in this experiment.
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Abstract

The results on the angular dependence of the vector Ay and tensor Ayy, Axx

analyzing powers in dp elastic scattering at Td = 880 MeV are presented. A region
of center-of-mass system angles from 60◦ to 140◦ is covered. The obtained data are
compared with the preliminary calculations obtained within framework of multiple
scattering models. These data are necessary for receiving the information of three-
nucleon forces structure and the relativistic effects. The obtained data are also
important for the development of the efficient deuteron beam polarimetry at high
energies.

1 Introduction

A hot topic today in the nuclear physics is the study of the three nucleon forces properties
through the investigation of the few-nucleon system. 3NF are relatively weak in compar-
ison with NN forces. Therefore, it is hard to reveal them and find the confirmation for
them experimentally.

The modern nucleon-nucleon (NN) potentials (AV18[1], CD-Bonn[2], Nijmegen[3] et
al.) cannot describe experimental binding energy of the few-nucleon systems as well as
the data on the deuteron proton (d− p) interaction. The 3NF inclusion makes it possible
to reproduce the data on the nonpolarized d−p interaction and the binding energy of the
few-nucleon systems. However, the polarization data are not described even with the 3NF
inclusion, that indicates the defects in spin parts of the 3NF. On the other hand, the NN
interaction (2NF) itself has also several problems which are connected with relativistic
and off-shell effects, non-locality etc. Therefore, the investigation of the polarization
observables sensible to the 2NF and 3NF structure in different kinematic conditions for
different reaction is very important.

Another goal is to find a suitable reaction to provide efficient polarimetry of high energy
deuteron. We suggested to use the d−p elastic scattering at backward angles (θc.m. > 60◦)
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for the polarimetry at the energies of 0.88 − 2.0 GeV. The data at higher energy are
necessary for PHe3 project[4] at the LHE(JINR). The experiment has been performed
at the Internal Target Station at Nuclotron within the framework of the program on the
study of light nuclei spin structure proposed at JINR(Russia) and RIBF(Japan)[5]. The
details of the experiment can be found in ref.[6].

2 Results and discussion

The experiment included two groups of the measurements of d− p elastic scattering.
1) Measurement of deuteron beam polarizations at 270 MeV.
2) Measurements at 880-2000 MeV.
Polarization measurement at 270 MeV. The polarization of the deuteron beam was
measured at 270 MeV, where high-precision data of the analyzing powers from RIKEN
exist [7]. Two particles from the d−p elastic scattering were clearly distinguished by their
time-of-flight differences from the target and their energy losses in the plastic scintillators.

Pol. Mode 2-6 Mode 3-5
ITS T 0.557± 0.026 -0.555± 0.022
ITS V 0.215± 0.012 0.221± 0.015
LEP T 0.69±0.13 -0.67± 0.16

Table 1: The preliminary values of the deuteron
beam polarization at 270 MeV

The background from carbon content of
CH2 target was less than 1% and it was
not taken into account.

Obtained values on the vector and ten-
sor polarizations of the deuteron beam are
presented in the table1. The values are
in good agreement with the results ob-
tained by low energy polarimeter based
on 3He(d, p(0◦))4He reactions[8].
The measurements at Td = 880MeV. To obtain the true number of the deuteron-
proton elastic events from all triggers, cut on two-dimensional plot on the correlations
ADC signals from deuterons and protons detectors was imposed. Also the graphical cuts
were applied on the time-of-flight difference between deuterons and protons from the
target. The contribution of the carbon depends on the detection angle.

(a) (b) (c)

Figure 1 Vector Ay(a) and tensor Ayy(b), Axx(c) analyzing powers for the d− p elastic
scattering at 880 MeV. The curves are described in the text.

The obtained values of the vector and tensor analyzing powers in d− p elastic scatter-
ing at the energy 880 MeV are presented in Fig1. Ay has relatively large values ( − 0.25)
in the wide angular range θc.m. = 70 − 140◦. Ayy has moderately large values at the
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angles ≤ 70◦. Axx has a small values at the backward angles. This indicates that
the vector and tensor polarizations of the beam can be measured at different angles.

Figure 2. Vector Ay and ten-
sor Ayy analyzing power at 2000
MeV. The data shown by the ◦ and
•(2) are obtained at ANL[12] and
Dubna, respectively.

Experimental data obtained at 880 MeV are com-
pared with theoretical predictions in Fig1. Solid curve
corresponds to Faddeev calculation using the CD-
Bonn NN potential[9]. One can see that the Faddeev
calculation reproduces all the analyzing powers.

Dotted curve corresponds to the calculations in op-
tical potential framework with the use of deuteron
wave function(DWF), derived from the dressed bag
model of Moscow-Tuebingen group[10]. Dash-dotted
curve conforms to the calculation in the multiple scat-
tering expansion formalism with the use of CD-Bonn
DWF[11]. The parametrization of the NN t-matrix
has been used to take the off-shell effects into account.

The amplitude of the dp elastic scattering in these
two calculations was presented as a sum of the follow-
ing three contributions: one nucleon exchange, single
scattering and double scattering terms. The relativism
was also taken into account.

The calculation[11] describe well the data on the
vector Ay and tensor Ayy analyzing powers. The cal-
culation[10] reproduces behaviour of the Ay and Ayy

is described only at the backward angles, while the
tensor analyzing power Axx is reproduced in the whole angular range.

The measurements at Td = 2000MeV. The preliminary results on the measure-
ment of the vector Ay and tensor Ayy at the energy 2000 MeV are presented in Fig2. Open
circles are the data obtained at Argone National Laboratory[12]. The data obtained at
Nuclotron are shown by the black circles and open squares. The points marked by the
squares are obtained on the CH2 target. The black points are obtained as a result of the
subtraction of the carbon background. Relatively large values of the analyzing powers
show a possibility to provide the polarimetry at this energy.

3 Conclusion.

The experiment on the measurements of the analyzing powers in d− p elastic scattering
was performed at the Internal Target Station at Nuclotron in June 2005.

The data on the deuteron analyzing powers Ay, Ayy and Axx at the energy of 880 MeV
covered angular region of 60− 140◦ in the center-of-mass system are obtained.

The obtained data at 880 MeV are compared with different theoretical predictions
without inclusion of the 3NF. These calculations describe the obtained data quite good.

Large values of the analyzing powers in some angular region are suitable for conducting
the polarimetry at the energy of 880 MeV. These data will be useful to construct a new
polarimeter at RIBF.
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The preliminary results on the measurements of the vector Ay and tensor Ayy analyzing
powers at Td = 2000 MeV are presented.
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Discussion

Q. (X.Artru, Inst. de Phys. Nucl. de Lyon) Is there a relation between Ayy and Azz

and why not measure also Azz?
A. (by V.Ladygin, JINR, Dubna) Yes, there is the relation Axx + Ayy + Azz = 0. In

one set up (for large angle scattering), it is difficult to measure Azz

Q. (N.Piskunov, JINR, Dubna) Are you going to continue the measurements in future?
A. Yes, we are plan to continue the measurement in future, with a new PIS.

308



SPIN PHYSICS AT NUCLOTRON-M

V.P. Ladygin1† on behalf of LHE SPIN group

(1) Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
† E-mail: ladygin@sunhe.jinr.ru

Abstract

The review of the current status of the polarization experiments at Nuclotron
will be reported. New high intensity polarized deuterons ion source as well as the
upgade of Nuclotron will extend significantly the spin program at LHE.

The main goal of the polarization program at Nuclotron is to investigate the spin
effects in the region of transition regime from nucleon-meson degrees of freedom to the
fundamental ones: quarks and gluons, where non-perturbative QCD effects are playing a
main role.

The main topics of the research program at Nuclotron are the studies of manifestation
of the effective degrees of freedom like ∆∆, NN∗, N∗N∗ configurations connected with the
problem of hidden color in the light nuclei; threshold effects in neutral meson-production
in polarized nucleon-nucleon interaction; relativistic effects in the composite systems;
medium effects for the polarization observables connected with the problem χ-symmetry
restoration.

The availability of the relativistic polarized deuterons from POLARIS source [1] and
consequently polarized nucleons from deuteron breakup provides the uniqness of the spin
program at LHE.

On of the traditinal topics of these studies is the deuteron short range spin structure.
Such static properties of the deuteron as a binding energy ε, quadrupole, Qd, and mag-
netic, µd, momenta, electromagnetic radius rd are very well measured and are reproduced
by the non-relativistic calculations using standard nucleon-nucleon potentials based on
one-bosons exchange.

The non-relativistic deuteron wave function (DWF), obtained by the solving of the
Schrödinger equation, depends on the relative nucleon momentum q only: Ψ = Ψ(q).
However, as the deuteron and its nucleons energies increase, the relativistic effects play
more important role at short internucleonic distances, as well as in the dynamics of the
interaction.

The principal feature of the relativistic quantum mechanics is the impossibility to
separate the relative motion of the constituents and motion of the composite system as
a whole. This leads to the dependence of the relativistic wave function not only on the
relative momenta of the nucleons q inside the composite system, but also on the total
momentum p of this system: Ψ = Ψ(q,p). Therefore, relativistic wave function is the
function of the relative momentum q in each new reference system. However, it is enough
to know wave function in the infinite momentum frame, p → inf, where the structure of
the wave function simplifies. Namely, the dependence on |p| disappears, wave function
depends on the direction of the vector n = p/|p| only: Ψ = Ψ(q,n).
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For instance, relativistic deuteron wave function on light cone is defined by 6 invariant
functions f1, ..., f6 (instead of 2 in the non-relativistic case), each of them depends on 2

scalar variables k and z = cos(k̂n) [2]:

ψ(k, n) =
1√
2
σf1 +

1

2

[
3

k2
k(k · σ)− σ

]
f2 +

1

2
[3n(n · σ)− σ] f3 +

1

2k
[3k(n · σ)

+ 3n(k · σ)− 2σ(k · n)]f4 +

√
3

2

i

k
[k× n]f5 +

√
3

2k
[[k× n]× σ]f6, (1)

k =

√
m2

p + p2
T

4α(1− α)
−m2

p, (n · k) = (
1

2
− α) ·

√
m2

p + p2
T

α(1− α)
. (2)

Here α is the longitudinal momentum fraction taken away by the proton in the infinite
momentum frame and pT is the proton transverse momentum.

Therefore, to study the relativistic effects in light nuclei one needs to measure the
polarization observables as the functions of α and pT (or as the functions of the initial
energy and scattering angle for the binary reactions). When the distances between the
nucleons are comparable with the size of the nucleon, the nucleon-nucleon interaction is
non-local. The modern NN potentials like CD-Bonn [3] take into account this property
of NN interaction at short distances.

However, fundamental degrees of freedom in the frame of QCD are the quarks and
gluons. These degrees (effective ones as ∆∆, N∗N , N∗N∗ or 6q and 9q components) begin
to play a role at the internucleonic distances comparable with the size of the nucleon. At
high energies s and large transverse momenta pT the constituent counting rules (CCR)
[4, 5] are working. These rules predict the dependence of the cross section of the binary
reactions at the fixed scattering angle in the cms as a power-law of s.

The analysis of the experimental data on the cross sections of the dp → pd and
dd → 3Hen reactions [17] has shown that the regime corresponding to CCR can occur
already at Td ∼500 MeV. During last several years a new generation of NN potentials are
built (Nijmegen, CD-Bonn, AV-18 etc.). These potentials reproduced the NN scattering
data up to 350 MeV with very good accuracy. But these potentials cannot reproduce triton
binding energy (underbinding is 0.8 MeV for CD-Bonn), deuteron-proton scattering and
breakup data.

Incorporation of three nucleon forces (3NF), when the interaction depends on the
quantum numbers of the all three nucleons, allows to reproduce triton binding energy and
unpolarized deuteron-proton scattering and breakup data (see [7] and references therein).
However, the use of different 3NF models in Faddeev calculations cannot reproduce polar-
ization data intensively accumulated during last decade at different facilities. New data
sensitive to the spin structure of 3He(3H) and 3NF are necessary to build adequate model
of 3NF.

Two selected results on the deuteron and NN spin structure obtained in the recent
years at Synchrophasotron demonstrate the importance of a GeV range studies.

First experiment has been performed with a polarized deuteron beam at the SPHERE
setup [20]. A slowly extracted polarized deuteron beam with a typical intensity of ∼
5·108÷109 d/spill provided by POLARIS [1] was directed onto a liquid hydrogen target 30
cm long or onto nuclear (carbon and beryllium) targets with a varying length. Separation
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of the protons and inelastically scattered deuterons was achieved by the measurements of
their time-of-flight (TOF) over a base line of ∼ 34 or ∼ 28 m.

Figure 1. Ayy in A(d, p)X reaction
as a function of pT at the fixed val-
ues of α: a) α ∼0.61, b) α ∼0.67, c)
α ∼0.72 and d) α ∼0.78. The figure
is taken from the paper [20].

The data on the tensor analyzing power Ayy in
deuteron inclusive breakup obtained at different en-
ergies can be compared in terms of internal variables
describing the internal structure of the deuteron. The
Ayy data plotted versus the transverse momentum
of the proton at values of the longitudinal momen-
tum fraction α ∼ 0.61, ∼ 0.67, ∼ 0.72 and ∼ 0.78
are shown in Fig.1. a), b), c) and d) , respec-
tively. The data obtained on hydrogen and carbon
targets are shown by the filled and open circles, re-
spectively. The values of Ayy are positive at small pT

and monotonously decrease while transverse momen-
tum increasing for all α values changing the sign at
pT ∼ 600 MeV/c independently on the value of α.
This behavior definitely contradicts the predictions of
the relativistic hard scattering (RHS) model using ei-
ther standard DWFs depending on one variable only
shown in Fig.1. by the dashed and dash-dotted lines,
or relativistic DWF [2] depending on two variables
(solid lines).

Figure 2.The cross section differ-
ence ∆σL for an isospin I = 0
plotted versus the neutron energy.
Black points are the results obtained
in Dubna. Figure is taken from the
paper [9].

The observed features of the Ayy data, namely, the
marked dependence of Ayy plotted at fixed values of
the longitudinal momentum fraction α on the trans-
verse momentum pT , clearly demonstrate that an ad-
equate description of the data may be achieved by
using a deuteron structure function that depends on
more than one variable for α ≥0.6. The precision of
the data put the serious constraints on the theoretical
approaches in the description of the deuteron short
range spin structure.

The second advantage of the Synchrophasotron-
Nuclotron due to deuteron is the possibility to form
the relativistic quasi-monochromatic neutron beam
because the data on np interaction at the energies
higher than 1.1 GeV are practically absent.

Such neutron beam channel for the energies 0.55-
3.7 GeV equipped by the polarized proton, liquid and
nuclear targets has been created. Neutrons are ob-
tained from deuteron breakup on the nuclear target.
The momentum spread of neutrons is about 3% only
with the typical intensity of 3·105– ·106 depending on
energy.

The importance of the use of neutrons is the possibility to extract the amplitudes of
nucleon-nucleon scattering with an isospin I = 0. The results on the cross section differ-
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ence ∆σL(I = 0) due to longitudinal polarization of the colliding nucleons is presented in
Fig.2.

The black points are obtained in Dubna by ∆σ-collaboration [9]. One can see the
significant variation of ∆σL(I = 0) versus the initial energy and some structure around
Tn ∼0.5–1.0 GeV. The authors claim that the obtained results are sensitive to the dibaryon
production predicted in bag models.

To summarize the introduction: LHE spin complex is the unique facility to study rela-
tivistic effects, non-nucleonic degrees of freedom, three-nucleon forces energy dependence
via the measurements of spin observables in a GeV range.

The current LHE spin program is focused on the study of the spin structure of few-
nucleon systems, on the spin structure of nucleon-nucleon interaction, on the spin effects
in meson production and development of the polarization techniques. Also there are
several postponed experiments which can be done with high intensity polarized beam in
future.

 *Θ
0 20 40 60 80 100 120 140 160 180

A
y

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

=880 MeVdT

 *Θ
0 20 40 60 80 100 120 140 160 180

A
y
y

-1

-0.8

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

1

=880 MeV
d

T

(a) (b)

Figure 3. Vector Ay (a) and tensor Ayy (b) analyzing powers in dp- elastic scattering at 880
MeV versus angle in the cms. Curves are explained in the text. Figures are taken from the

talk of P.K.Kurilkin at this conference [11].

Due to relatively low intensity of the deuteron polarized beam at Nuclotron (∼2–3·107

ppp) spin physics at the moment is limited. On the one hand, the use of the internal
target allows to use the full available intensity. On the other hand, new internal target
station is very well suited for the measurements of dp- elastic scattering at large angles
in the cms. The experiment on the study of the energy dependence of the 3NF spin
structure via the measurements of the analyzing powers in dp-elastic scattering has been
proposed [10].

The results on the vector Ay and tensor Ayy analyzing powers in dp- elastic scattering
obtained at 880 MeV [11] are shown in Figs.3a and 3b, respectively. The solid, dashed
and dotted lines are the results of the relativistic multiple scattering calculations [12]
using CD-Bonn DWF, of the Faddeev calculations [21] using CD-Bonn nucleon-nucleon
potential and the optical potential calculation with the dibaryon DWF [14], respectively.
One can see that Faddeev and multiple scattering models give good description of the
data. However, the Faddeev calculations [21] fail to reproduce the cross section at the
angles larger than 90◦, while relativistic multiple scattering calculations [12] are in a
reasonable agreement with the data at the angles between 30◦ and 130◦.
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Figure 4. Ayy in dp- elastic scat-
tering obtained at the fixed angles
in the cms: 60◦, 70◦, 80◦ and 90◦.

The dependence of the tensor analyzing power Ayy

in dp- elastic scattering obtained at 60◦, 70◦, 80◦ and
90◦ in cms versus transverse momentum pT is shown
in Fig.4. The open points are the world data [15],
while the black ones represent the results obtained at
Nuclotron [11, 16]. The values of Ayy are positive at
small pT and changes the sign at pT ∼600–650 MeV/c
as in the case of deuteron inclusive breakup [20]. The
negative sign of Ayy is observed at large pT . It would
be interesting to extend the range of the measurements
to larger pT , where the manifestation of non-nucleonic
degrees of freedom is expected.

Other experiments at Nuclotron at the moment use
unpolarized beams.

TPD project is devoted to the tensor polarizability
of the deuteron passing through the matter. The value
of the induced tensor polarization should depend on
the thickness of the target. The first data have been obtained using unpolarized 5.5 GeV/c
deuteron beam in March 2007 [17]. The induced tensor polarization has been measured
by the beam-line tensor polarimeter described elsewhere [18].

The preliminary results [17] demonstrate the increase of the value of the tensor po-
larization of the secondary deuteron beam as the target length increase. One of the
explanation of this effect is the multiple scattering and the effect of the D- state in the
deuteron. The experiment is planned to be continue in 2007-2008.

Figure 5. Rdp ratio of the
(n, p) charge-exchange reactions on
deuteron and proton. Figure is
taken from the talk of V.I.Sharov at
this conference [20].

The results on the ratio of the cross sections of
neutron-proton charge-exchange reaction, (n, p), on
deuteron and proton Rdp as a function of neutron ki-
netic energy is shown in Fig.5. The full points are
the results obtained by ∆σ collaboration at Nuclotron
[19, 20]. In the framework of plane wave impulse ap-
proximation this ratio is defined by the ratio of spin-
dependent to spin-independent parts of np- backward
elastic scattering amplitude. In this respect, Rdp is an
additional observable to the total cross section σtot,
total cross section differences ∆σL and ∆σT in np-
forward elastic scattering and spin correlations Aoonn

and Aookk in np- backward elastic scattering necessary
for the full determination of the np- forward elastic
scattering matrix element.

The data obtained at Nuclotron [19, 20] demon-
strate the large value of Rdp close to ∼ 2/3. This
reflects the significance of the spin-dependent part of the np- elastic scattering amplitude
at the energies 0.5-2.0 GeV. On the other hand, such a behavior at the energies 0.5–
1.3 GeV contradicts to the results of current partial wave analysis given in Fig.5 by the
solid line. The additional considering of the final state interaction (FSI) in the system of
two undetected neutrons does not improve the agreement with the data [21].
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The same process in the exclusive mode is planned for the studies by the STRELA
collaboration [22]. The dp- charge exchange reaction will be investigated via the detection
of two outgoing protons emitted at the angles less than 3◦ with relative momentum less
than 100 MeV/c in the lab. The detected protons have a momentum close to the half of
the incoming deuteron momentum. The detection system is almost ready. The achieved
position resolution provided by the set of drift chambers is better tham 100µm. The
collaboration is planning to measure both cross section and tensor analyzing power T20

in 2008-2009. The results on T20 are sensitive to the ratio of the spin-dependent to spin-
independent parts of the np- backward elastic scattering amplitude in spite of large FSI
effects [23].

All the above experiments are devoted to the study of the spin structure of 2N and
3N forces at the nucleon energies 0.5–1.0 GeV, where some years ago a signature in the
T20 behavior in dp- backward elastic scattering have been observed [24].

Figure 6. Analyzing power for in-
clusive pCH2 → pX at the pro-
ton momenta between 1.75 and 5.3
GeV/c. Figure is taken from the pa-
per [26].

The measurements of the η- meson yield in po-
larized NN collisions using transversally polarized
neutron beam and proton target is planned within
DELTA − 2 experiment [25]. Due to ss̄ component
in η- meson wave function, the spin correlation Cy,y

in the np reaction is expected to be sensitive to the
polarized strange content of the proton. The detec-
tion of π◦- and η- mesons will be done by 300 channel
lead-glass spectrometer via 2γ decay modes. The col-
laboration is now in the state of the setup preparation.

The main goal of ALPOM project [26] is to obtain
the analyzing powers for inclusive pCH2 → pX reac-
tion at high momenta. These data are very important
to construct the efficient focal-plane proton polarime-
ter at JLAB for the measurements of elastic electro-
magnetic form-factor ratio GEp/GMp at large Q2 [27]
and at hadronic facilities too. The data on the ana-
lyzing power in inclusive pCH2 → pX reaction at the
momenta between 1.75 and 5.3 GeV/c [26] obtained at Synchrophasotron using polarized
protons from deuteron breakup are shown in Fig.6. The continuation of the experiment
is planned at Nuclotron in 2009-2010.

The development of new polarized source is necessary to fulfill the current experi-
mental program. This source on the base of IUCF source will provide the intensity up
to 1010 ppp and larger values of polarization than POLARIS. The first operation of this
source is scheduled in 2010 [28]. At the same time it is necessary to make an upgrade
of the existing polarized proton target in order to have the proton polarization normal
to the beam direction. Upgraded PPT will put into operation also in 2010 [28]. Unpo-
larized beams and polarized deuterons from POLARIS [1] will be used in 2007-2009 for
realization of short-term program. The main items of the long-term studies (after 2009)
at Nuclotron-M with new PIS and PPT are the following: spin structure of 2N and 3N
forces (relativity, transition regime to non-nucleonic degrees of freedom etc.); polarization
effects in meson production related with the spin crisis; medium effects for polarization
observables, development of polarization techniques for other facilities including NICA.
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Figure 7. Single spin asymmetry
AN for inclusive pion production in
pp- collisions at 200 GeV. Figure is
taken from the paper [30].

According to JINR topical researh plan [29] it is
planned to construct new heavy ion and polarized par-
ticles collider NICA for the energies

√
sNN=4–9 GeV.

The serious advantage of NICA compared to AGS,
J-PARC and U-70 will be the possibility to have the
collisions of polarized deuterons (neutrons). The main
topics of the spin studies at NICA can be spin content
of nucleon, nuclear and color transparency in spin ob-
servables, polarization effects in hyperon production,
single and double asymmetries in meson production,
NN and deuteron short-range spin structure.

Fig.7 demonstrates the single spin asymmetries
(SSA) AN obtained in proton-proton collision for π+,
π◦ and π− inclusive production at 200 GeV [30]. The
signs of SSA follow to the polarization of the valence
quarks in the pions. The perturbative QCD regime
occurs already at 22 GeV [31], where SSA is found
to be sensitive to the quark content of projectile. In this case SSA has to change the
sign for neutron-proton collision at large xF . Single and double spin asymmetries for
charged mesons production in neutron-proton collisions can be measured at NICA using
polarized deuterons. Neutrons will be produced from deuteron breakup with spectator
proton identification. The same motivation and method of measurements are also valid
for studies polarization, AN and DNN for Λ◦ and Ξ− production [5]. Unfortunately, the
main detector of NICA - MPD will be able to detect the charged particles only and will
have poor identification at large xF , where spin effects are large.

Another topic is the study of the nucleon spin content in Drell-Yan process [33]. Sivers
effect having an opposite sign in SIDIS can be studied in by the measurement of SSA.
Transversity measurements can be done in the collisions of both transversally polarized
nucleons ATT . The double longitudinal asymmetry ALL at NICA energies is related mostly
to the quark polarization. Polarized Nd Drell-Yan process can provide the information
on the tensor structure of the deuteron [34].

The short-range deuteron spin structure in (d, p) reactions [20], charmonium produc-
tion in polarized nucleons collisions [35], nuclear and color transparencies [36,37] also can
be studied at NICA energies.

For these purposes it is necessary to build the double-arms wide apperture spectrome-
ter at the second interaction point at NICA. This spectrometer has to detect and identify
both leptons and hadrons.

-The current spin program at Nuclotron-M brings new insight on the spin effects in
the region of nonperturbative QCD, where the transition from nucleon-meson degrees of
freedom to the quark-gluon ones occurs.

-The putting into operation new PIS and upgrade of the existing PPT will signifi-
cantly increase the potentialities of Nuclotron-M as a spin facility in a GeV range. These
developments are also the key point for NICA.

-The development of the setup with the possibility to detect both hadrons and leptons
at the NICA is necessary to have rich spin physics complimentary to the studies proposed
at U-70, J-PARC and FAIR.
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Discussion

Comm. (S.Belostotsky, PNPI, S.Petersburg) The idea to build this new NICA ma-
chine looks promising. It is clear, however that in addition to efforts and enthusiasm of
Dubna people a wide support from the spin-physics community with be highly required.
Such contributions from the leading physicists would be thus so much welcome.

Comm. (G.Bunce, BNL) It is very interesting to study AN for π and K production
with both polarized proton and neutron beams. Although the cross section are described
by peace at RHLC, they are not described well at lower energy (see Soffer talk). However,
the spin asymmetries look very similar at lower energies to the results at RHIC. If the
AN for π+ and π− show minor asymmetry for polarized p and n, with the signs of AN

reversing for p and n beams, this is strong evidence that the physics is due to valence
quarks, even at lower energy.

Q. (J.Nassalski, SINS, Warsaw) What is the main physics justification for NICA, in
view of already approved new projects (FAIR, J-PARC)?

A. Certainly, the advantage of NICA in the sense of spin physics is the availability
of polarized deuterons and, therefore, polarized neutrons. The second advantage is that
in the collider mode, the momenta of the secondary particles can be measured with good
momentum resolution, as well as focal plane polarimetry is possible. The last items, are
very important to study spin structure of deuteron and color nuclear transparency.
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Holešovičkách 2, 180 00 Praha 8, Czech Republic. (8) Institute for Nuclear Research, Russian
Academy of Sciences, 117312 Moscow, Russia. (9) DAPNIA, CEA/Saclay, 91191 Gif-sur-
Yvette Cedex, France. (10) Institute for Nuclear Research and Nuclear Energy, Bulgarian
Academy of Sciences, Tsarigradsko shaussee boulevard 72, 1784 Sofia, Bulgaria. (11) JINR,
Laboratory of Particle Physics, 141980 Dubna, Russia.
† E-mail: morozov@sunhe.jinr.ru

Abstract

The results of the measurement at 0 ◦ of the cross-section ratio Rdp in charge-
exchange (np) reaction on H2/D2 targets at the neutron beam kinetic energie
1.0GeV and 1.2GeV are presented.

The tasks of the Delta-sigma experiment investigation program [1] are the measure-
ments of the L, T set of np spin observables ∆σL, ∆σT, A00kk, A00nn as well as the
measurement of backward np scattering (elastic np → pn charge-exchange reaction using
D2 and H2 targets at 0 ◦) with the spin-flip (the data for D2 target ) and with the non
spin-flip (measurement of the cross sections ratio Rdp(0) = dσ

dΩ
(nd → pnn)/ dσ

dΩ
(np → pn)).

The results obtained in the course of the experiments [2, 3] allow to follow reliably ∆σL

energy dependence peculiarities in the new energy region. One can see here a fast de-
crease of |∆σL| while the energy increases beyond 1.1 GeV and the anomaly of energy
dependence in the vicinity of 1.8 Gev with a suggested minimum, which is predicted by
Lomon et al. [4] in “Cloudy bag model” as the lowest lying exotic six-quark configuration
in the isosinglet and the spin-triplet state 3S1 with the mass M = 2.63GeV.

For the exhaustive analysis of this structure using Argand diagrams for Re and Im
parts of each of the three NN forward scattering amplitudes, it is required to measure not
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only the complete set of np-spin observables at 0 ◦ (∆σL,T and spin correlation coefficients
A00kk and A00nn in np → pn charge exchange of L/T polarized neutrons), but also to
measure at 0 ◦ the ratio Rdp in the same energy region.

Figure 1. Spectrometer ”Delta-Sigma”

The ratio Rdp = dσ
dΩ

(nd → pnn)/ dσ
dΩ

(np →
pn) independently defines the ratio RID of non
spin-flip to spin-flip contributions in np → pn
charge-exchange process at 0 ◦.

The np → pn differential cross sec-
tion (dσ/dΩ)np can be splitted in the ”spin-
independent” (SI) and ”spin-dependent” (SD)
parts [5,6]:

(dσ/dΩ)np = (dσ/dΩ)SI
np + (dσ/dΩ)SD

np . (1)

The differential cross section for nd → p(nn) re-
action in the frame of the impulse approximation
can be written as:

(dσ/dΩ)nd = [1− F ](dσ/dΩ)SI
np + [1− (1/3)F ](dσ/dΩ)SD

np . (2)

Here F is the deuteron form-factor, which is equal to one in the backward direction. The
first term on the right-hand side of (2) vanish and for the differential cross section at
θCM = π the theory gives:

(dσ/dΩ)nd = (2/3)(dσ/dΩ)SD
np . (3)

Only if the impulse approximation holds, Eqs.(2) and (3) are valid. From (3) follows:

Rdp =
(dσ/dΩ)nd

(dσ/dΩ)np

=
2

3
× (dσ/dΩ)SD

np

(dσ/dΩ)np

=
2

3
× 1

(1 + RID)
. (4)

where RID =
(dσ/dΩ)SI

np

(dσ/dΩ)SD
np

— the ratio of the spin-independent contribution to the spin-

dependent one in np → pn charge exchange reaction.

1. Investigation of elastic np → pn charge exchange process. To detect pro-
tons from charge-exchange reactions in our experiments magnetic spectrometer (Fig. 1)
was created.The spectrometer is equipped with a system of tracking of charged particles
emitted from the target at 0–2 ◦ angle range. This system provides a good momentum
resolution of the spectrometer ∆p/p ≈ 1.65 % (more than 2 times better compared with
the momentum dispersion of the quasimonochromatic neutron beam produced by strip-
ping of deuterons slow extracted from Nuclotron) and makes it possible to determine the
angles of charge-exchange proton tracks with a good accuracy (≈ 1mrad). The system
comprises a deflection magnet SP-94, 8 planes of X, Y coordinates detectors (multiwire
proportional chambers Gx, Gy, 1x, 2x, 3x, 3y, 4x, 4y) placed in front of and behind the
magnet, neutron monitors (M1,2), trigger scintillation counters: anticoincidence counter
(A), S 1, ST 1, 2, 3; liquid H2/D2 targets, time-of-flight system counters separating protons
and background deuterons from np → dπ0 reaction (S1, TOF 1, 2).
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Figure 2. The momentum spectra of
charged secondaries, detected by spec-
trometer using H2 and D2 liquid targets.

To obtain the momentum spectra protons us-
ing H2 and D2 targets at the neutron beam en-
ergy 1GeV (Fig. 2) and 1.2 GeV the charge par-
ticles deflection angles in spectrometer magnet
SP-94 were measured.

The inelastic peak grows fast when the en-
ergy Tn arises. This background ‘hill’ grows es-
pecially fast in np charge-exchange at deuteron.
The main contribution to this background peak
is due to the binary reaction with excitation of
∆0-resonance. The np → pn charge-exchange
process is accompanied by the background reac-
tion np → dπ0. Owing to this reaction kinemat-
ics the background deuterons are concentrated
under the elastic proton peaks in the np → pn
charge exchange reaction. The time-of-flight of the particles was measured to suppress
this background. Fig. 3 show a good separation of particles d and p.
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Figure 3. Demonstration of the parti-
cle identification, using both the magnetic
analysis and time-of-flight spectra (Target
- H2, Tn = 1.0 GeV.).

The reaction yield in the angular regions
0 < θ < 0.012 rad and 0 < φ < 2π rad was an-
alyzed to calculate the differential cross-section
of np → pn elastic charge-exchange reactions at
0 ◦. After the subtraction of the deuteron back-
ground in the reaction np → dπ0 and the dummy
target background the observed elastic peak was
approximated by Gauss function, and the num-
ber of events in the peak was calculated.

The differential cross-section was calculated
with the following formula:

dσ

dΩ
=

Nevents

(M/εM) sin θ ∆θ ∆φ εspectr nnucl

, (5)

where:

• Nevents — number of events in the elastic
peak

• M and εM — monitor counts and efficiency of neutron monitor

• εspectr — efficiency of the spectrometer

• nnucl — number of H/D in the target.

Final values of differential cross-sections of np → pn elastic reaction on H2 target at
1;1.2GeV energy are shown in Fig. 5a. Obtained value of the ratio Rdp = dσ

dΩ
(nd)/ dσ

dΩ
(np)

is submitted in Fig. 5b and Table 1. The ratio Rdp(0) was obtained by the extrapolation
of the direct line approximating of experimental Rdp(θ) data (Figs.4 a,b) with χ2 ≈ 0.5.
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Figure 4a. Angular dependence of ratio Rdp at neutron energy Tn = 1.0 GeV.
Figure 4b. Angular dependence of ratio Rdp at neutron energy Tn = 1.2GeV.
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Figure 5a.Differential cross section of the np → pn process at 0 ◦.
Figure 5b. The ratio Rdp.

Table 1: Rdp(0)

Energy (GeV) Value Stat. Error Syst.Error Total Error

1.0 0.536 0.01 0.012 0.015
1.2 0.54 0.01 0.013 0.016

2. Conclusion. Our preliminary results on the momentum spectra of elastic charge
exchange protons with H2 target and corresponding dσ/dΩ(np) at 1.0GeV are in agree-
ment with the existing data [7, 8]. Our preliminary results of measurements of the ratio

Rdp = dσ/dΩ(np)
dσ/dΩ(nd)

at 0◦ were obtained at the first time at Tn ≥ 1 GeV. Changing over from

Rdp(0) to RID(0) by the formula (4)

RID =
2

3Rdp(0)
− 1 (6)

we obtained the value RID at the first time at Tn ≥ 1 GeV:

RID = 0.23± 0.03 (energy 1.0 GeV) (7)
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RID = 0.33± 0.03 (energy 1.2 GeV) (8)
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Abstract

We consider models for the spin transfers to Λ and Λ̄ hyperons produced in
lepton-nucleon deep-inelastic scattering. We make predictions for longitudinal Λ
and Λ̄ spin transfers for the COMPASS experiment and for HERA, and for the spin
transfer to Λ hyperons produced at JLAB. We demonstrate that accurate measure-
ments of the spin transfers to Λ and Λ̄ hyperons with COMPASS kinematics have
the potential to probe the intrinsic strangeness in the nucleon. We show that a mea-
surement of Λ̄ polarization could provide a clean probe of the spin transfer from s̄
quarks and provides a new possibility to measure the antistrange quark distribution
function. COMPASS data in a domain of x that has not been studied previously
will provide valuable extra information to fix models for the nucleon spin structure.
The spin transfer to Λ̄ hyperons, which could be measured by the COMPASS experi-
ment, would provide a new tool to distinguish between the SU(6) and Burkardt-Jaffe
(BJ) models for baryon spin structure. In the case of the HERA electron-proton
collider experiments with longitudinally-polarized electrons, the separation between
the target and current fragmentation mechanisms is more clear. It provides a com-
plementary probe of the strange quark distribution and helps distinguish between
the SU(6) and BJ models for the Λ and Λ̄ spin structure. Finally, we show that the
spin transfer to Λ hyperons measured in a JLAB experiment would be dominated
by the spin transfer of the intrinsic polarized strangeness in the remnant nucleon,
providing an independent way to check our model predictions.

The negative net polarization of strange quarks in the nucleon found in experiments
with polarized charged leptons scattering off polarized nucleon still remains an intriguing
subject of both theoretical and experimental investigations. Burkardt and Jaffe first
noticed [1] that a non-trivial spin structure of the nucleon implies also a non non-trivial
spin structure of other octet baryons which can be studied experimentally investigating
spin transfer to Λ, Σ, . . . and their anti-particles. Thus an accurate measurement of
longitudinal polarization of these baryons could disentangle between a naive SU(6) picture
and BJ proposal. Unfortunately this elegant idea faces difficulties in realistic experiments
due to overwhelming contribution from target nucleon remnants to a final polarization of
strange baryons at low and medium energies.

In this work we show however that Λ̄ hyperons (and other anti-particles) are much
more cleaner instruments to study the spin structure of Λ̄ hyperons due to a smaller
contribution from the target nucleon end and large xF . Also we show that spin transfers
to Λ and Λ̄ are sensitive to s(x) and s̄(x) in thus can be considered as a new additional
method to study the nucleon strangeness.
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This article is a compact version of our more detailed paper [2] to which we refer for
more details.

In what follows we use common definitions for the kinematic variables: x, y are
the standard deep-inelastic scaling variables and xF is the Feynman variable defined as
xF =

2P ?
L

W
where P ?

L is the particle longitudinal momentum in the hadronic centre-of-mass
system, whose invariant mass is denoted by W . The negative range of xF is often re-
ferred to as the target fragmentation region, and the positive range of xF as the current
fragmentation region.

We model the hadronization of quarks and target nucleon remnants into hadrons
within the Lund string model, which has been used successfully to describe many unpo-
larized phenomena, albeit with many free parameters that need to be tuned. Here we
use the Lund model as implemented in the JETSET 7.4 [3, 4] code, with the string frag-
mentation parameters tuned by the NOMAD experiment [5]. These parameters describe
well the yields of the strange hadrons Λ, Λ̄, K0

S and - what is important for our calcula-
tions - the relative contributions of Λ and Λ̄ hyperons produced from decays of heavier
states (Σ∗, Σ0, Ξ and their antiparticles) [6–8]. Deep-inelastic lepton-nucleon scattering is
simulated using the LEPTO 6.1 [9] package, with parton distributions provided by the
PDFLIB package [10]. Please note that we implemented two important for polarization
studies improvements to the LEPTO 6.1 package [2].

As preparation for the treatment of spin transfer to final-state Λ and Λ̄ hyperons, we
introduced in [11] two hadronization ranks Rq and Rqq. The ranks Rq and Rqq are integers
equal to the numerical ordering of the hadron from the quark and the opposite end, which
we call the nucleon target end. Some examples of the assignments of these two ranks are
shown in Fig. 1.

Rq

Rqq

qq qπ

1 2 3

3 2 1

Λ K

Figure 1: Λ hyperon has Rqq = 1 and Rq = 3,
whereas the π has Rqq = Rq = 2.

We often use in the following the terms
of quark (target remnant) fragmentation
for the case Rq < Rqq (Rqq < Rq). How-
ever, one must always bear in mind that
one is dealing with string hadronization,
and not with independent fragmentation.

The polarization of the interacting
quark, denoted by Pq, is given by

Pq = PBD(y), (1)

where PB is the charged-lepton longitudinal polarization, and D(y) is the depolarization

depolarization factor, in the leading order taken to be D(y) = 1−(1−y)2

1+(1−y)2
. Corrections

to D(y) well parameterized for DIS are poorly known for SIDIS production of different
hadrons.

We assume that there are two basic mechanisms for a baryon to be produced in a deep-
inelastic process with longitudinal polarization, via spin transfer from the struck quark
or from the target nucleon remnant. The Λ and Λ̄ hyperons may be produced either
promptly or via the decays of heavier resonances such as Σ?, Σ0, Ξ and their antiparticles,
which also transfer partially their polarization to the Λ or Λ̄. We take both possibilities
into account.

The spin transfer from the nucleon target remnant to the Λ and Λ̄ hyperons can be due
to either polarization of the remnant diquark system (after the struck quark is removed
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from the nucleon) or possible sea polarization of quarks (and antiquarks) produced via
intermediate string breaking, which then fragment into the baryon considered.

Following [11], we consider in the following two extreme cases for spin transfer to
hyperons.

• Model A: Restrict spin transfer in (di-)quark fragmentation to hyperons with
(Rqq = 1, Rq 6= 1) Rqq 6= 1, Rq = 1.

• Model B: Allow spin transfer in (di-)quark fragmentation to hyperons with (Rqq <
Rq) Rqq > Rq.

The spin transfer in quark and diquark fragmentation is then calculated as follows.
The polarization of Λ and Λ̄ hyperons produced promptly or via the decay of a strange

baryon Y in quark fragmentation is assumed to be related to the quark polarization Pq

by:

P q

Λ
(Y ) = −CΛ

q (Y )Pq,

P q̄

Λ̄
(Ȳ ) = −CΛ̄

q̄ (Ȳ )Pq̄,
(2)

where CΛ
q (Y ) = CΛ̄

q̄ (Ȳ ) are the corresponding spin-transfer coefficients. For the sake of

simplicity we use the notation CΛ
q (Y ) for both Λ and Λ̄.

We use two different models to calculate CΛ
q (Y ): naive SU(6) and BJ model by

Burkardt and Jaffe (BJ) [1]. In Model A the Λ and Λ̄ are polarized according to (2) if
Rq = 1 and Rqq 6= 1. In Model B the corresponding condition is Rq < Rqq. We assume
that no spin transfer occurs if Rq = Rqq.

We parameterize a possible sea-quark polarization as a correlation between the polar-
ization of the sea quark and that of the struck quark, described by the spin-correlation
coefficients Csq:

Ps = CsqPq, (3)

where Pq and Ps are the polarizations of the initial struck quark and the strange quark.
The values of the Csq parameters (one for scattering on a valence quark, the other for
scattering on a sea quark) were found in a fit to NOMAD data [11].

In Figs. 3 we display the results of our calculations for the spin transfer to Λ (left) and
Λ̄ (right) hyperons as a function of xF for SU(6) and BJ models and CTEQ5L and GRV98
quark parameterizations for the COMPASS kinematics. One can see the spin transfer to
Λ hyperons at xF < 0 due to polarized nucleon strangeness. This region is not very much
sensitive to details of Λ hyperon spin structure and to the strange quarks parameterization
of the nucleon. Instead positive xF region for both Λ and Λ̄ displays a strong difference
in the spin transfer for CTEQ5L and GRV98 parameterization and for SU(6) and BJ
models of Λ hyperon spin structure. Remarkably that an accurate measurement could
disentangle both s(x) in the nucleon and spin structure of the Λ (anti)hyperons in one
experiment.

In [2] we provide also our predictions for different kinematics domains for fixed target
experiments: COMPASS (160 GeV µ) and JLAB (12 GeV e−), and HERA collider (27.5
GeV e− and 820 GeVp) which do not fit to this short note.

In conclusion we have demonstrated that the accurate measurement of the spin trans-
fers to Λ and Λ̄ hyperons with COMPASS kinematics has the potential to probe the
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Figure 2: Spin transfer to Λ (left) and Λ̄ (right) hyperons as a function of xF for SU(6) and
BJ models and CTEQ5L and GRV98 quark parameterizations for COMPASS kinematics.

intrinsic strangeness in the nucleon. We have shown that a measurement of Λ̄ polariza-
tion could provide a clean probe of the spin transfer from s̄ antiquarks. It provides a new
possibility to measure the antistrange quark distribution function.
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Discussion

Comm. (G.Bunce, BNL) Belle data may help constrain model for s → Λ and
u/d → Λ, polarized and unpolarized. e+e− → qq̄ → 2 jets, can compare correlation
for Λ, Λ̄; Λ, π+; Λ, π−, etc.

Q. (S.Gerasimov, JINR, Dubna) The relative percentage of scalar and pseudovector
diquarks in the nucleon, and the flavour-spin structure of the Λ may be markedly differ-
ent from those predicted by the 56-plet representation of SU(6). Are you planning the
calculations with mentioned symmetry breaking effects taken into account?
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A. This effect is included into the JETSET package. There is a special parameter
which controls relative contributions of scalar and vector di-quarks states. We in NOMAD
used various available data in order to tune the JETSET generator. The mentioned
parameter was also tuned and it is really quite important for a proper data description.
The found value is different from a naive SU(6) picture, you are completely right.

Q. (S.Belostotsky, PNPI, St.Petersburg) How much u-quark contributes to Λ̄ produc-
tion as compared to s̄-quark? Does large contribution from u-quark (u-dominance) would
make the analysis strongly model dependent?

A. ū quarks contribute to Λ̄ production, however their contribution to Λ̄ polarization
is really modest, thus we do not observe large dependence on Monte Carlo model. Also the
model we use is tuned on a large amount of unpolarized data which adds us a credibility
to it.

Q. (S.Nurushev, IHEP, Protvino) You made calculations for Λ-spin transfer parame-
ter. There are many of them. Which component of the spin parameter (N,S or L) was
calculated?

A. We considered longitudinal polarization of Λ, Λ̄ hyperons.
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THE COMPARATIVE STUDY OF THE INCLUSIVE π0 ANALYZING
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Abstract

Single-spin asymmetries AN in reactions p+p↑ → π0 +X and π−+p↑ → π0 +X
at 50 and 40 GeV/c respectively behave in drastically different ways in function of
transverse momentum in the central region. At the same time AN in the polarized
proton fragmentation region of these reactions are practically coinciding. Our new
data on the analyzing power at 50 GeV/c in the polarized proton fragmentation
region in reaction p + p↑ → π0 + X confirm this conclusion with better statistics
and coincide with our previous data at 70 GeV/c for the same reaction.

Our previous measurements (see Fig. 1) of the single spin asymmetries in reactions
π− + p↑ → π0 + X(1) at 40 GeV/c [1] and p + p↑ → π0 + X(2) at 70 GeV/c [2] showed
that they behave in drastically different ways in function of transverse momentum in the
central region.

The analyzing power of reaction (1) is close to zero around the momentum transfer
pT =1 GeV/c and then increases with growth of pT up to 40% for pT >2.2 GeV/c. The
same behavior was found in reaction π−+d↑ → π0 +X at the same kinematical region [3].
At the same time AN for reaction (2) at 70 GeV/c is compatible with zero in the central
region for the same domain of the transverse momentum. We may think about the
following sources of the discrepancy. First one is related to the difference in the initial

pT(π0), GeV/c
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Figure 1. Analyzing power of the reactions π− + N↑ → π0 + X (a) and p + p↑ → π0 + X (b)

at the central region at 40 and 70 GeV/c respectively.
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momentum of the incident particles, namely, 40 and 70 GeV/c. This argument does
not work for the following reason. As it’s well known, one half of the incident hadron
energy is carried by quarks and another one half is carried by gluons. Therefore the
momentum of the interacting incident quark is 10 GeV/c in the case of pion beam and
around 12 GeV/c in the case of proton beam. Assuming that the incident quark interacts
with the constituent quark of the mass around 0.3 GeV we estimate the initial energy of
the quark interaction in the center of mass system as 2.4 GeV for reaction (1) and 2.7 GeV
for reaction (2). Such a small difference in the interaction energy should exclude the big
difference in the spin effects in the reactions under discussion. As we show later our new
result on AN for reaction (2) at 50 GeV/c experimentally confirms such conclusion for
the beam fragmentation region. The second possibility for difference in analyzing power
might be the existence of the antiquark in pion and the possible role of the annihilation
process. We are not aware of any theoretical judgments about this subject.

The next discovery of the PROZA Collaboration, presented in Fig.2, is relevant to the
single spin asymmetries in reactions (1) and (2) in the polarized proton fragmentation
region. The asymmetry in the reaction (1) is close to zero in the interval 0 < −xF < 0.4,
then increases with growth of the |xF | reaching the value around 30% at |xF |=0.7 [4]. Sim-
ilar behavior is illustrated by the reaction (2) [5]. So we do not see the flavor dependence
of the asymmetry in contrast to the data for those reactions at the central region.

The goal of this article is to present our new data for reaction (2) with better statistics,
but at the initial proton momentum 50 GeV/c, which corresponds to the quark energy in
c.m.s around 2.2 GeV.

The layout of the experiment PROZA-M is presented in Fig.3. The proton beam of
momentum 50 GeV/c extracted by curved mono-crystal [6] comes from the left side, passes
through the scintillation counters S1-S3, hodoscopes H1, H2 and strikes the polarized
proton propane-diol target (PPT). Specific features of the PPT are the fairly high target
polarization (90%), the long polarization life time and sufficiently large target length which
was used in the frozen spin mode. [7]. The photons emitted from target are detected by
the electromagnetic calorimeter EMC-720, consisting of 720 lead glass counters packed as
30×24 matrix. Cell sizes are 38.1×38.1×450 mm3 (18 X0). It is installed under angle 30◦

to the beam direction at the distance l =2.16 m from the center of the PPT. The dashed
box around the PPT denotes the unique magnet carrying two functions: building up the
target polarization and holding it during the data taking. The PROZA setup is described
in detail somewhere [8].
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Figure 2. Analyzing power of the reactions π− + p↑ → π0 + X (a) and p + p↑ → π0 + X (b)

at the polarized target fragmentation region at 40 and 70 GeV/c respectively.
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beam
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H1 H2 target

EMC-720

30o

Figure 3. Experimental Setup PROZA-M. S1-S3 – trigger scintillation counters; H1-H2 –
hodoscopes; EMC − 720 – electromagnetic calorimeter; target – polarized target.

EMC was calibrated by wide electron beam of 5 GeV/c using inverse matrix method.
Sensitivity of the ADC channels is about 2.2 MeV/channel. Additional calibration using
π0-mass during data taking was used to monitor EMC energy stability in time with
accuracy 0.1%.

Trigger requires the coincidence of signals from three scintillation counters, at least
one hit in each plane of hodoscopes and total deposited energy in EMC ΣE > 2 GeV.
The DAQ system includes the registers for hodoscopes, 12 bits ADC for EMC, scalers,
the read-out processor on the base of processor MC68030. In average 700 events per spill
were registered. During 10 days data taking 5 · 107 events were accumulated.

For shower reconstruction it is required that at least 5 cells among 9 central (3×3)
were activated; energy deposit in the central counter should be at least 100 MeV. For
reconstruction of the π0 the photons in the energy region 0.5-5 GeV were used. Additional
procedures were implemented to reconstruct actual photon energy and coordinate:

1. The dependence of the reconstructed photon energy on the real initial photon energy
[2]. This correction was of order of 10%.

2. The dependence of the reconstructed photon energy and coordinate on its inclination
angle [9, 10]. The energy correction was of order 5%. The coordinate correction is
2-3 cm for 15◦ gamma inclination angle.

After corrections the reconstructed π0 mass was consistent with its table mass within
precision less than 1% in whole kinematical range.

The raw asymmetry was calculated by usual way normalizing the counting rate to
the events outside of the π0-mass region. In order to check that the false asymmetry is
zero for the fixed target polarization the vents were divided in two groups with almost
equivalent statistics. Using these two groups we calculated the false asymmetry. Such
procedure was applied to both sign of the polarization target independently. The results
for such false asymmetries are presented in Fig.4a.

New results for the reaction p + p↑ → π0 + X in the polarized target fragmentation
region at 50 GeV are shown in Fig.4b. AN in the inclusive π0 production at polarized
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Figure 4a. False raw asymmetry for different sets of data
Figure 4b. AN in the reactions p + p↑ → π0 + X at the polarized target fragmentation region

at 50 GeV/c (circles) and 70 GeV/c (squares).
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target fragmentation region increases by magnitude with growth of |xF | and achieves
−(20.4 ± 3.3)% at −0.45 < xF < −0.25. These data are consistent with our previous
measurement of the analyzing power for the same reaction and at the same kinemati-
cal region at 70 GeV/c presented in the same figure. It supports our conclusion that
asymmetry in quark scattering is not sensitive to the small energy difference in the initial
state.

We can conclude that the analyzing power in the inclusive π0 production at high
energies appears to illustrate the following features:

• In the central region it is zero for reaction (2) [PROZA, E704, PHENIX] in the
energy range

√
s = 10− 200 GeV and non zero for reaction (1) [PROZA only];

• In the polarized particle fragmentation region for reactions (2) [PROZA, STAR]
and (1) [PROZA] it is non zero and AN does not depend on the energy in the range√

s = 10− 200 GeV for reaction (2).

Current activity was partially supported by RFBR grant 06-02-16119.
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Discussion

Q. (S.Belostotsky, PNPI, St.Petersburg) Is there any QCD based explanation of this
asymmetry, which is a very large spectacular effect?

A. Our kinematic domain (
√

s ' 10GeV , pT ≤ 2GeV/c) seems not suitable for pertur-
bative QCD calculation (see J.Soffer’s recent paper). But the theoretician participating
in this workshop may be ready to add some comments.

Comm. (G.Bunce, BNL) Saroff et al., AGS experiment at 13, 18 GeV, also saw very
large AN at mid-rapidity for p ↑ p → π+X. I note that paper suggested possible scaling
for xR =

√
x2

F + x2
T . This is as the approach to kinematic limit.
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Abstract

The study is made of discrepancy between the dispersion relation prediction
for the ratio of real to imaginary part of forward scattering amplitude ρ and its
experimental values for pp elastic scattering in the Coulomb-nuclear interference
(CNI) region for future PAX experiment energy interval (3 – 10) GeV.

The measurement of the differential cross-section in the CNI region allows to extract
simultaneously two observables, namely, the total cross section σT , related through the
optical theorem to the imaginary part of the forward spin non flip scattering amplitude
fn(0)

Imfn (0) = kcmσT /4π (1)

and parameter ρ, defined as the ratio of real to imaginary part of the amplitude fn(0)

ρ ≡ Refn (0) /Imfn (0) (2)

In fig. 1 we show the momentum dependence of ρ from E760 paper [1] with world data
(black symbols), E760 data in the range 3.7 – 6.2 GeV/c (white circles) and the curve
representing dispersion relation calculation of Kroll and Schweiger [2].

We see the drastic discrepancy between theoretical prediction and very precise data
of E760 in the momentum region 3 – 6 (GeV/c).

Below we analyze the method of derivation of ρ from experimental data in [1].
Antiproton-proton elastic scattering can be expressed throw Coulomb and nuclear am-

plitudes, fc and fn. Taking into account usual parameterization of the nuclear amplitude
at small t, we can get:

dσ

dt
=

π

k2
| fce

iδ + fn |2= dσc

dt
+

dσint

dt
+

dσn

dt
, (3)

where
dσc

dt
=

4πα2
EMG4 (t) (~c)2

β2t2
, (4)

dσint

dt
=

αEMσT

β |t| G2 (t) e−
1
2
b|t| (ρ cos δ + sin δ) , (5)

and
dσn

dt
=

σ2
T (1 + ρ2) e−b|t|

16π (~c)2 . (6)
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Here αEM is the fine structure constant, the proton dipole form factor G (t) = (1 + ∆)−2,
with ∆ ≡ |t| / [

0.71(GeV/c)2]. The Coulomb phase was borrowed from [3]:

δ (t) = αEM

[
0.577 + ln

(
b |t|
2

+ 4∆

)
+ 4∆ ln (4∆) + 2∆

]
(7)

The E760 experimental data on dσ/dt vs t are shown in fig. 2. These data were param-
eterized according the equations (3 – 6) with free parameters σT , ρ and b. In the above

expression for dσ/dt the spin effects are not taken into account. But in the paper [4] was
suggested the modification of nuclear part of differential proton-proton cross section with
spin corrections:

dσn

dt
=

σ2
T (1 + ρ2)

(
e−b1|t| + β2e−b2|t|)

16π (~c)2 (8)

New parameters b1, b2 and β are obtained as follows.

Let us consider the nucleon-nucleon scattering in the c.m. system where
−→
k and

−→
k′ are

the momentum before and after the collision
(
| −→k |=| −→k′ |= k

)
. In the Pauli formalism

the scattering amplitude may be written as following 4 × 4 matrix [5]:

M = a + bσ(1)−→n σ(2)−→n + ic
(
σ(1)−→n + σ(2)−→n )

+ eσ(1)−→mσ(2)−→m + fσ(1)−→l σ(2)−→l (9)

where σ(1) and σ(2) are the spin operators for the two nucleons and
−→
l , −→m, −→n are the unit

vectors in the directions
−→
k +

−→
k′ ,

−→
k −−→k′ and

−→
k ×−→k′ respectively. From kinematics only,

as a consequence of angular momentum conservation, at t=0 we have:

c (0) = 0, b (0) = c (0) . (10)

From the usual expression of differential cross section throw Coulomb and nuclear ampli-
tudes we have:
dσ

dt
=

π

k2

[|an + ac|2 + |bn + bc|2 + 2 |cn + cc|2 + |en + ec|2 + |fn + fc|2
]

=
dσn

dt
+

dσc

dt
+

dσint

dt
.

(11)
In the case of antiproton-proton collision we must only change the sign of interference
term to negative one.

In the CNI region, t varies approximately between 10−3 and 10−2 (Gev/c)2 so by using
eqs. (10) and assuming the exponential fall off with t for the amplitudes we can write for
fixed energy:

dσn

dt
=

π

k2

[|an (0)|2 e−b1|t| +
(
2 |en (0)|2 + |fn (0)|2) e−b2|t|] , (12)

where b2 is the slope of the spin-dependent part, which is in principle different from b2

for spin-independent part.
In the paper [4] is introduced the denomination:

β =

√
2 |en (0)|2 + |fn (0)|2

|an (0)|2 , (13)

where β is called the spin parameter. So using the optical theorem we can get expression
(8). In this paper were analyzed world data on proton-proton elastic scattering and was
found, that in the momentum region 8 – 10 (GeV/c) β values equal 0.15 – 0.26 and ρ
values equal –0.3 – 0..
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Figure 1.

We decided to check if in-
cluding the spin parameter into
the expression for differential
antiproton-proton cross-section
can allow another fit with β
parameter which will make ρ
value lower and so remove the
discrepancy between dispersion
theory and experiment, shown
in fig. 1. As we didn’t
find E760 experimental numer-
ical data for fig. 2, we took the
values from this figure. We un-
derstood, that these values are
not precise and correspondingly have got bad χ2 /d.o.f. values (40 – 60) for fitting of
these points by expressions (3 – 6).

Figure 2.

So we took expressions (3 – 6) and cal-
culated their values for experimental points
at each momentum. After that we scat-
tered the values of dσ/dt randomly accord-
ing normal distribution, increasing the dis-
persion of distribution function until we
have got approximately the same value of
χ2/d.o.f. (near 1), as in the paper [1].

Using scattered fit values as experimen-
tal points we tried to fit these values by
expressions (3 – 6), and the second time
by the same expressions (3 – 6) where nu-
clear term was replaced by expression (8)
in which in one case we supposed b1 = b2,
as in [4] and in the other case we tried to
vary b1 as well as b2 independently.

In the table 1 are shown the results for
spin independent and spin dependent (the
case when we suppose b1 = b2) forms of dif-
ferential cross-section compared with E760
results (σT here is fixed according world
data).

When we tried to vary the slope b2 independently from b1 it appears that parameters
b2 and β tend to make the term βe−b2|t| negligible.

So we can say, that our investigation doesn’t show the spin contribution into the
differential cross-section of pp elastic scattering and therefore no any change of the ρ
parameter.

Next steps, which can be done in these investigations are:
- comparison with original data of E760 experiment
- analysis of spin contribution to the dispersion relations.
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plab, fit σT , b, ρ β χ2

GeV/c mb (Gev/c)−2 /d.o.f.
5.60 E760 61.3 12.5(3) –0.030(7) – 1.04
5.60 No spin 61.30±0.09 12.4±0.2 –0.033±0.002 – 0.80
5.60 With spin 61.3±69 12.4±0.5 –0.03±0.07 0.01±100 0.82
5.72 E760 60.9 12.2(4) –0.018(8) – 1.20
5.72 No spin 60.8±0.1 12.1±0.3 –0.022±0.002 – 1.00
5.72 With spin 60.6±77 12.1±0.5 –0.02±0.07 0.08±15 1.02
5.94 E760 60.2 12.6(3) –0.035(8) – 1.26
5.94 No spin 60.2±0.1 12.7±0.3 –0.040±0.002 – 0.97
5.94 With spin 60.0±76 12.7±0.6 –0.040±0.09 0.0004±3385 1.00
6.23 E760 59.4 12.2(6) –0.029(10) – 0.50
6.23 No spin 59.32±0.08 2.3±0.2 –0.032±0.002 – 0.65
6.23 With spin 59.3±63 12.3±0.5 –0.03±0.07 0.01±83 0.67
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Discussion

Comm. (J.Soffer, Temple Univ., Philadelphia) I believe that if you get the numerical
values of E760, you could repair the fit of β2 with the ρ values of DR by P.Kroll.
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Abstract
The COMPASS experiment at the CERN SPS has an extensive experimental

program focused on the nucleon structure and on hadron spectroscopy. A main topic
of investigation is the spin structure of the nucleon via deep-inelastic scattering of
160 GeV polarised muons on polarised nucleons. Results obtained in the kinematic
ranges Q2 < 1 (GeV/c)2 and 0.0005 < x < 0.02, as well as 1 < Q2 < 100
GeV2 and 0.004 < x < 0.7 are shown. The results of a global QCD fit at NLO
to the world g1 data are discussed. Then, the evaluation of the polarised valence
quark distributions ∆uv(x) + ∆dv(x) is presented. The analysis is based on the
difference asymmetry, A(h+−h−), for hadrons of opposite charges. This approach
gives direct access to the valence quark helicity distributions, as the fragmentation
functions do cancel out in LO QCD. The results derived provide information about
the contribution of the sea quarks to the nucleon spin. Comparison with SMC and
HERMES results is also shown.

1 Introduction

The investigation of the spin structure of the nucleon begun more than 30 years ago with
polarised deep inelastic scattering measurements at SLAC [1]. At that time the quark-
parton model and the analyses on weak baryon decays have predicted that 60% of the
nucleon spin was entirely given by the u and d quarks [2]. The first experimental results
supported this prediction but were obtained at a poor x range (x > 0.1). The EMC Col-
laboration extended the measurements to x > 0.01 and came out with the unexpected
value of 0.12 ± 0.09 ± 0.14 [3]. Such a result motivated a series of experiments covering
different x ranges at CERN [4], SLAC [5–8], DESY [9] and JLAB [10]. All these experi-
ments confirmed the small contribution of the quarks (about 20–30%) to the nucleon spin,
and thus more contributions are necessary. For a nucleon with +1/2 helicity one has the
sum rule:

Sn =
1

2
=

1

2
∆Σ + ∆G + Lq + LG (1)

where ∆Σ stands for the contribution from the quarks (∆Σ = ∆u + ∆d + ∆s), ∆G is the
contribution of the gluons and Lq,G are their angular orbital momenta.

2 Experimental Procedure

COMPASS makes use of the SPS facilities, impinging a high intensity 160 GeV muon
beam on a 6LiD polarised target. Besides the scattered muon, other particles produced
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Figure 1: The asymmetry Ad
1(x) for quasi-real photons (Q2 < 1 (GeV/c)2) as a function of x.

The errors bars are the statistical ones. The grey band shows the systematic errors.

in deep inelastic scattering are detected in a two-stage spectrometer. Data presented in
this article have been collected in the years 2002, 2003 and 2004, corresponding to an
integrated luminosity of about 2 fb−1. The detailed description of the spectrometer can
be found at Ref. [11].

3 The Ad
1 Asymmetries

In order to access the spin-dependent structure function, gd
1 , the longitudinal photon-

deuteron asymmetry, Ad
1, has to be evaluated. In the framework of the quark parton

model this quantity can be directly related to the quark polarisation, ∆q, via

A1 =
(σ↑↓γµ − σ↑↑γµ)

(σ↑↓γµ + σ↑↑γµ)
'

∑
q e2

q(∆q + ∆q̄)∑
q e2

q(q + q̄)
(2)

where the arrows indicate the relative beam and target spin orientations. Figure 1 shows
Ad

1 as a function of x for quasi-real photon interactions for the data collected in the
years 2002 and 2003. Events are selected by cuts on the four-momentum transfer squared
(Q2 < 1 (GeV/c)2) and the fractional energy of the virtual photon (0.1 < y < 0.9).
Such a kinematic window allows a wide Bjorken scaling variable interval, 0.0005 < x <
0.02 and provides more than 300 million events. The asymmetry is compatible with
0 over the whole x range. The error bars are the statistical ones and the grey band
corresponds to systematic errors, which are due to false asymmetries mainly. Details on
this analysis can be found in [12]. Figure 2 shows Ad

1 as a function of x for DIS events
(Q2 > 1 (GeV/c)2), as measured by COMPASS using 2002, 2003 and 2004 data [13].
After data selection, 89×106 events are available for analysis. The results of the SMC [4],
E143 [6], E155 [8] and HERMES [14] experiments are also shown. The asymmetry is 0 for
x < 0.05 and gets larger as x increases, reaching 60% at x ' 0.7. The agreement is very
good between the different data sets. It should be noted that only COMPASS and SMC
were able to measure this asymmetry at very low x, the COMPASS results being essential
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Figure 2: The asymmetry Ad
1(x) as measured by the world spin experiments. The error bars

are the statistical ones. The bands show the COMPASS systematic errors.

to disentangle the Ad
1 behaviour at x < 0.03. Error bars are the statistical ones and

the grey band corresponds to systematic errors of the COMPASS measurements, whose
sources come from the uncertainty on beam and target polarisations (5% each), dilution
factor (6%) and depolarisation factor (4-5%). Radiative corrections and the neglect of
the transverse asymmetry A2 are found to have a small effect. The upper limit for the
systematic error due to false asymmetries is half of the statistical one.

4 The gN
1 Structure Function

The spin-dependent structure function of the nucleon, g1(x), is obtained from A1(x) and
the spin-independent structure function F2(x) through

g1(x) = A1(x)
F2(x)

2x(1 + R)
, (3)

where R is the ratio of the longitudinal to transverse photon absorption cross-sections.
Figure 3 shows gd

1 as a function of x for DIS events [13]. The SMC results [4] have been
evolved to the Q2 of the corresponding COMPASS points. The two curves are the results
of two QCD fits at the Q2 of each data point. They are performed at NLO in the MS
renormalisation and factorisation scheme. These fits require input parameterisations of
the quark singlet spin distribution ∆Σ(x), non-singlet distributions ∆q3(x) and ∆q8(x),
and the gluon spin distribution ∆G(x), which evolve according to the DGLAP equations.
Data are well described by two solutions of DGLAP, with ∆G > 0 and with ∆G < 0.
Figure 4 shows the QCD fit to proton, deuteron and neutron targets with positive ∆G
solution (an indistinguishable curve is obtained for the solution with ∆G < 0). All data
have been evolved to a common Q2

0 = 3 (GeV/c)2, which corresponds to the average Q2 of
the COMPASS DIS data. The deuteron data are taken from Refs [4, 6, 8, 14], the proton
data from Refs [4, 6, 14–16] and the 3He data from Refs [10, 5, 17, 18]. For this analysis
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Figure 3: The spin-dependent structure function of the deuteron, gd
1 , as a function of x (Q2 >

1 (GeV/c)2). The errors bars are the statistical ones. The band shows the COMPASS systematic
errors. The curves show the results of QCD fits with ∆G > 0 and ∆G < 0.

all bins, except the last one, have been subdivided into three Q2 intervals. The number
of COMPASS data points used in the fit to deuteron data is 43, out of a total of 230.
Two different programs have been used to fit the data – one uses the DGLAP evolution
equations for the spin structure functions in x and Q2 phase space [20], the other uses the
DGLAP evolution equations in the space of moments [21]. Both programs give consistent
values of the fitted PDF parameters and similar χ2-probabilities. Although the shapes
of the gluon distributions obtained with the two ∆G solutions differ over the whole x
range, the fitted values of the first moment, ηG, are small and similar in absolute value
|ηG| ≈ 0.2−0.3. Similarly ηΣ reveals weak dependence on the shape of ∆G, being slightly
larger in the fit with ∆G < 0. The results from the two fits have been averaged and give:

ηΣ(Q2=3 (GeV/c)2) = 0.30± 0.01(stat.)± 0.02(evol.). (4)

In the MS scheme ηΣ is identical to the matrix element a0, detailed below. The direct
measurements of ∆G/G, obtained at leading order in QCD, is compared with the indirect
approach provided by the NLO QCD fits in figure 5. The unpolarised gluon distribution
is taken from the MRST parameterisation [19]. The large statistical uncertainties of the
direct measurements do not allow to disentangle between the two solutions for ∆G. More
details on our QCD analysis can be found at Ref. [13].

Figure 4: The world data and QCD fit at Q2 = 3GeV2, obtained with the program of Ref. [20].
The curve corresponds to the solution with ∆G > 0.
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fits with ∆G > 0 and ∆G < 0. Data points are taken from SMC [24], HERMES [22, 23]
and COMPASS [25]. The error bars associated to the points are statistical. The error bands
correspond to the statistical error on ∆G(x) at a given x.

We have calculated the integral of gN
1 using exclusively the experimental values of

COMPASS evolved to Q2
0 = 3 GeV2 and averaged over the two fits. Taking into account

the contributions (2%, only) from the fits in the unmeasured regions of x < 0.003 and
x > 0.7, we obtain:

ΓN
1 (Q2=3 (GeV/c)2) = 0.050± 0.003(stat.)± 0.003(evol.)± 0.005(syst.). (5)

The second error accounts for the difference in Q2 evolution between the two fits. The
systematic error is the dominant one and mainly corresponds to the uncertainty on the
beam and target polarisations and on the dilution factor. ΓN

1 is related to the matrix
element of the singlet axial current a0, which measures the quark spin contribution to the
nucleon spin. The relation between ΓN

1 and a0, now independent on Q2 (â0 = a0(Q2→∞))
(Ref. [26]), is

ΓN
1 (Q2)Q2→∞ =

1

9
ĈS

1 (Q2) â0 +
1

36
CNS

1 (Q2) a8. (6)

The coefficients ĈS
1 and CNS

1 have been calculated in perturbative QCD up to the third
order in αs(Q

2) [26]. From the COMPASS result of Eq. 5 and taking the value of a8

measured in hyperon β decay, assuming SU(3)f flavour symmetry (a8 = 0.585±0.025 [27]),
one obtains:

â0 = 0.33± 0.03(stat.)± 0.05(syst.). (7)

with the value of αs evolved from the PDG value αs(Mz
2) = 0.1187 ± 0.005. Combining

this value with a8, the first moment of the strange quark distribution is:

(∆s(x) + ∆s(x))Q2→∞ =
1

3
(â0 − a8) = −0.08± 0.01(stat.)± 0.02(syst.). (8)

One should keep in mind that the data have been evolved to a common Q2 through a
NLO fit, whereas the coefficients ĈS

1 and CNS
1 , as well as αs(Q

2), have been obtained
beyond NLO. However, the choice of a value close to the average of Q2 of the DIS data is
expected to minimise the effect of the evolution in the results of â0 and ∆s(x) + ∆s̄(x)
quoted above.
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5 Valence Polarisations

In order to extract helicity distributions in LO QCD, unpolarised distributions and frag-
mentation functions for the hadron production from different quark flavours are needed:

Ah
1(x) =

∑
q e2

q(∆q(x)Dh
q + ∆q̄(x)Dh

q̄ )∑
q e2

q(q(x)Dh
q + q̄(x)Dh

q̄ )
(9)

Figure 6 shows semi-inclusive asymmetries as a function of x for positive and negative
unidentified charged hadrons. The kinematic range is basically the same as for inclusive
analysis; in addition, the fraction of the photon energy carried out by the hadrons, z, is
required to be between 0.2 and 0.85. COMPASS improves significantly the statistics with
respect to SMC. A suitable way to get valence quark polarisations is to measure difference
asymmetries [29,30]. In LO QCD, under the assumption of isospin and charge conjugation
symmetries, fragmentation functions do cancel out. Furthermore, for a deuteron target,
no hadron identification is required, as difference asymmetries have the same expression
both for pions and kaons:

Ah+−h−
N = Aπ+−π−

N = AK+−K−
N =

∆uv + ∆dv

uv + dv

, (10)

The measured single hadron asymmetries combined with the ratio of the charged hadron
cross-sections are used to define difference asymmetries:

Ah+−h− =
1

1− r
(Ah+ − rAh−) , with r =

σh−
↑↓ + σh−

↑↑
σh+
↑↓ + σh+

↑↑
=

σh−

σh+
. (11)

The measured x range is slightly smaller as the r factor becomes 1 for x < 0.006. In order
to determine the hadron acceptances a full chain Monte Carlo simulation is performed,
in which the generated events face the same experimental conditions as real data do.
Once the difference asymmetries are determined and knowing the unpolarised valence
distributions the valence spin distributions are obtained from

∆uv + ∆dv =
(uv + dv)MRST

(1 + R)(1− 1.5ωD)
Ah+−h−

d . (12)

x
-210 -110

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6 COMPASS 

HERMES

SMC

d
h+A

x
-210 -110

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6 COMPASS 

HERMES

SMC

d
h-A

Figure 6: Hadron asymmetries Ah+
d (left) and Ah−

d (right) measured by COMPASS, SMC [28]
and HERMES [14] experiments. The errors bars are the statistical ones. The band shows the
COMPASS systematic errors.
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1 [13]. (Right) The inte-
gral of ∆uv(x)+∆dv(x) over the range 0.006 < x < 0.7 as the function of x minimum, evaluated
at Q2 = 10 (GeV/c)2.

For x >0.3 the unpolarised sea contribution to F2 vanishes and thanks to the positivity
condition, |∆q + ∆q| ≤ |q + q|, the polarised sea contribution to the nucleon spin also
becomes negligible in this region. These features allow the use of three points from the
inclusive g1(x) COMPASS result [13] to define the valence polarisation. The advantage of
this procedure is the gain in precision. A LO DNS analysis using KKP [31] fragmentations
functions has been performed [32]. It includes all DIS g1 results prior to COMPASS data,
the partial COMPASS data on g1 from Ref. [33] and all SIDIS results from SMC [28] and
HERMES [14], where a symmetric sea in the valence range has been considered. Unpo-
larised MRST2004 [34] LO PDFs have been used. Figure 7(left) shows the comparison
between COMPASS results and previous analyses from SMC and HERMES. All data
points are evolved to a common Q2

0=10 (GeV/c)2 accordingly to DNS. The line stands
for the DNS fit to SMC and HERMES data, only. Indeed, the COMPASS data agree
very well with the other experiments and DNS parameterisation predicts successfully our
result. Figure 7(right) shows the integral of the valence polarisation as a function of x
minimum, evaluated at Q2

0=10 (GeV/c)2. Its value over the measured x range (0.006 –
0.7) is 0.41 ± 0.07(stat.) ± 0.05(syst.). The contribution from the upper unmeasured
region is estimated to be 0.004. Also the contribution from lower x values are expected
to be small as the integral almost does not change for low x values.
The contribution of sea quarks to the nucleon spin can be obtained by combining the
matrix elements a0 and a8 and the first moment of the valence polarisation:

∆u + ∆d = (∆s + ∆s) +
1

2
(a8 − Γv) = 3 ΓN

1 −
1

2
Γv +

1

12
a8 (13)

The result shown in figure 7(right) favours an asymmetric scenario for the sea polarisa-
tion, ∆u = −∆d, at a confidence level of two standard deviations, in contrast to the usual
assumed symmetric scenario, ∆u = ∆d = ∆s = ∆s. However, the statistical errors are
still large and do not allow to draw firm conclusions. More details on this analysis can be
found in [35].
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6 Conclusions

COMPASS has measured the deuteron spin asymmetry Ad
1 and its longitudinal spin-

dependent structure function gd
1 with improved precision at Q2 < 1 (GeV/c)2 and 0.0005

< x < 0.02, as well as 1 < Q2 < 100 (GeV/c)2 and 0.004 < x < 0.7. The measured
DIS results have been evolved to a common Q2 by a NLO QCD fit of the world g1 data.
The fit yields two solutions, one corresponding to ∆G(x) > 0 and other to ∆G(x) < 0,
which describe the data equally well. The absolute values of the first moment of ∆G(x)
are similar and not larger than 0.3. From the first moment ΓN

1 the matrix element of the
singlet axial current â0, in the limit Q2 →∞, is found to be 0.33±0.03(stat.)±0.05(syst.).
The polarised valence quark distribution has been determined using the difference asym-
metry approach in LO QCD. The integral at Q2

0=10 (GeV/c)2 over the measured x range,
and including the extrapolation to the full x range, disfavours a symmetric sea at 2σ level
and appoints to a opposite sign of ∆u and ∆d.
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Discussion

Q. (S.Belostotsky, PNPI, St.Petersburg) Quark contribution to nucleon spin from
COMPASS is now 0.33, while COMPASS stated negative strange quark contribution.
HERMES give also 0.33 but zero for strange quark. How to explain such a discord?

A. A possible explanation can be the different x-range of the measurements in the
two experiments. The limited x-range of HERMES implies large extrapolation to x =
0. Another explanation (standard) is the systematics on the approaches. Have both
experiments much the same assumptions.

Q. (S.Nurushev, IHEP, Protvino) You may know that the preliminary data on ∆G
from RHIC is close to zero or negative. May you exclude from new COMPASS data the
negative values of ∆G? If yes, on which confidence level?

A. We cannot exclude at all negative ∆G from COMPASS data, either from direct
measurements (open charm channel and high-p⊥ pairs) or from indirect estimations from
QCD fits. Statistical errors are still very large and the systematic uncertainty on ∆G from
QCD fits is 100%. On the other hand, in my opinion, the present xg range of the mea-
surements (SMC, COMPASS and HERMES) is too narrow to take definite conclusions,
even if the statistical errors become drastically reduced. For sure, that RHIC results on
∆G as a function of xg will help to disentangle the sign of ∆G as its xg range is larger.

344
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NEUTRON BEAMS AND DIRECT RECONSTRUCTION OF THE
ISOSINGLET NN - AMPLITUDES OF FORWARD SCATTERING – FOR
SEARCH SIGNALS OF PHASE TRANSITION OF NN TO 6 - QUARKS.

L.N. Strunov and V.I. Sharov, R.A. Shindin amd A.A. Morozov

JINR, Veksler and Baldin Laboratory of High Energies, 141980 Dubna, Russia
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Abstract

To advance studies of the short range spin structure of NN interactions, there
were (np) spin observables measured for the first time at 0 ◦ up to the highest
nucleon internal momenta k in np-core. Both the bounded polarized (np)-couple (in
deuteron) and a polarized free np-couple were probed up to k ≈ 5 fm−1 and 6 fm−1

respectively. The highest energy polarized deuteron (up to 9 GeV/c) and polarized
monochromatic neutron beams (up to 4.5 GeV/c), provided now only by the JINR
ACCELERATORS, were used [1, 2, 3] for energy dependence measurements T20(k)
up to k ≈ 5 fm−1 [2a] in the d → p stripping up to kinematic limit of k, and ∆σL(np)
total np cross section differences in new energy range of 1.2–3.7 GeV [3].

1. These data [2, 3] are in agreement with the SATURNE II ones over the lower k-
momentum common range of 2.5 fm−1. Several years ago Dubna (in collaboration with
groups from 12 laboratories) began the transmission measurements using both a polarized
neutron beam and a polarized proton target (PPT). For the first time we measured the
energy dependence of the ∆σL(np), neutron-proton total cross section difference for the
pure longitudinal (L) spin states for parallel and antiparallel (np) spins, over a new kinetic
energy range of 1.2–3.7GeV for a quasi-monochromatic polarized neutron beam. The
−∆σL(np) energy dependence [3, 4] shows an unexpected anomalous fast decrease to zero
above 1.1 GeV and a structure with minimum |∆σL(I = 0)| around 1.8GeV predicted in
Ref. [5a]. The authors [5a] used the Cloudy Bag Model and an R-matrix connection to
long-range meson-exchange force region with the short-range region of asymptotically free
quarks; this hybrid model gives the lowest exotic six-quark configurations in the isosinglet
3S1 state with the mass M = 2.63GeV (Tkin =1.81GeV).

Since −∆σT contains no uncoupled spin-triplet contribution, a 3S1 resonance effect
in this observable less will be diluted by other spin-states than in −∆σL. The measure-
ment −∆σT(np) and the determination of the −∆σT(I= 0) energy dependence provide a
significant and sensitive check of the predicted resonance. For this reason, the accurate
−∆σL,T(np) measurements near to Tkin =1.8GeV are desirable [3b, 3c, 4]. The I= 0 spin
dependent total cross section differences represent a considerable advantage for studies of
the 3S1 state around 1.8 GeV, since this partial wave is expected to be dominant. This is
in contrast with the I= 1 system. This state is not dominant and is strongly diluted in
the forward direction. The obtained high momentum dependence of (np) spin observables
[2, 3] are surprising for all traditional nuclear models. Their predictions are wrong for the
highest momentum (asymptotic) behaviour of these observables related with almost fully

345



overlapping nucleons. In [3, 4] we discussed the QCD motivated model of a nonpertur-
bative flavour-dependent interaction between quarks, induced by a strong fluctuation of
vacuum gluon fields, i.e. instantons.

2. To exactly reveal a discovered structure at 1.8 GeV we are need in obtain the
complete L,T data set [1] of np spin observables at 0 ◦ which is needed for the first direct
reconstruction of all three isosinglet amplitudes of forward NN elastic scattering over
a GeV energy range. With this very ambitious aim the following will be simultaneously
measured for the first time at each chosen Tn: ∆σL and A00kk, a spin correlation parameter
for np → pn charge-exchange at zero angle with the L polarization of n beam and p target;
∆σT and A00nn with the T - polarized beam and target. The proper equipment mounted
in the last years was successfully tested (in the simultaneous σtot(np) measurements of n
beam transmission through D2/H2 targets and dσ/dt of n → p charge-exchange at 0 ◦ on
them). The Dubna group fulfilled first measurements under 0◦ of the ratios Rdp “elastic”

np charge-exchange yields on D/H targets and defined the ratios r
nf/fl
np→pn(0) of “Non-Flip”

to “Flip” contributions of np → pn process. In the region of Tn ≈ 1.8GeV one can expect
an anomaly [3, 4] of r

nf/fl
np→pn - energy dependence (as in the case [3, 4] of the measurements

of ∆σL) if one follows the QCD-motivated reasoning (Lomon et al., Matsuda et al.) [5a, b]
about a phase transition [5c] of the NN system into the exotic six-quark configuration
in the isosinglet and the spin-triplet state 3S1 with the mass M≈ 2.63GeV. For the
exhaustive analysis of this structure [3, 4] using Argand diagrams for Re and Im parts of
each of the three NN forward scattering amplitudes it is required to measure in Dubna
not only the complete set [1] of np-spin observables at 0 ◦ but also to carry out pilot
measurements in the same energy region of the ratio Rdp(0) = dσ/dΩ(nd) / dσ/dΩ(np)
for yields of “elastic” n → p charge-exchange non-polarized neutrons on D/H targets

that independently defines [1b] the ratio r
nf/fl
np→pn for the charge exchange process at 0 ◦:

r
nf/fl
np→pn = 2/3R−1

dp − 1. Our preliminary results of Rdp at Tn = 1.0 and 1.2GeV were
published in [6] and the later seven ones were given in [4]. Now we determinate new point
at Tn = 0.55GeV for more convention with other world experimental data at low energy
and the final results (see item 6 and [7]) will be published in [8].

3. Accelerators and tools:

• The nuclotron of the JINR VBLHE. Relativistic beam (1 − 6)GeV – polarized
neutron beams with L or T orientation of the vector polarization (with the help of
new [9] polarized d - source CIPIOS with intensity up to 5 ∗ 1010 d/cycle), reversing
of the polarization direction cycle by cycle, average polarization value ≈ 0.9 and
unpolarized deuteron beam.

• Large polarized proton target (PPT) with volume of 140 cm3 and ± L/T polariza-
tion value of 0.7− 0.8 and hydrogen H2 and deuterium D2 targets.

• Experimental set-up “DELTA–SIGMA” and same data processing [3c, 4, 7, 10].

4. The ∆σL,T(np) observables are expressed by the NN formalism (S.M. Bilenky and
R.M. Ryndin, Phys. Lett. 6 (1963) 217, R. J.N. Phillips, Nucl. Phys. 43 (1963) 413).
The general expression for the total cross section of a polarized nucleon beam transmitted
through a polarized proton target, with the beam and target polarizations is:

σtot = σ0tot + σ1tot(PBPT ) + σ2tot(PBk)(PT k) , (1)
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where PB and PT are the beam and target polarizations, and k is the unit vector in the
incident beam direction. The term σ0tot is the spin-independent total cross section, and
σ1tot and σ2tot are the spin-dependent contributions which connect with the observables
∆σT and ∆σL by the relations:

−∆σT = 2σ1tot , (2)

−∆σL = 2 (σ1tot + σ2tot) . (3)

Values of σ0tot, ∆σT and ∆σL are connected with the imaginary parts of three invariant
forward scattering amplitudes a + b, c and d via three optical theorems:

σ0tot = (2π/K) Im [a(0) + b(0)] , (4)

−∆σT = (4π/K) Im [c(0) + d(0)] , (5)

−∆σL = (4π/K) Im [c(0)− d(0)] . (6)

where K is the c.m. momentum of the incident nucleon. Using the measured values of
∆σL,T(np) and the existing very good ∆σL,T(pp) data [11] at the same energies, one can
deduce ∆σL,T(I = 0) as:

∆σL,T(I = 0) = 2∆σL,T(np)−∆σL,T(pp) . (7)

The –∆σL(np) data measured in Dubna, inclusive the new accurate latest data [3b, 3c]
between 1.4 and 2GeV, are plotted in Fig. 1. Their energy dependence (see darkened
curve in Fig. 1) connect well with the also free-neutron ∆σL data from Saclay. The
JINR data show a fast unexpected decrease above 1.1GeV, and suggest a minimum in
the vicinity of 1.8 GeV. The solid curves 1 − 3 represent the fits of ∆σL from solution
of the energy dependence (ED) phase shift analysis below 1.3GeV. Above 0.6GeV the
PSA fits are only in qualitative agreement with the measured values. Moreover, above
1.0− 1.3GeV the tendencies of the ED PSA (curves 1− 3) are in disagreement with the
energy dependence of the Dubna data.

Below 2.0GeV, a usual meson exchange theory gives the −∆σL(np) energy depen-
dences [12] which disagree with data above 1GeV (Fig. 1, the left panel). The presented
values of isosinglet I= 0 part of –∆σL are calculated from np results and from pp data
using Eq. 7 (see Fig. 1, the right panel). It show a plateau around 1.4GeV, followed by
a fast decrease and suggest a minimum in the vicinity 1.8GeV. This structure is better
pronounced in the −∆σL(I= 0) energy dependence than in the −∆σL(np) one. Above
0.5GeV the PSA solutions are not in agreement with data.

The manifestation of exotic dibaryons in the energy ∆σL dependence of np observables
was predicted [5a] by the Cloudy Bag Model and R-matrix connection to long-range
meson-exchange force region with the short-range region of asymptotically free quarks.
This hybrid model gives the lowest lying exotic six-quark configurations in the isosinglet
3S1 state with the mass M= 2.63GeV (Tkin =1.81GeV). It is close to the energy where
the structure is suggested by our results.

A complete np data set at 0 ◦/180 ◦ and DRSA for (I= 0) would allow to discuss
possible energy-dependent structures at the level of complex scattering amplitudes and
not only at the level observables.

What can be deduced from the existing and planned ∆σL,T(np) experiments? First of
all –∆σT contains no uncoupled spin-triplet contribution, hence a 3S1 resonance effect in
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Figure 1: Energy dependence of the –∆σL(np) and –∆σL(I= 0) respectively (black symbols –
data of our experiment DELTA-SIGMA; open symbols – other world data; dotted curves at the
left hist are the meson exchange model [12] (top curve) and the NPQCD (down curve); dotted
curve at the right hist is the –∆σL(I= 1) dependence from GW/VPI-PSA; full curves 1− 3 up
to 1.3 GeV only at the both hists: 1) FA95 solution, 2) SP99 solution and 3) SP03 solution.

this observable may be less diluted by other spin-states than in –∆σL. The measurement
−∆σT(np) and the determination of the −∆σT(I= 0) energy dependence provide a signif-
icant and sensitive check of the predicted resonance. Moreover, in difference ∆σL −∆σT

the spin-singlet contribution vanishes. For this reason, the accurate −∆σL,T(np) mea-
surements, in small energy steps, near to Tkin =1.8GeV are desirable.

5. For the A00kk(np) and A00nn(np) coefficients according to [13] we have:

[dσ/dΩ]pol(E, Θ) = [dσ/dΩ](E, Θ)
[
1 + A00n0(E, Θ)P n

B + A000n(E, Θ)P n
T

+ A00nn(E, Θ)P n
BP n

T + A00ss(E, Θ)P s
BP s

T

+ A00kk(E, Θ)P k
BP k

T + A00sk(E, Θ)(P s
BP k

T) + P k
BP s

T

]
, (8)

where dσ/dΩ is a cross section for unpolarized nucleons. If the scattered particles are
detected at 0 ◦ angle then analyzing powers A00n0(E, 0) = A000n(E, 0) = 0 and parameters
A00sk(E, 0) = 0 and A00ss(E, 0) = A00nn(E, 0). Thus, only two non-vanishing spin-
dependent quantities of A00nn(E, 0) and A00kk(E, 0) remain in (8). Due to symmetries
of amplitudes, which hold separately for isospins I = 0 and I = 1, the same relations are
valid at Θc.m. = π. The measurements np observables at Θc.m. = π are connected with
the invariant amplitudes as follows:

dσ/dΩ(π) = 1/2
[|a|2 + |b|2 + |c|2 + |d|2] , (9)

dσ/dΩA00nn(π) = 1/2
[|a|2 − |b|2 − |c|2 + |d|2] , (10)

dσ/dΩA00kk(π) = Re a∗d + Re b∗c , (11)
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where all experimental quantities and amplitudes are at Θc.m. = π. These equations can
be transformed to:

dσ/dΩ(1 + A00kk) = |b + c|2 = A + (Re b + Re c)2 , (12)

dσ/dΩ(1− A00kk − 2A00nn) = |b− c|2 = B + (Re b + Re c)2 , (13)

dσ/dΩ(1− A00kk + 2A00nn) = |b + c− 2d|2 = C + (Re b + Re c− 2Re d)2 , (14)

where terms A,B,C contain the imaginary parts of amplitudes only. The Re parts of the
amplitudes b, c and d can be determined from Eqs. (12–14) using known imaginary
ones. A knowledge of I = 1 system is assumed in order to use the amplitude symmetries
for the transformation of I = 0 amplitudes from Θ = 0 to Θ = π and vice versa.

6. Rdp ratio for charge-exchange at t = 0 and ratio r
nf/fl
np→pn

Energy dependence of the ratio

Rdp = dσ/dΩ(nd → p(nn)) / dσ/dΩ(np → pn) (15)

for the charge exchange process at 0 ◦ in Lab. (quasi elastic nd → p(nn) and elastic
np → pn) was measured at high intensity non-polarized neutron beam from the Nuclotron
using the magnetic spectrometer and hydrogen and deuterium targets. The differential
cross section of np → pn reaction we separate to the “Flip” and “Non-Flip” parts:

dσ/dΩ(np → pn) = (dσ/dΩ)nfl
np→pn + (dσ/dΩ)fl

np→pn . (16)

Using impulse approximation frame [14] the nd → p(nn) can be presented:

(dσ/dΩ)(nd → p(nn)) = (1− F ) dσ/dΩnfl
np→pn + [1− 1/3 F ] dσ/dΩfl

np→pn ; (17)

For zero angle the form-factor F (t) equal to one, hence:

dσ/dΩ(nd) = 2/3 dσ/dΩsfl
np→pn (18)

This relation (18) demonstrates the using of a deuteron as a filter for the “Non-Flip”
amplitudes at t ≈ 0, i. e. the “Non-Flip” part, due to the Pauli principle, vanishes
for nd → p (nn) quasi-elastic reaction with two slow neutrons with parallel spins. Using
Rdp(0) value we define the ratio rnf/fl of “Non-Flip” to “Flip” parts of np → pn process:

rnf/fl
np→pn(0) = 2/3 R−1

dp − 1 , appiars from the (15) and (18). (19)

The Dubna rnf/fl values obtained from the eight measurements of Rdp points (Table 1,
Fig. 2) over the 0.5 ≤ Tn ≤ 2GeV energy region are in a good agreement with LAMPF [15]
results at low energy (3 points below 1.0GeV) and with JINR [16] point at Tn = 1.0GeV.
In the formalism used in item (4, 5) and Ref. [13] the ratio rnf/fl can be expressed as:

rnf/fl
np→np(π) =

| a + b |2
| a− b |2 +2 | c |2 +d2

, (20)

It has appeared that the np → pn forward and np → np backward scattering seem
as absolutely identical but they have different separation to the “Flip” and “Non-Flip”
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Table 1: Results of the Rdp and rnf/fl values defined

Tn GeV 0.55 0.8 1.0 1.2 1.4 1.7 1.8 2.0

Rdp 0.589 0.554 0.553 0.551 0.576 0.565 0.568 0.564
ε 0.046 0.023 0.026 0.022 0.038 0.038 0.033 0.045

rnf/fl 0.133 0.204 0.206 0.209 0.158 0.179 0.174 0.183
ε 0.088 0.051 0.057 0.048 0.077 0.080 0.068 0.094

Neutron beam energy, GeV

Rdp − energy dependence

R
dp

  v
al

ue
s

■ World  Data

▼ JINR  LHE  (DELTA - SIGMA)

JINR  LHE  (Glagolev et al.)

FA91
SP07

VZ40

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Neutron beam energy, GeV

r nfl/fl − energy dependence

r n
fl/

fl   v
al

ue
s

■ World  Data

▼ JINR  LHE  (DELTA - SIGMA)

JINR  LHE  (Glagolev et al.)

R.Binz ,  DRSA  for  np→pn(0)

FA91 CEX(0)

SP07 CEX(0)

VZ40 CEX(0)

0

0.2

0.4

0.6

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Figure 2: Energy dependence of Rdp (θ = 0) ratio of yields of nd → p (nn) quasi elastic to
np → pn elastic charge exchange reactions (left) and energy dependence of r

nfl/fl
CEX(0) ratio of

“Non-Flip” to “Flip” contributions to the np → pn elastic one (right).

parts [7, 17] and for r
nf/fl
np→pn(0) we should take the true c.ex. amplitudes at zero angle.

Using PSA solutions [18] (FA91 et al.) and the unitary transition [7] we transform the
invariant amplitudes from np - backward to the c.ex. np → pn elastic one. As can be seen
the experimental points and PSA curves resemble closely (see Fig. 2). Without a proper
unitary transformation this agreement disappears (seePSA curve inFig. 8 in [6b]).

For the first time the ratio r
nfl/fl
CEX(0) is defined by us for the wide energy region using the Rdp

measurements (our and the world data) and by the DRSA procedure (open triangles at
the right panel – Binz points [4, item 6], [19] transformed now from the np → np backward
to the charge exchange np → pn forward). The FA91 solution agrees very closely with
the data. Thus the Rdp(0) is a well observable which allows as to define the
spin characteristic of np scattering even by non-polarized measurements and will be
used as an additional constraint for DRSA method. The fast increase of ratio
r

nfl/fl
CEX(0) in the region around 0.5 GeV corresponds to the beginning of the meson and ∆

production, i.e. this ratio is sensitive to the origin of the new degrees of freedom in the
NN interaction. It allows to expect the similar change of energy dependence of r

nfl/fl
CEX(0)

at the GeV region where the phase transitions NN→6q will be appear [5].

7. Conclusion

1. New −∆σL(np) accurate results complete in the main the measurement of the
−∆σL(np) and −∆σL(I= 0) energy dependence at the Dubna Synchrophasatron en-
ergy region. The comparison of the ∆σL(I= 0) and ∆σL(I= 1) energy dependence
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shows that it is significantly different in the whole region of measured energies.

2. An unexpected anomalous rapid decrease of −∆σL(np), −∆σL(I= 0) values above
1.1GeV was confirmed in the latest run and a minimum around 1.8 GeV is observed.
This minimum was predicted as a signal of NN system phase transition with ex-
citation of lowest lying exotic 6q-configuration 3S1(I= 0) with mass 2.63GeV [5].

3. The necessity of the complete np data set at 0 ◦/180 ◦ for direct reconstruction of
all three isosinglet amplitudes at 0 ◦ in the kinetic energy region above 1.1GeV
(especially around 1.8 GeV) is emphasized.

4. The possibility of such measurements was demonstrated during the ∆σL(np) and
np → pn at 0 ◦ investigations using Delta-Sigma set-up. A number of physical and
methodical results on investigation of the quasielastic nd → p (nn) and the elastic
np → pn charge exchange processes at 0 ◦ over a few GeV region are also presented.
The possibilities for Rdp measurements, using the prepared magnetic spectrometer,
were demonstrated up to Tn = 2GeV. The rnf/fl(0) ratio of “Non-Flip” to “Flip”
parts in np → pn forward scattering was obtained for the first time by the Rdp new
observable measurements, at Tn = 0.55; 0.8; 1.0; 1.2; 1.4; 1.7; 1.8 and 2.0 GeV.

5. In 2007− 2010 years it needs to be done:

• to continue our r
nf/fl
np→pn(0) measurements by Rdp(0) up to highest Dubna ener-

gies with small errors, especially around Tn = 1.8GeV;
• to prepare T-mode of PPT-target polarization and to obtain high intensity

and high L/T-polarized n beam, with new d source [9] at the Nuclotron;
• to exactly reveal the observed structure in −∆σL(I= 0) at 1.8 GeV, to obtain

a complete np data set at 0 ◦/180 ◦ in the Nuclotron energy region and to
fulfill a Direct Reconstruction all of the three NN forward elastic Scattering
Amplitudes and to reach the possible discovery of NN → 6q phase transitions
[5] using Argand diagram exhaustive analysis of these amplitudes.

6. Our theme has been recently prolonged with the first priority; JINR management
stipulates the finishing works for PPT (L/T-modes at high polarization of this large-
sized target used earlier in FNAL), and to start a team work with INR RAS on the
new source of vector polarized deuterons with the record intensity (CIPIOS from
IUSF, USA) providing for the Nuclotron accelerated deuterons ≥ 1010 /cycle. That
will give a chance to our big team of 80 high-skilled specialists from 13 laboratories
world-wide to finish on time the specified in our project the ambitious precision
investigations (with potential discovery of NN → 6q phase transitions) before
assembling the NICA installation in VBLHE JINR building 205.

We are grateful to the JINR, JINR VBLHE, LPP, DLNP Directorates and all our colleagues
and friends for these investigations support. The investigations were supported in part by the
Russian Foundation for Basic Research, Grants N 02-02-17129 and N 07-02-01025
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Abstract

Using the new “Delta-Sigma” experimental data of the Rdp ratio and with the
help of the “Dean” formula the “Flip” and “Non-Flip” parts of np → pn charge-
exchange are separated. The PSA Solutions for the np → np elastic scattering are
transformed to the charge-exchange process and good agreement have been obtain.

1 Introduction

The “Delta-Sigma” experiment research program [1] assumes to obtain a complete np
data at 0 ◦: the measurements of total cross section differences ∆σL(np) and ∆σT (np) for
the longitudinal (L), or transverse (T ) beam and target polarizations and spin-correlation
parameters A00kk(np) and A00nn(np) [2]. The main task of these studies is to deter-
mine theRe and Im parts of np amplitudes over the energy region 1.2 − 3.7 GeV. The
∆σL(np) energy dependence [2] shows an anomalous fast decrease to zero above 1.1 GeV
and structure in −∆σL(I = 0) around 1.8 GeV [9] predicted in Ref. [3; 4]. For the ex-
haustive analysis of this structure it require to build the Argand diagrams forRe and
Im parts of each of the three NN forward scattering amplitudes. To reduce the sign
ambiguities the “Delta-Sigma” collaboration performed the measurements of the ratio
Rdp = [dσ/dt](nd)/[dσ/dt](np) for the charge-exchange quasi-elastic and elastic processes
at 0 ◦ using the D2 and H2 targets. The knowledge of the Rdp could provide additional con-
straint and will allow to exclude one of some sign uncertainties for the direct reconstruction
theRe parts of the scattering amplitudes. Also the Rdp value independently define the
ratio rnfl/fl of “Non-Flip” to “Flip” contributions in the np → pn charge-exchange at 0 ◦.

2 Theoretical approach for Rdp and rnfl/fl

As mentioned above the observable Rdp is the ratio of a quasi-elastic nd → p (nn)
differential cross section to the free np → pn charge-exchange (named CEX):

Rdp =
dσ/dt nd→p (nn)

dσ/dt CEX

(1)

Following the theory in [5; 6], when the duration of the nd collision is much smaller than
the characteristic movement period of the deuteron nucleons, the nd → p (nn) reaction
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in the frame of the impulse approximation can be expressed by “Dean” formula:

dσ

dt nd→p (nn)
= (1− F (t))

dσ

dt

Non−Flip

CEX
+ (1− 1

3
F (t))

dσ

dt

Flip

CEX
(2)

Here F (t) is the deuteron form-factor which equals one for the forward direction and when
the scattering angle θ close to zero the first term on the right-hand of (2) vanish:

dσ

dt nd→p (nn) (0)
=

2

3

dσ

dt

Flip

CEX (0)
(3)

Let’s notice that similar simplification is not possible if we take the elastic backward
reaction np → np instead of the charge-exchange forward, because neglecting the differ-
ence of the masses Mn and Mp the four-momentum transfer t will defined as −4P 2

n and
the deuteron form-factor F (t) will not equal one. Such replacement could be justified if
the both np - elastic scattering interpretation (np → np backward or np → pn forward)
are absolutely identical together with their “Flip” and “Non-Flip” parts. However this
hypothesis is not valid as it will be shown in the next item (see also [7]).

For the Rdp and r
nfl/fl
CEX (0) ratios we have:

Rdp =
2

3

dσ
dt

F lip

CEX (0)

dσ
dt CEX (0)

=
2

3

1

1 + r
nfl/fl
CEX (0)

; r
nfl/fl
CEX (0) =

2

3

1

Rdp

− 1 (4)

Our preliminary experimental data of Rdp ratio at Tn = 1.0 and 1.2GeV were published
in [8] and the seven later results were given in [9]. Now we determinate new point at
Tn = 0.55GeV for more convention with other world experimental data at low energy.
Some doubts on a quality are caused with the point at 1.7GeV but for another 7 values
the presented results (see Tab. 1, Fig. 1) have a final status and will be published in [10].

Using formula (4) the respective ratios r
nfl/fl
CEX (0) of “Non-Flip” to “Flip” contributions of

the np → pn (0) charge exchange process are calculated (see Tab. 1 and Fig. 2).

3 Transition from the np backward to the charge-exchange forward

In the frame of isotopic invariance the nucleon-nucleon scattering matrix is:

M(k′, k) = M0(k
′, k)

1− τ̂1τ̂2

4
+ M1(k

′, k)
3 + τ̂1τ̂2

4
(5)

Here τ̂1 and τ̂2 are the isotopic Pauli operators of nucleons, k and k′ are the unit vectors
of initial and final relative momentums and the matrixes M0 and M1 describe the NN
scattering for isotopic spin T = 0 and T = 1 respectively. For np → np and np → pn
elastic reactions to the same angle θ it can be written:

< np|M |np > =
1

2
(M1 + M0) < np|M |pn > =

1

2
(M1 −M0) (6)

Using the Pauli spin operators σ̂1 and σ̂2 the matrix M(k′, k) can be expressed in the
Goldberger-Watson scattering amplitudes:

MT (k′, k) = aT + bT (σ̂1n)(σ̂2n) + cT (σ̂1n + σ̂2n) + eT (σ̂1m)(σ̂2m) + fT (σ̂1l)(σ̂2l) (7)
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Here the (a, b, c, e, f) are the complex functions of the interacting particles energy and
variable (k k′) = cos θ, the T index equals the value of isotopic spin and the basis vectors
are defined as: n = k∗k′

|k∗k′| , m = k−k′
|k−k′| and l = k+k′

|k+k′| . The Goldberger-Watson formalism
very suitable for the separation elastic scattering to the “Flip” and “Non-Flip” parts
because the aT amplitude have not operator term and is “Non-Flip” in its definition:

dσ

dt

Non−Flip

= |a|2 and
dσ

dt
= |a|2 + |b|2 + 2|c|2 + |e|2 + |f |2 (8)

Another Wolfenstein representation allow to share the matrix M(k′, k) to the singlet and
triplet parts using the spin projection operators Ŝ = 1

4
(1− σ̂1σ̂2) and T̂ = 1

4
(3 + σ̂1σ̂2):

MT (k′, k) = BT Ŝ + [ CT (σ̂1n + σ̂2n) +
1

2
GT ((σ̂1m)(σ̂2m) + (σ̂1l)(σ̂2l)) +

+
1

2
HT ((σ̂1m)(σ̂2m)− (σ̂1l)(σ̂2l)) + NT (σ̂1n)(σ̂2n) ] T̂ (9)

These both matrix representations related by the linear transitions:

aT =
1

4
(BT + GT + NT ) bT =

1

4
(3NT −BT −GT ) cT = CT

eT =
1

4
(GT + 2HT −BT −NT ) fT =

1

4
(GT − 2HT −BT −NT ) (10)

Let us to quote the work [11]: “The requirement of the antisymmetry of final wave function
M(k′, k)χSχT (χS and χT – spin and isotopic function of initial state) relative to the total
permutation, including permutation of scattering vector (k′ → −k′), permutation of spin
and isotopic variables lead not to the change of sings of the amplitudes B1(θ), C1(θ),
H1(θ), G0(θ) and N0(θ) after the changing θ → π − θ but the amplitudes B0(θ), C0(θ),
H0(θ), G1(θ) and N1(θ) become inverse”. According to this rule we perform the transition
from the np → np (π − θ) elastic to the charge-exchange np → pn (θ). After the turn
k′ → −k′ the vectors basis changed also: n → −n, m → l and l → m. Using symbolical
changing MCEX

1 = M1 and MCEX
0 = −M0 and rewriting the n, m, l basic we define:

aCEX
T =

1

4
(BT −GT −NT ) bCEX

T =
1

4
( GT −BT − 3NT ) cCEX

T = CT

eCEX
T =

1

4
(NT + 2HT −BT −GT ) fCEX

T =
1

4
(NT − 2HT −BT −GT ) (11)

It‘s possible to see in the (10) and (11) the “Non-Flip” amplitudes aT (π−θ) and aCEX
T (θ)

are different among themselves due to the yield of spin-triplet amplitudes GT and NT .
No difficult to define the direct amplitudes transition from the np elastic backward to the
charge-exchange forward (12). Amplitudes cCEX

T and cT are equal and for other it is:

aCEX
T = −1

2
(aT + bT + eT + fT ) bCEX

T = −1

2
(aT + bT − eT − fT )

eCEX
T = −1

2
(aT − bT − eT + fT ) fCEX

T = −1

2
(aT − bT + eT − fT ) (12)

Inverse transition will be absolutely equivalent and have the unitary symmetry. There-
fore the differential cross section of the np backward and charge-exchange forward are
equivalent automatically (13) even if their “Non-Flip” or “Flip” parts are different.

dσ

dt
np → np (π − θ) =

dσ

dt
np → pn (θ) (13)
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When the θ closes to zero the additional simplification appears: bT = fT , bCEX
T = eCEX

T

and cCEX
T = cT = 0. In this case we obtain the formulas which became known from [7].

Very interesting that the formalism for NN scattering was created more than 50 years ago
but the essential distinction of the “Non-Flip” amplitudes aCEX

T forward and aT backward
were reveal in 2005 year only. Before this time the both interpretation of np elastic were
considered as an absolutely identical. We used the np → np backward amplitudes from
the PSA solutions and agreement with our experimental data was very poor (see [8]).
Now using the unitary transition (12) this problem goes away (see Fig. 1 and Fig. 2).

Table 1: Results of defining the Rdp and rnf/fl values

Tn GeV 0.55 0.8 1.0 1.2 1.4 1.7 1.8 2.0

Rdp 0.589 0.554 0.553 0.551 0.576 0.565 0.568 0.564
ε 0.046 0.023 0.026 0.022 0.038 0.038 0.033 0.045

rnf/fl 0.133 0.204 0.206 0.209 0.158 0.179 0.174 0.183
ε 0.088 0.051 0.057 0.048 0.077 0.080 0.068 0.094
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Figure 1: Energy dependence of Rdp (θ = 0) ratio of yields of nd → p (nn) quasi elastic to
np → pn elastic charge exchange reactions. The PSA solutions FA91, VZ 40 and SP 07 were
taken from the SAID data base [13] as an amplitudes for np backward reaction, transformed to
the charge-exchange by the (12) and the Rdp curves are calculated using “Dean” formulas (2, 3).

Figure 2: Energy dependence of r
nfl/fl
CEX(0) ratio of “Non-Flip” to “Flip” parts in the np → pn

charge exchange elastic process. These points have been obtain from the Rdp experimental data
using “Dean” formulas (2, 3). The PSA solutions FA91, VZ 40 and SP 07 were taken from the
SAID data base [13] and transformed to the charge-exchange by the (12). The “Binz” points
[12] were taken from the DRSA analysis for the np backward and again recalculated using (12).

4 Conclusion

The final [10] and preliminary at 1,7GeV experimental results of defining the 8 points
of Rdp ratio at zero angle at energies Tn = 0.5−2.0 GeV are presented (see Tab. 1, Fig. 1).
The existed world experimental data at smaller energy consent with our points.
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Using the “Dean” formula the respective values of rnfl/fl are calculated for the charge-
exchange process np → pn (0) (see Tab. 1, Fig. 2). “Non-Flip” part is not zero and equals
≈ 17% of the differential cross section.

The transition of the PSA solutions from the np → np elastic backward to the charge-
exchange np → pn forward amplitudes has considered and the curves of Rdp and rnfl/fl

calculated by this approach well describe the experimental points (see Fig. 1 and Fig. 2).
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Abstract
New experimental data on the asymmetry in the elastic π+p scattering at 0.8

GeV/c are presented by the ITEP-PNPI collaboration. The kinematic region of
the measurement corresponds to the very backward c.m. scattering angles, where
no other experimental data are available due to low cross section values and the
predictions of the partial wave analysis are most contradictory. The results are
obtained in two geometrical configurations of the SPIN setup and cover the angular
range of 137− 173o in the center of mass frame.

1 Introduction

We present the new experimental data on the asymmetry in the very backward π+p elastic
scattering (137o−173o c.m.) at 0.80 GeV/c. This experiment is the latest and the last one
in the series of the polarization parameter measurements by the ITEP-PNPI collaboration.
The aim of the whole set of our measurements was to provide necessary information for
the unambiguous reconstruction of the pion-proton elastic scattering amplitude by partial-
wave analyses (PWA).

The status of the modern experimental light baryon spectroscopy is far from satisfac-
tory. The current PDG data on light resonances are still based mainly on the two PWAs:
CMB80 [1] and KH80 [2], both performed more than two decades ago. However more
recent analyses by VPI/GWU group [3] did not revealed 4 of 13 resonances in 1.7 and
1.9 GeV clusters. From the other hand the new data by ITEP-PNPI collaboration on the
normal polarization [4] and spin rotation parameters [5] in the backward π±p scattering
did not confirm the CMB80 and KH80 predictions.

The choice of the kinematic region for this experiment was based on the search for
the areas, where the behavior of various PWA is most unstable. Zero trajectories of the
transverse amplitudes (F+ = f + ig, F− = f − ig) reflect the global features of PWA.
In fig. 1a one can see that in the region of backward scattering the trajectories closely
approach or cross the real circle at energies around 0.8 GeV/c, leading to very small cross-
section values (fig. 1b) since both amplitudes F+ and F− are small. At the same time
the scattering asymmetry is very sensitive to the relation between the two amplitudes,
thus allowing to choose the correct solution branch.
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Figure 1a. Transverse amplitude zero trajectories at backward c.m. angles from various
PWA.

Figure 1b. Differential cross-section of the elastic π+p scattering at 175o as a function of
incident momentum (from [3]).
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Figure 2a. Experimental setup SPIN in two spatial configurations.
Figure 2b. Angular dependence of the differential cross-section of the elastic π+p scattering

at 0.8 GeV/c and the ranges covered by SPIN setup.

2 Experiment and Data Processing

The main elements of the experimental setup are [6]: a transversely polarized proton
target inside a super-conductive solenoid, several sets of wire chambers for the tracking of
the incident and scattered particles and a number of scintillation counters for triggering
(see fig. 2a). To enlarge the angular coverage the data were taken in two spatial configura-
tions of the setup (”geometry I” and ”geometry II”) with reversed direction of the target
magnetic field resulting in different deflection angles of the recoil protons. ”Geometry II”
corresponds to the largest scattering angles, where the cross-section is extremely small
(fig. 2b).

The procedure of the elastic event selection is illustrated by fig. 3. For each event
the deviation from elastic kinematics was calculated in terms of two variables: ∆θ – the
difference in c.m. scattering angle for the pion and the proton and ∆φ – sum of their
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azimuthal deviations from the scattering plane, and two-dimensional distributions in these
variables were filled. For the best background estimate the distributions were fit with a
2-dim 12-parameter polynomial excluding the area of the elastic peak. The number of the
elastic events was calculated as the distribution excess over the background, interpolated
to the area under the peak. The background level in the region of the low cross-section
(”geometry II”) is significantly larger than that at smaller scattering angles (compare
fig. 3a and 3b), resulting in the error increase. The intensity normalization is done based
on the quasi-elastic event counts which are believed to be unpolarized and give the main
contribution to the background. Comparison of the results with various cuts around the
elastic peak allowed to make additional systematic error tests. The normalization error
of the data is defined by the accuracy of the target polarization measurement and does
not exceed 3% which is well below the statistical accuracy.

3 Results and Conclusions

Figure 4 presents the results of the asymmetry measurement at 0.80 GeV/c. The data
are in the best correspondence to the latest partial wave solution SP06 of VPI/GWU
group [3], but significantly diverge from their earlier predictions SM95. The point at the
smallest scattering angle is in agreement with older measurements, but the rest of the
data definitely contradict to the measurements by Martin et al. [7].

More general conclusions can be drawn from the discussion of the whole set of the

(a) (b)

(c) (d)

Figures 3a,b. Deviation from elastic kinematics in ”geometry I” (a) and ”geometry II” (b).
Figures 3c,d. Central slices of the above 2D histograms; background to signal ratio is about

0.1 in ”geometry I” and close to 0.8 in ”geometry II”.
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Figure 4. Results for the asymmetry in π+p elastic scattering at 0.8 GeV/c (closed dots)
compared to older data (open markers) and partial wave analyses predictions (lines).

latest experimental data on spin rotation parameters and asymmetry by ITEP-PNPI.
It is clear that both old analyses (CMB80 and KH80) do not reconstruct properly the
backward scattering amplitude. So one should be careful in comparison of the theory with
the present day spectrum and parameters of the light quark baryon resonances, because
it is based mainly on these two old analyses.

However one should mention the significant progress of the energy dependent par-
tial wave analysis (DPWA) by VPI/GWU group. Approaches to the data selection and
analysis technique were greatly improved. Growing activity of the Helsinki group on the
strongly fixed-t dispersion relations constrained PWA [8] based on KH80 approach is very
important, but the work is still in progress. Our results on the spin rotation parameters
and new precise data on the asymmetry are important to resolve the remaining PWA
uncertainties.
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Abstract

During the period 1996 - 2000, the HERMES experiment measured inclusive and
semi-inclusive deep inelastic scattering of 27.5 GeV positrons from longitudinally-
polarized hydrogen and deuterium gas targets. Recent final HERMES results on
the inclusive spin structure functions gp,d,n

1 based on a refined analysis procedure
are presented. The most precise determination to date of the neutron spin structure
function is obtained combining the HERMES deuteron and proton data. Integrals
of g1 are calculated over the measured x-range. A preliminary result for the strange
quark helicity obtained from semi-inclusive charged kaon production on a deuterium
target is presented.

Introduction. Inclusive Deeply Inelastic Scattering (DIS) of polarized leptons by po-
larized spin-1

2
nucleons can be described by four structure functions (two spin-averaged

ones, F1 and F2 and two spin-dependent ones, g1 and g2), while the description of scat-
tering by spin-1 nuclei like deuterium needs additional structure functions (mainly the
tensor structure function b1).

The spin-dependent structure function g1(x,Q2) has been measured at HERMES in
inclusive DIS of longitudinally polarized positrons by longitudinally polarized atomic hy-
drogen or deuterium.

While absolute cross-sections are difficult to measure, asymmetries defined as the ratio
between difference and sum of cross-sections of different relative polarization orientation,
are the usual direct experimental observable. The measurable double longitudinal spin
asymmetry is defined by:

A|| =
[

σLL

σUU

− 1

2
PZZAZZ

]
=

1

PT PB

.
N

→⇒L
←⇒ −N

←⇒L
→⇒

N
→⇒L

←⇒ + N
←⇒L

→⇒ (1)

where the term 1
2
PZZAZZ is only present for deuterium. For the tensor polarization

an average value of PZZ = 0.83 ± 0.03 was used in the present analysis. The tensor

spin asymmetry defined as −3
2
AZZ = b1(x,Q2)

F1(x,Q2)
, measured at HERMES for deuterium, was

found to have an average amplitude [1] AZZ ∼ 0.01. In equation 1 σUU = 1
2
(σ

←⇒ + σ
→⇒)

is the unpolarized cross-section, σLL = 1
2
(σ

←⇒ − σ
→⇒) is the double longitudinal polarized

cross-section where LL indicates that both beam and target are longitudinally polarized.
The arrows denote the relative orientations of beam (→) and target (⇒) polarizations,
with PB and PT being their average values.

The proton and deuteron spin-dependent structure functions gp,d
1 were extracted from

HERMES data using the relation:
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gp,d
1 (x, Q2) =

1

1− y
2
− y2

4
γ2
×

[
Q4

8πα2y

d2σUU

dxdQ2
(x, Q2)A||(x,Q2) +

y

2
γ2g2(x,Q2)

]
(2)

and are related with the neutron target structure function gn
1 by the relation:

gn
1 = (gd

1 − gp
1)

2

(1− 3
2
ωD)

(3)

where ωD takes into account the D-state admixture to the deuteron wave function. A
value of ωD = 0.05± 0.01 was used to cover most of the available data [2].

The strange (∆S(x)/S(x)) and non-strange (∆Q(x)/Q(x)) quark polarizations are
related with the inclusive and semi-inclusive charged kaon double spin asymmetries by
the relation (assuming g2 ≈ 0):




A1(x,Q2)

AK
1 (x,Q2)


 =




PQ PS

PK
Q PK

S







∆Q(x,Q2)
Q(x,Q2)

∆S(x,Q2)
S(x,Q2)


 (4)

where the P’s are the inclusive and semi-inclusive purities for the non-strange (Q(x) =∑
q=u,d(q(x) + q(x))) and strange (S(x) = s(x) + s(x)) quarks as defined in ref [3]. This

relation allows the extraction of the strange (∆S = ∆s + ∆s) and non-strange (∆Q =∑
q=u,d(∆q+∆q)) quark helicities if the Parton Distribution Functions (PDFs) are known.
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Figure 1: Deuteron tensor asymmetry.

Extraction of g1 from inclusive data. The
spin dependent structure function g1 can be ex-
tracted for deuterium from the vector (A||) and
tensor (AZZ) asymmetries, using equations 1, 2.
The tensor asymmetry measures the asymmetry
between target spin states with |m| = 1 and m = 0
and was so far only measured at Hermes, using a
deuterium polarized target, and, selecting states
with different values of vector and tensor polar-
izations [1]. As shown in figure 2, the magnitude
of the measured asymmetry does not exceed 0.02
over the measured range, and, it was estimated
that the correction to gd

1 from the tensor asymme-
try is less than 0.01.

For the extraction of A1, the events were selected requiring W 2 > 3.24 GeV2 to exclude
the region of baryon resonances, and 0.1 < y < 0.91 to discard data where the detector
performance is worse. The A1 asymmetry extracted for deuterium and proton is shown in
figure 2, together with the results obtained in other experiments. As shown in the lower
panel, the Q2 values of the data points of the different experiments spread over one order
of magnitude, for the same x bin. In the case of deuteron, the Hermes data provide the
most precise measurement of A1.
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Born asymmetries.

The results for xgp
1 and xgd

1 are shown in fig-
ure 3 together with the results obtained in other
experiments.

For the proton, the central values of SMC
are larger than those of HERMES in the low
x region, reflecting the different Q2 values be-
tween the two experiments, as expected from the
Q2 evolution of g1. For the deuteron, HERMES
data for x < 0.04 are compatible with zero while
SMC data favors negative values. COMPASS
results are also consistent with zero.

The neutron spin-dependent structure func-
tion g1 extracted according to equation 3 is
shown in figure 4. As seen from the figure, gn

1

is negative everywhere except in the very high
x region. For decreasing low x values, gn

1 ap-
proaches zero. The behaviour is complementary
to that of gp

1.
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Figure 3: Structure functions xgp
1 and xgd

1

from HERMES data, compared with re-
sults from other experiments.

The first partial moment of g1 was calculated
over the measured x range (0.02 ≤ x ≤ 0.9).
The integral as a function of the lower cut value
is shown in figure 5. It is observed that the
deuteron integral saturates already at x ∼ 0.01,
while the other 3 partial integrals, for proton,
neutron and non-singlet distribution, still in-
crease when x reaches its minimum measured
value.

The contribution to the deuteron and pro-
ton partial first moments from the non-measured
high x region (0.9 < x < 1) was estimated and
seen to be negligible.

The first moment of the deuteron spin depen-
dent structure function gd

1(x,Q2) is related with
the singlet axial charge a0 by the relation:

a0 =
1

∆CMS
S

[
9Γd

1

(1− 3
2
ωD)

− 1

4
a8∆CMS

NS

]
(5)

where ∆CMS
S (αs(Q

2)), ∆CMS
NS (αs(Q

2)) are the
singlet and non-singlet Wilson coefficients calculated in the Minimal Subtraction (MS)
scheme, respectively. In the MS scheme the axial charge a0 is related with the quark
helicity (a0 = ∆Σ = ∆u + ∆u + ∆d + ∆d + ∆s + ∆s), and the strange helicity with the
axial charges a0 and a8 by the relation ∆s + ∆s = 1

3
(a0 − a8).

Using the value for a0 = 0.330±0.010(theo)±0.022(exp)±0.025(evol) extracted in this
analysis in NNLO according to equation 5 from deuterium data (table ??), and, the values
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extracted for a8 from hyperon β-decay [4] under the assumption of SU(3) symmetry, the
value ∆S = ∆s + ∆s = −0.085± 0.013(theo)± 0.008(exp)± 0.009(evol) at Q2

0 = 5 GeV2

was obtained for the strange helicity. This value is negative and different from zero by
about 4.7σ.
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Figure 6: K± HERMES multiplicities,
averaged over both kaon charges and
spins.

Extraction of ∆S from a K± semi-inclusive
analysis. The strange quark helicity was ex-
tracted from semi-inclusive DIS data where a
charged kaon was detected in coincidence with
the DIS lepton. The data was selected requir-
ing W 2 > 10 GeV2) and y < 0.85. Coincident
charged kaons were accepted if 0.2 < z < 0.8
and xF > 0.1, where the upper z cut should sup-
press the contamination from exclusive events, the
lower z and the xF cuts are used to suppress events
from the target fragmentation region. There is a
constraint on the momentum of the detected kaon
(2 ≤ p ≤ 15) which is due to the RICH constraints
for k±/π±/proton separation.

The analysis has been performed in LO, with-
out the assumption of SU(3) symmetry, and is
based on the extraction of the Born inclusive and semi-inclusive double-spin asymmetries
extracted from an isoscalar target (2000 deuteron data). The extraction of the non-strange
and strange quark fragmentation functions was performed with a fit to the multiplicities
calculated from the same data set averaging over both parallel and anti-parallel spin
helicities and kaon charges, and leaving the integrated fragmentation functions as free
parameters in the fit to the data (figure 6). Table 1 shows the values of the fragmentation
functions extracted from the data, compared with those from Kretzer and KKP parame-
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terizations. As shown in the table there is a significant difference between the HERMES
values and the values given by the other two parameterizations.

This analysis Kretzer KKP∫
DK

nstrg 0.41±0.02 1.103 1.111∫
DK

strg 1.41±0.29 0.783 0.296

Table 1: Strange and non-strange fragmentation functions extracted from charged kaon semi-
inclusive data compared with Kretzer and KKP parameterizations.(Preliminary).
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Figure 7: Strange and non-strange quark he-
licities.

The A1 and AK
1 asymmetries have been

extracted assuming g2 ≈ 0 (equation 4). The
values of the non-strange and strange quark
helicities calculated over the measured range
are shown in figure 7, after evolution of the
data points to a common Q2

0 = 2.5 GeV2.
The Q2 evolution factors were taken from
CTEQ6L.

As shown in figure 7, the preliminary re-
sult obtained for the strange helicity is com-
patible with zero over the measured range.
The partial first moments (∆Q and ∆S) are
shown in table 2.

The value obtained for the non-strange
quark helicity (∆Q(Q2

0 = 2.5 GeV2)) is in
agreement with the value extracted from a 5-
flavour-decomposition analysis [3], and with
the value of ∆Σ extracted from g1 in the inclusive analysis presented in the previous
section.

The partial first moment of the strange quark helicity at Q2
0 = 2.5 GeV2 in the

measured x-range is compatible with zero, and agrees within the error bars with the
value found in the inclusive analysis. The value extracted for the octet combination
from the non-strange and strange quark helicities (∆q8(x) = ∆Q(x)− 3∆S(x)) is not in
good agreement with the axial charge a8 extracted from the hyperon β-decay constants
assuming SU(3) symmetry, but as said before, the extraction was performed over a limited
x-range and the analysis is not yet concluded.

Summary. HERMES measured the proton and deuteron structure functions gp,d
1 (x) in

the x-Bjorken range between 0.004 and 0.9 for 0.18 GeV2 < Q2 < 20 GeV2, or in the x
range between 0.02 and 0.9 for Q2 larger than 1 GeV2. The precision of the proton data is
comparable with that of the CERN and SLAC data. The deuteron data is the most precise
so far. The deuteron integral is observed to saturate. The singlet axial charge extracted
at Q2 = 5 GeV2 has the value a0 = 0.330± 0.011(theor)± 0.025(exp)± 0.028(evol). The
extracted strange helicity from the first moment of gd

1(x) over the measured DIS region
and assuming SU(3) symmetry is negative (-0.085) by about 4.7σ.
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∆Q 0.286±0.026(stat)±0.011(sys)
∆S 0.006±0.029(stat)±0.007(sys)
∆q8 0.274±0.039(stat)±0.018(sys)

Table 2: Non-strange and strange helicities extracted from charged kaon semi-inclusive data.
The value extracted for ∆q8 is also shown. The partial integrals were calculated over the x-range
0.02− 0.6. (Preliminary).

The HERMES semi-inclusive charged kaon preliminary analysis of the deuteron data
gives a non-strange helicity (∆Q = 0.286± 0.026(stat)± 0.011(sys)) consistent with the
value of ∆Σ extracted from the inclusive analysis. The extracted strange helicity is con-
sistent with zero over the measured x-range, with strange and non-strange fragmentation
functions extracted from a fit to the same data.
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their results at the DSPIN 2007 workshop.
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Discussion

Q. (J.Nassalski, SINS, Warsaw) In semi-inclusive analysis you determine a8 in a limited
xBj range. Therefore it is not surprising that it is different from the “full” matrix element
a8.

A. Please see the two last sections of this note.
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Abstract

The new polarization program SPASCHARM is being prepared in Protvino. The
program has two stages. The first stage is dedicated to single-spin asymmetries in
the production of miscellaneous light resonances with the use of 34 GeV π−-beam.
Inclusive and exclusive reactions will be studied simultaneously. The second stage
is dedicated to single-spin and double-spin asymmetries in charmonium production
with the use of 70 GeV polarized proton beam which will allow us to understand
charmonium hadronic production mechanism and make gluon polarization ∆g(x)
extraction at large x.

Introduction

A possibility to accelerate high-intensive polarized proton beam up to 70 GeV at the
IHEP U70 accelerator, extract it from the main ring and deliver to several experimental
setups was intensively studied last time in 2005 and Spring of 2006 in Protvino [1]- [4].
We proposed to study a wealth of single- and double-spin observables in various reactions
using longitudinally and transversely polarized proton beams at U70. Unfortunately the
proposal stuck in the Ministry of Education and Science in Summer 2006. But we believe
that a possibility to push the proposal still exists.

The main goal of the SPASCHARM project is to study spin structure of the proton,
starting with determination of gluon contribution into spin of the proton at large Bjorken
x through study of spin effects in charmonium production. High sensibility to gluon
content of the interacting particles is one of the main features of charmonia production
in hadronic interactions. In case of collision of two longitudinally polarized protons it
is used to define gluon polarization ∆G/G in the proton. A polarized proton beam is
needed to make this study. We plan to have it at the second stage of the experiment after
the measurements of single-spin asymmetries already in charmonia production have been
carried out.
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The project has a first stage when unpolarized beams will be used. The first stage
is an experiment to study single-spin asymmetries AN of light resonances consisting of
u-, d- and s-valence quarks. Transverse single-spin asymmetries are very well known for
a long time. In the Standard Model QCD at leading twist level all AN = 0. But the
experiments show very big AN in the confinement region. Therefore AN is very sensitive
to the effects outside the SM . The known theoretical approaches (Sivers and Collins
effects, twist-3 effect, etc.) try to reconcile theory and experiment. To discriminate the
existing theoretical approaches and to stimulate to develop the new ones, a systematic
study of AN for a big number of miscellaneous inclusive and exclusive reactions is needed,
especially in the confinement region, which is the most unclear for theory. To make this
systematic study is the main goal of the first stage of the SPASCHARM project. The
first stage will be finalized by the measurements of AN in charmonia production. This
will finally prepare the experimental setup to the second stage of the project where only
one new thing will be needed - namely a polarized proton beam from U70.

This paper is organized as follows. First we will describe the second stage of the
experiment dedicated to spin effects in charmonia production with the use of polarized
proton beam from U70. After that we will describe the first stage dedicated to spin effects
in light resonance production.

Charmonia production in polarized p→p→ interactions

Figure 1. The solution of ∆G/G

from experiment COMPASS [5].

At present only 30% of the longitudinally polar-
ized proton spin is described by quark’s spin. The
other 70% of the proton spin may be explained by
gluon and/or orbital momentum contributions. Ex-
periments with polarized lepton beams at CERN,
HERA, SLAC have been measuring mainly quark
polarization over last twenty years. COMPASS and
HERMES have tried to measure gluon polariza-
tion at small x, up to 0.1-0.15. The RHIC experi-
ments STAR and PHENIX have begun to measure
gluon polarization at very low x values (about 0.01)
whereas gluon polarization has to be measured in the whole x range. So in spite of many
years of experiments, a detailed decomposition of the spin of the proton remains elusive -
new experimental data on ∆g(x,Q2), especially at large x are badly needed. We propose
to simultaneously measure the double-spin asymmetry ALL for inclusive χc2, χc1 and J/Ψ
by utilizing the 70 GeV/c longitudinally polarized-proton beam on a longitudinally polar-
ized target. Our goal is to obtain besides the quark-spin information also the gluon-spin
information from these three processes in order to determine what portion of the proton
spin is carried by gluons. Better understanding of charmonium production at U70 en-
ergies is needed – for this pion and proton beams will be used to produce charmonium.
Gluon contribution into the proton spin as well as strange quarks and orbital momentum
contributions – worldwide studies at HERMES, COMPASS, RHIC, JLAB and SLAC. We
propose a new experiment in this field – it should be complimentary to the existing exper-
iments. It will give new data at large x for Global analysis. One can see from Fig.1 that
the biggest gluon polarization is anticipated near x = 0.3. SPASCHARM will measure
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gluon polarization in the region of x between 0.3 and 0.6.

χ0,2

Figure 2. Gluon fusion
(α2

S , pT = 0).

Information about gluon polarization might be obtained
through simultaneous measurements of ALL in inclusive produc-
tion of χc2 and J/Ψ. This experiment was proposed at Fermilab
(P838) at 200 GeV as a continuation of E704 [6]. The Fermi-
lab’s PAC pointed out that physics was very interesting, but an
intensity of the polarized proton beam from Λ-hyperon decays
was small – the statistics would not be enough. The experiment
was not approved. In our new proposal for U70 we expect to
have up to 4 ·108 p/min instead of 2.7 ·107 p/min in P838 which
is a factor of 15 more.

χ0,1,2

χ0,1,2

χ0,1,2

χ0,1,2

Figure 3. Gluon fusion (α3
S).

The hadronic production of the χ states involves three parton fusion diagrams [7]:

1. gluon fusion (Fig.2-3);

2. quark-glion interaction (Fig.4);

3. quark-antiquark annihilation (Fig.5).

Estimate made by one of our authors (S.A.Alekhin) has shown that at 70 GeV the con-
tributions of gluon-gluon fusion and quark-antiquark annihilation to produce charmonium
with a mass of 3.5 GeV in pp-interactions are comparable.

The goal of the proposed experiment is to measure double-spin asymmetry ALL with
the use of longitudinally polarized beam and target in the process:

p→ + p→ → χc2(J/Ψ) + X, (χc2 → J/Ψ + γ). (1)

J/Ψ will be registered mainly via µ+µ− decay due to bremmstrahlung in e+e− decay
mode. The charmonia states under study are J/Ψ (3096, JPC = 1−−), χc1 (3510, JPC =

χ0,1,2

χ0,1,2

χ0,1,2

Figure 4. Quark-gluon interaction (α3
S). Figure 5. Quark-antiquark

annihilation (α3
S).
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1++) and χc2 (3555, JPC = 2++). The measured experimental asymmetry is given by

ALL =
1

PB · P eff
T

· I++ − I+−

I++ + I+− , (2)

where PB is the beam polarization, P eff
T – effective target polarization, I++, I+− are the

number of events normalized to the incident beam. The helicity states (++) and (+-)
correspond to (←→) and (→→) states respectively, where arrows indicate the beam and
target spin direction in the laboratory system.

Theoretical predictions of ALL mainly depend on two assumptions:
• gluon polarization ∆G/G and

• charmonium production mechanism which defines ÂLL at the parton level (in parton-
parton interaction).
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Figure 6. SPASCHARM Experimental Setup

The experimental setup SPASCHARM is presented in Fig.6. It is an open geometry
experiment. The main parts of the setup are as follows:

• wide aperture spectrometer with GEM, drift chambers and proportional chambers;

• electromagnetic calorimeter and

• muon detector.

The central part of the calorimeter (1 m2) will consist of lead tungstate blocks. It
is critically needed to detect very precisely γ-quanta fro χ-decays to separate χc1 and
χc2 through high precision energy resolution of the calorimeter. The xF distribution of
χc2 (3555) detected by the setup at a beam energy of 70 GeV is presented in Fig. 7.

The principal point for this experiment is a separation of the two charmonia states with
the spins equal to 1 and 2, namely χc1 (3510) and χc2 (3555). The Monte-Carlo simulations
for 70 GeV have been made. The reconstructed masses of χc0(3410), χc1 (3510) and
χc2 (3555) are presented in Fig.8. The J/Ψ (in µµ-decay mode) 4-momentum is taken as
a result of 1C-fit. For charged particles ∆p/p= 0.004 at 10 GeV/c. For γ-quanta σ(E)/E
was taken as 2.5%/

√
E. We can see that the two states of interest are well separated.
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Figure 7. The xF distribution of
χc2 (3555) detected by the setup at a
beam energy of 70 GeV

Figure 8. The reconstructed masses of
χc0 (3410), χc1 (3510) and χc2 (3555) as a
result of Monte-Carlo simulations for the
SPASCHARM experimental setup.

The SPASCHARM experiment plans to have 25000 electronic channels (7000 ADC,
2000 TDC and 16 000 registers). The trigger for interaction in the target will be the
only hardware trigger. Information from the interaction will be digitized in each sub-
detector, pre-processed and buffered for further processing. A high level trigger selection
will occur in compute nodes which access the buffers via a high bandwidth network fabric.
The experiment plans to operate at interaction rates of the order of 2 MHz. With pre-
processing on the detector electronics for a substantial reduction of the data volume,
typical event sizes are in the range of 2 to 4 kB. This amounts to total raw data rates in
the order of 3 GB/s.

Our estimate has shown us that we expect to get a precision of σ(ALL) = 0.07 for χc2

and 0.025 for J/Ψ at x = 0.3 for 100 days of data taking.
With the use of polarized proton beam at SPASCHARM a precision measurement of

single-spin asymmetry in inclusive production of miscellaneous resonances in the trans-
verse polarized beam fragmentation region in a wide (xF , pT )-region will be worthwhile.
Also it will be possible to measure transversity in Drell-Yan muon (electron) pairs.

Single-spin asymmetries in light resonance production

Before the polarized proton beam will be accelerated at U70 we can make single-spin mea-
surements of miscellaneous inclusive and exclusive reactions with unpolarized beams, such
as pions, kaons and protons, existing at the beam channel 14 of the Protvino accelerator.
Why do we need to measure AN in a big variety of inclusive and exclusive reactions? In
the Standard Model QCD at leading twist level all AN=0. But the experiments show very
big AN in the confinement region. Therefore AN is very sensitive to the effects outside
the SM . The known theoretical approaches (Sivers and Collins effects, twist-3 effect,
etc.) try to reconcile theory and experiment. To discriminate the existing theoretical
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approaches and to stimulate to develop the new ones, a systematic study of AN for a
big number of miscellaneous inclusive and exclusive reactions is needed, especially in the
confinement region, which is the most unclear for theory. To make this systematic study
is the main goal of the first stage of the SPASCHARM project.
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Figure 9. The pT -dependence of single-spin
asymmetry AN in the inclusive reaction π−+d↑ →
π0 + X at 40 GeV/c at xF > 0.7. The average
value of AN is (16±5)% near pT equal to 1 GeV/c.
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Figure 10. The t-dependence of AN in the ex-
clusive reaction π− + p↑ → π0 + n at 40 GeV/c.
The average value of AN is (18±5)% near t equal
to 1 (GeV/c)2.

It would be interesting to measure
single-spin asymmetries in inclusive pro-
duction of light resonances even in the
unpolarized beam fragmentation region,
but at big values of transverse momen-
tum pT , close to the boundary of phase
space. In Fig.9 the single-spin asymme-
try AN in the inclusive reaction π− +
d↑ → π0 + X at 40 GeV/c at xF >0.7
is presented [8]. We see that AN is zero
at small pT and about 15% at pT near
1 GeV/c and bigger. When xF goes to
1, any inclusive reaction transfers into
the proper exclusive reaction. In Fig.10
the single-spin asymmetry AN in the ex-
clusive reaction π− + p↑ → π0 + n at
40 GeV/c is presented [9]. We see that
AN is also about 15% near −t equal to
1 (GeV/c)2, that is equivalent to pT near
1 GeV/c. So asymmetries in the both
inclusive and exclusive π0-production at
40 GeV pion beam are equal each other
(also it seems that asymmetries on po-
larized protons and neutrons are the
same). It should be the case for other light resonances.

For the first stage of the experiment two multi-channel threshold Cherenkov counters
will be added to the setup to distinguish between pions and kaons. They are of 1.5 m and
3 m long and will be placed between the end of the magnet and the calorimeter. They
will be filled by freon and by air correspondingly, both at atmospheric pressure. Lead
tungstate in the calorimeter is not needed for the first stage, lead glass with moderate
energy resolution will be enough to detect light resonances. An acceptance of the whole
setup will be decreased, however it will still be significant to detect light resonances. Due
to very fast DAQ (practically without dead time) inclusive and exclusive reactions will
be studied simultaneously.

There are some advantages of the new experiment. Exclusive and inclusive reactions
were studied either in neutral decay modes or in charged decay modes in the previous
experiments. We propose to measure the both modes simultaneously and therefore we
expect a significant increase in statistics. Addition of new detectors (GEM, MDC, high
quality EMC etc.) compare to the previous experiments might bring us to discovery of
”new channels” (exotic glueballs, hybrids, etc). Extremely high-speed DAQ will allow to
detect inclusive and exclusive reactions simultaneously. Partial wave analysis of a huge
statistics on polarized target will raise a robustness of the results on rare resonances.
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Figure 11. A
π−+p↑→ω(782)+n
N at 40 GeV [10]. The

ω (782) has been detected in π0γ decay mode with
8% branching. 33,000 events on polarized target were
collected. Solid angle was twice less than in the
SPASCHARM setup for the first stage. By using two
decay modes (π+π−π0 with 89% branching and π0γ),
statistics can be increased in 20 times. Errors in the
first four points would be 2% rather than 10% now.
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Figure 12. A
π−+p↑→η′(958)+n
N at 40 GeV [11]. The

η′ (958) has been detected in γγ decay mode with
2% branching. 11,000 events on polarized target were
collected. Solid angle was about the same as in the
SPASCHARM setup for the first stage. By using two ad-
ditional decay modes (π+π−η and π+π−γ with branch-
ings of 45% and 30%), statistics can be increased in 20
times. Errors in the first three points would be 3-4%
rather than 13-17% now.

The setup has 2π-acceptance on
azimuthal angle φ and therefore
the systematic errors in single-spin
asymmetries will be negligible.

One can see the advantage
of proposed new measurements
in sense of significant increase in
statistics in a couple exclusive re-
actions in Fig.11 and Fig.12. The
details are in the Figure captions.

For the MC simulations, two
options of the setup were con-
sidered with two distances from
the center of the polarized target
to the beam downstream end of
the last Cherenkov counter - ”7
meters” and ”4 meters”. Vari-
ant ”4 meters” has one Cherenkov
counter in the setup. π-mesons
will be identified in the momen-
tum region of 3-23 GeV/c. Ac-
ceptance for ”usual” (non-strange)
resonances is huge (3 times bigger
than for ”7 m”). We request a
beam time of 30 days. Variant ”7
meters” has two Cherenkov coun-
ters in the setup and allows π/K-
separation in the momentum re-
gion of 3-23 GeV/c. We request
a beam time of 70 days. The ex-
pected accuracies of AN in several
inclusive reactions for the sum-
ming 100 days at beam in the kine-
matical region of xF = 0.5 − 1.0
and pT = 0.5− 2.5 GeV/c are the
following for different reactions:

σ(A
π−+p↑→ω+X
N ) = 0.3-3;

σ(A
π−+p↑→ρ+X
N ) = 0.2-2.5;

σ(A
π−+p↑→η′+X
N ) = 0.3-4;

σ(A
π−+p↑→f2+X
N ) = 0.1-1; σ(A

π−+p↑→φ+X
N ) = 3.-10.; σ(A

π−+p↑→K∗0+X
N ) = 0.6-10.

Conclusion

The new polarization program SPASCHARM is being prepared in Protvino. The pro-
gram has two stages. The first stage (to be started in 2011) is dedicated to single-spin
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asymmetries in the production of miscellaneous light resonances with the use of 34 GeV
π−-beam. Inclusive and exclusive reactions will be studied simultaneously. The errors in
the exclusive reactions with big asymmetries are expected to be several times less than
now. The brand new data for inclusive reactions will be obtained. All the new data will
much better help us to understand spin dependence of strong interaction in the most dif-
ficult from the theory point of view kinematical region, namely in the quark confinement
region.

The second stage (to be started in 2015) is dedicated to single-spin and double-spin
asymmetries in charmonium production with the use of 70 GeV polarized proton beam
which will allow us to understand charmonium hadronic production mechanism and make
∆g(x) extraction at large x. The results on ∆g(x) at large x will be unique and will be
complementary to those which exist and might be obtained at COMPASS, HERMES,
RHIC and JLAB at smaller x. The global analysis with the use of the new large x data
on ∆g(x) will significantly improve our knowledge of the gluon polarization integral ∆G.

This work has been partially supported by the RFBR grant 06-02-16119.

References

[1] V.V.Abramov et al, in Proc. of XI Advanced Research Workshop on High Energy
Spin Physics (Dubna-SPIN-05), 449 (2006); hep-ex/0511046.

[2] S.B. Nurushev et al - ibid, p.517.

[3] Y.M. Shatunov et al - ibid, p.531.

[4] V.V. Mochalov et al, Czech.J.Phys. 56, : (F151)2006; hep-ex/0612038.

[5] E. Santos et al, et al, Czech.J.Phys. 56, : (F71)2006.

[6] M.E. Beddo et al, Fermilab proposal P838, January 1991.

[7] A.K. Likhoded and A.V. Luchinsky, e-Print: hep-ph/0703091

[8] V.D. Apokin et al, in Proc. of the IV Workshop on high energy spin physics,
Protvino), 288 (1991).

[9] V.D. Apokin et al, Russ.Journal.Phys.Atom.Nucl. 45, 840 (1987).

[10] I.A. Avvakumov et al Russ.Journal.Phys.Atom.Nucl. 42, 725 (1985).

[11] V.D.Apokin et al Zeit.Phys. C35, 173 (1987).

Discussion

Q. (J.Nassalski, SINS, Warsaw) In SPASCHARM – what will be xgluon range covered
and what will be the precision on gluon polarization?

A. In SPASCHARM the xgluon range from 0.3 to 0.7 might be covered with a rea-
sonable statistics. At moment we do not know the precision on gluon polarization we
might achieve. It depends on charmonium production mechanism in hadron interaction
at our energies which we have to study first in SPASCHARM by using both proton and
pion beams. But anyway we hope to get first estimate of the precision from our IHEP
theoreticians sort of in an year or two.
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Abstract

Final results on the polarization observables of the Ayy, Axx and Ay analyzing
powers of the d(d, p)X breakup reaction at 270 MeV of deuteron kinetic energy
are presented. The obtained angular distributions of these polarization observables
compared with data of the d(d, p)T binary reaction. The analyzed data refer to the
triton breakup above threshold up to 10 MeV.

1. Introduction. Nowadays it is generally accepted that the NN force is a residual
interaction of the underlying quark-gluon dynamics of quantum chromodynamics, similar
to the intermolecular forces that stem from QED, and that it should be calculated from
first principles, i.e. the Lagrange density of QCD. Since there is no theory at the mo-
ment that is able to give a qualitative as well as quantitative description of NN scattering
based on these first principles, it is necessary to build an effective theory. Widely used
are meson exchange pictures, dispersion relations or a phenomenologically supported op-
erator ansatz. Examples for such interactions are the Bonn, Paris, Nijmegen or Argonne
potentials.

In the 1970’s and 80’s, a field-theoretic model for the NN interaction was developed
in Bonn potential. This model consists of single π, ω, and a0/δ exchange, the field-
theoretic 2π model, and πρ diagrams, as well as few more irreducible 3π and 4π diagrams
(which are not very important, but indicate convergence of the diagrammatic expansion).
This quasi-potential has become known as the ’Bonn full model’ [1]. It has 12 parameters
which are the coupling constants and cutoff masses of the meson-nucleon vertices involved.
With a reasonable choice for these parameters, a very satisfactory description of the NN
observables up to 300 MeV is achieved. Since the goal of the Bonn model was to put
meson theory to a real test, no attempt was ever made ti minimize the χ2 of the fit of the
NN data.

In the 1990’s, one focus has been on the quantitative aspect of the NN potentials.
Even the best NN models of the 1980’s [1] fit the NN data typically with a χ2/datum ≈ 2
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or more. This is still substantially above the perfect χ2/dof ≈ 1. To put microscopic
nuclear structure theory to a reliable test, one needs a prefect NN potential such that
discrepancies in the predictions cannot be blamed on a bad fit of the NN data. Up to
now the latest versions of the NN potentials have been obtained using meson-exchange
or other more phenomenological approaches: AV18 [2], CD Bonn [3] and Nijm I,II, and
93 [4]. They describe the rich set of experimental NN data up to 350 MeV which is slightly
higher than the pion threshold 290 MeV.

The CD Bonn [3] potential uses the full, original nonlocal Feynman amplitude for OPE,
while all other potentials apply local approximations. The CD Bonn includes (besides the
pion) the vector mesons ρ(769) and ω(783), and two scalar-isoscalar bosons, σ, using
the full, nonlocal Feynman amplitudes for their exchanges. Thus, all components of
the CD Bonn are nonlocal and off-shell behavior is the original one as determined from
relativistic field theory. As a consequence of this, the CD Bonn potential has a weaker
tensor force as compared to all other potentials. This is reflected in the predicted D-state
probabilities of the deuteron, PD which is a measure of the strength of the nuclear tensor
force. While CD Bonn predicts PD = 4.85%, the other potentials yield PD = 5.7(1)%.
These differences in the strength of the tensor force lead to considerable differences in
nuclear structure predictions.

The tensor analyzing T20 and polarization transfer coefficient k0 in backward elastic
scattering, dp → pd, have been measured at Saclay and Dubna [5]. Later, the set of
polarization observables was also obtained in dp-elastic scattering over wide angular range
at intermediate energies at RIKEN [6, 7] and KVI [8]. Measurements of the polarization
correlation coefficients C// in the d 3He → p 4He reaction have been performed at
RIKEN [9].

All the data show the sensitivity to the deuteron spin structure at short distances.
However, the remarkable deviation of the polarization observables from the One Nucleon
Exchange (ONE) predictions using standard deuteron wave function occurs even at rel-
atively small internal momenta of q ∼ 200 MeV/c. Such a discrepancy can be due to
the non-adequate description of the light nuclei structure at short distances, as well as

to the importance of the mechanisms in addition to ONE. For the
−→
d d → p T all four

nucleons are involved in the interaction, hence it would be useful to take into account
3NFs. Even binding energies for light nuclei cannot be reproduced with these realistic
potentials. For instance, the underbinding amounts to 0.5-1 MeV in the case of triton and
3He. One can achieve correct three-nucleon (3N) binding energy by including the Tucson-
Melbourne (TM) [10] three-nucleon force which is refined version of Fujita-Miyazawa
force [11].

The
−→
d d → p T and

−→
d d → p X process concern to ONE reactions. These reactions

are the simplest processes with a large momentum transfer, so they could be used as a tool
to study the deuteron structure at short distances. The polarization observables of these
reactions are sensitive to the D/S wave ratio in the deuteron. The relative momentum
of nucleons in deuteron achieves q ∼ 400 MeV/c at initial deuteron kinetic energy
Ed = 270 MeV .

2. Experiment. The experiment was performed at RIKEN accelerator Research
Facility. A polarized deuteron beam extracted from polarized ion source was accelerated
with the AVF and the Ring cyclotrons up to the energy of 270 MeV. The accelerated beam
was transported to the spectrometer SMART which consist of 2 dipole magnets and 3
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quadrupoles (arranged as QQDQD). Swinger magnet controlled the angle of deuteron
injection onto a target thus it allowed to perform angular measurements with horizontally
fixed detection system. The direction of the symmetry axis of the beam polarization
was controlled with a Wien filter located at the exit window of Polarized Ion Source.
Magnitude of the beam polarization determined by two beam line polarimeters. Each
of them utilizes dp-elastic scattering with precisely obtained analyzing powers in the
12C(

−→
d , α)10B∗2+ reaction [12]. Deuterated polyethylene was used as the deuteron target.

Measurements with a carbon target was also performed to subtract the contribution of

carbon nuclei in CD2 target. For the
−→
d d → p T reaction the detected protons scattered

in the backward angles in the c.m.s. The MWDC was used for the reconstruction of the
trajectory of the particles which went through the magnetic spectrograph. Information
from MWDC was transformed to the scattering angles and the momenta of the particle
using the optical matrix of the spectrometer.

3. Results and discussion. The experimental results on the vector Ay and tensor

Ayy, Axx and Axz analyzing powers of the
−→
d d → p T reaction at Ed = 270 MeV are

presented by the filled symbols in Fig.1a. The solid, long-dashed and dotted curves are
the results of ONE calculations using Paris [13], Bonn B [1], and Bonn C [1] deuteron
wave functions, respectively. Urbana 3He wave function [14] was used in the calculations
to describe three-nucleon (3N) system. The dot-dashed curves are the calculations by
Kamada [15] with a model of the reaction mechanism including the 3N-scattering ampli-
tude. The structure of Ay is well reproduced by this calculations, whereas Ayy, Axx and
Axz are not in agreement. In this respect, further development of theoretical studies are
desirable to interpret the reaction mechanism.

(a) (b)

Figure 1. See the text for explanations.

ONE calculations predict that the tensor an-
alyzing power at the backward angles is sensi-
tive to the structure of the deuteron. At angles
near 90◦ in the c.m.s. they are sensitive to both
deuteron and 3He wave functions. One can see
from Fig.1a that the calculations reproduce the
global feature of the experimental data at the
backward angles, while they remarkably deviate
from the experimental results near 90◦. These
results imply that there might be some problems
in the description of the realistic 3He wave func-
tions used in ONE calculations. Fig.1a shows
that there are some structures in the angular
distribution of Ay in spite of zero predicted from
ONE calculations. Since ONE calculation does
not produce non-zero vector analyzing powers, this result will be a clue to investigate the
reaction mechanism beyond the ONE model.

Kamada calculated the analyzing powers for the
−→
d d → 3He n reaction [15] at Θcm =

1400 ∼ 1800 with a model of the reaction mechanism using the 3N-scattering amplitude
determined by a Faddeev calculations (this model is similar to that for the analysis of the
3He(

−→
d , p)4He reaction in [16]).

The signs of the tensor analyzing power Ayy and Axx near 180◦ in the c.m.s. are
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positive in accordance with the sign of the D/S wave ratio of deuteron. The experimental
and predicted data for Ayy and Axx have the same sign and qualitatively agree each other.
However, the quantitative difference between them is observed. ONE predictions near 90◦

depend on both deuteron and 3He functions simultaneously and the experimental data for
Ayy and Axx strongly disagree with the calculations in this region. The experimental Axz

data and the their predictions for backward angles are in agreement. The Axz experimental
data near 90◦ strongly differ from the predictions.

The experimental results on vector Ay and tensor Ayy, and Axx analyzing powers for−→
d d → p X reaction at Ed = 270 MeV are presented by the filled symbols in Fig.1b.
Events of breakup have effective values of excitation energy of ≈ 7 MeV . Open symbols
correspond to the binary reaction.

The analysis of the experimental data on the cross sections of the dp → pd and dd →
3Hen reactions [17] has shown that non-nucleonic degrees of freedom can occur already
at Td ∼500 MeV. The large angles in the c.m. in the present experiment correspond
to the short internucleonic distances where the manifestation of non-nucleonic degrees of
freedom is possible.

Figure 2. See the text for explanations.

On the other hand, the discrepancy between
the data on the tensor analyzing powers and
ONE calculations [18] can be caused by the rel-
ativistic effects. In Fig.2 the tensor analyzing
powers Ayy, Axx and Axz in the dd → pT re-
action at 270 MeV is compared with the re-
sults of ONE calculations using the relativistic
and non-relativistic Paris deuteron wave func-
tion [13] shown by the solid and dashed lines,
respectively. Relativity in deuteron wave func-
tion is taken into account by the minimal rela-
tivization scheme [19].

One can see that the use of the relativistic
deuteron wave function [19] does not allow one to
reproduce Ayy data. The structure of deuteron
can be more complicated and depends on more
than one variable as in the case of the deuteron
where the strong dependence of the spin struc-
ture on two variables was observed [20]. On the
other hand, the relativistic effects for the both
reaction mechanisms and deuteron structure should be treated in the consistent way. For
instance, if one takes the relativistic kinematics, boost effects and Wigner spin rotations,
it finally leads to rather small effects in the cross section and polarization observables in
Nd- elastic scattering [21].

In summary, the experimental data on the tensor and vector analyzing powers Ayy,

Axx, Axz and Ay for the
−→
d d → p T are obtained at Ed = 270 MeV in the angular range

90◦−180◦ in the c.m.s. The experimental data on the tensor observables for this reaction
show the sensitivity to the spin structure of the deuteron. The angular distribution of Ay

indicates the necessity to take into account mechanisms beyond ONE.
The experimental data of the tensor and vector analyzing powers Ayy, Axx and Ay for
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the
−→
d d → p X breakup reaction are obtained. The experimental data on Ayy and Axx for

this reaction also show the sensitivity to the spin structure of deuteron. The comparison
of breakup data with the binary ones gives the opportunity to conclude that they are in
agreement within achieved experimental errors.

The obtained experimental data require further development in theoretical approaches
either for adequate description of the light nuclei structure at short distances and (or)
taking into account mechanisms in addition to ONE.
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Abstract

Transverse Λ and Λ̄ polarization and spin transfer from longitudinally polar-
ized target have been measured in the HERMES experiment. The data were ac-
cumulated in the years 1996-2000 using the 27.6 GeV polarized HERA positron
beam incident on hydrogen, deuterium and heavier gaseous targets. The average
transverse polarizations were found to be PΛ

n = 0.078 ± 0.006stat ± 0.012syst and
P Λ̄

n = −0.025 ± 0.015stat ± 0.018syst for Λ and Λ̄ respectively. The longitudinal
spin transfer coefficient is found to be KΛ

LL = 0.026 ± 0.009stat ± 0.005syst and
KΛ̄

LL = 0.002± 0.022stat ± 0.008syst. The dependence of PΛ
n and KΛ

LL on the trans-
verse and longitudinal momenta of the Λ hyperon were also studied.

1. Introduction. The transverse polarization of Λ particles has been observed and
investigated in many high-energy scattering experiments, with a wide variety of hadron
beams and kinematic settings [1, 2]. It is almost always found to be negative. A rather
consistent kinematic behavior of the polarization has also been observed: its magnitude
increases almost linearly with the transverse momentum pT of the Λ hyperon up to pT ≈ 1
GeV, where a plateau is reached. In lepto/photoproduction, the data existing to date are
not conclusive because of lack of statistics [3, 4].

Spin-transfer coefficient from the transversely or longitudinally polarized proton to the
Λ has been measured by E704 [5], STAR [6] and PS185 [7]. In E665 [5] and COMPASS [8]
experiments longitudinal spin transfer has been studied using polarized muon beams. The
HERMES [9] experiment has measured DLL using the polarized positron beam of the
HERA accelerator [10, 11]. The data on spin transfer from the polarized target, reported
here, have been obtained in photoproduction regime for the first time.

3. Transverse Λ and Λ̄ polarization. The final-state hadron polarization in a
reaction with unpolarized beam and target must point along a pseudo-vector direction,
because of the parity-conserving nature of the strong interaction. In the case of inclusive
hyperon production, the only available direction of this type is the normal −→n to the
scattering plane formed by the cross-product of the vectors along the laboratory-frame

momenta of the positron beam (−→p e) and the Λ (−→p Λ): −→n =
−→p e×−→p Λ

|−→p e×−→p Λ| . The extraction of

the Λ polarization Pn from the data was accomplished using a moment method which
exploits the top/bottom symmetry of the detector [12,13].

In order to study possible effects of detector misalignment and inefficiency detailed
Monte-Carlo simulations were performed. A contribution from the background under
the Λ invariant mass peak to the extracted polarizations was taken into account using a
sideband subtraction method.
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Figure 1. Transverse polarization PΛ
n and P Λ̄

n as function of pT for the region ζ < 0.25 (left
panel) and ζ > 0.25 (right panel).

Figure 2. Transverse polarization PΛ
n and

P Λ̄
n as function of ζ.

In order to estimate the systematic uncer-
tainty of the measurement an identical analysis
was carried out for reconstructed h+h− hadron
pairs, both with leading protons (Λ-like case)
and with leading antiprotons (Λ̄-like case).

Events within two mass windows above and
below the Λ (Λ̄) mass peak were selected un-
der condition that the hadrons point of clos-
est approach is found inside the target region.
False polarization values of 0.012 ± 0.002 and
0.018 ± 0.002 were found in the Λ-like and Λ̄-
like cases respectively. These values were used
as estimates of the systematic error on the Λ
and Λ̄ polarization. The decay K0

S → π+π−

was studied as an additional check on a possi-
ble false polarization. The false polarization of
the K0

S sample was found to be 0.012± 0.004.
The net Λ polarization summing over events for all targets is found to be positive:

PΛ
n = 0.078 ± 0.006stat ± 0.012syst, while the net polarization is consistent with zero:

P Λ̄
n = −0.025±0.015stat±0.018syst. As information on the virtual photon kinematics was

not available in this inclusive measurement, the kinematic dependence of the polarization
could only be studied as a function of variables derived from the eN system. The selected
variables were pT and ζ ≡ (EΛ + pΛ

z )/(Ee + pe), where pT is the transverse momentum
with respect to the (lepton) beam, EΛ and pΛ

z are the energy and z-component of the
Λ momentum (where the z-axis is along the lepton beam direction), and Ee, pe are the
energy and momentum of the positron beam.

In Fig. 1, the transverse Λ and Λ̄ polarizations are shown versus pT for two kinematical
domains ζ < 0.25 and ζ > 0.25. The Λ polarization rises linearly with pT with higher
slope at ζ < 0.25. The Λ and Λ̄ polarizations as functions of ζ are shown in Fig. 2. The
Λ polarization appears to increase in the low-ζ region while the Λ̄ polarization shows no
visible dependence on either ζ or pT .
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Figure 3. Spin transfer coefficient KLL for Λ and Λ̄ versus
√

t (left panel) and pT (right
panel).

3. Spin transfer KLL. In order to cancel the effect of the limited HERMES accep-
tance, the spin transfer to the Λ and Λ̄ has been determined by combining the two data
sets measured with opposite target polarizations into one helicity-balanced data sam-
ple, in which the luminosity-weighted average target polarization for the selected data
is P Targ ≡ 1

L

∫
PTargdL = 0. Here L =

∫
dL is the integrated luminosity. A detailed

derivation based on the method of maximum likelihood leads to the relation [14]. The
analysis of false asymmetries for h+h− pairs and K0

S decay was performed similar to the
transverse polarization case. For h+h− pairs false spin transfer of −0.0005 ± 0.0028 and
−0.002 ± 0.003 were found in the Λ-like and Λ̄-like cases, respectively. For K0

S → π+π−

it was obtained 0.006± 0.008.
Averaged over the experimental kinematics, spin transfer to the Λ is found to be

positive: KΛ
LL = 0.026± 0.009stat ± 0.005syst and spin transfer to the Λ̄ is consistent with

zero: KΛ̄
LL = 0.002± 0.022stat ± 0.008syst.

Figure 4. Compilation the world data of
spin transfer.

For spin transfer study in addition to ζ the
Mandelstam variable t ≡ −(pΛ − pp)

2 was used.
The variable ζ or t provides an approximate
measure of whether a hyperon was produced in
the forward or backward region in the center-
of-mass frame of the γ∗N reaction. The natu-
ral variable to use to separate these kinematic
regimes would be xF ≡ pΛ

‖ /p
Λ
max evaluated in

the γ∗N system, but this variable is not avail-
able since primary photon energy is not mea-
sured in the experiment. Nevertheless, a simu-
lation of the reaction using the PYTHIA pro-
gram reveals a reasonable correlation between
ζ and xF variables.

In particular, all events at ζ ≥ 0.25(
√

t >
3.31 GeV) are produced in the kinematic region
xF > 0, while for ζ < 0.25(

√
t < 3.31 GeV) there is a mixture of events originating from

the kinematic regions xF > 0 and xF < 0.
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Fig.3 shows pT and
√

t dependence of spin transfer coefficient KLL. The spin transfer
for Λ are pT independent and increasing for

√
t < 3.31 GeV, while for

√
t > 3.31 GeV

it compatible with zero. In Λ̄ case both results are compatible with zero. In Fig.4
the HERMES data for spin transfer as function of

√
t are presented together with data

obtained by the E704 collaboration 200 GeV transversally polarized proton beam and
the STAR collaboration with a longitudinally polarized proton beam and center of mass
energy

√
s ∼= 200 GeV. As seen from Fig.4 the E704 result confirms a trend to increase

spin transfer in the region
√

t < 3.31 GeV.
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Discussion

Q. (X.Artru, Inst. de Phys. Nucl. de Lyon) Why do you reject leading pion?
A. We only reject leading π+ in case of Λ production, not leading π−.
Q. (G.Bunce, BNL) Since the production plane for Λ production cover almost 2π for

the angle of the production plane relative to detector, what is the origin of the systematic
error for the Λ polarization?

A. The acceptance does not completely cancels, so that leaves the systematic uncer-
tainty that is presented.
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Abstract

Spin physics program of RHIC (BNL, USA) requires good knowledge of the
beam polarization for the experiments as well as the machine tuning. These data are
provided by a set of two proton-carbon and one proton-hydrogen jet polarimeters.
These polarimeters utilize a huge cross section of the small angle elastic scattering
which despite of a small analyzing power provides an excellent figure of merit.
Small energy dependence of the analyzing power together with energy independent
geometry allows the same setup to cover the whole energy range 25÷ 250 GeV.

This article covers the polarimeters progress and performance in the last proton
run spring 2006.

Introduction. Elastic scattering in the region of very small momentum transfers is
determined by two forces: nuclear and electro-magnetic. Interference between these forces
results in nonzero phase between the amplitudes without spin flip and with single spin
flip, which produces analyzing power AN [1, 2]. The experimental test of this effect with
carbon target was done at AGS in 1999 and turned out to be very successful [3]. The
advantages of this process for the polarization measurement include:

• large cross section, which makes it easy to get large statistics;
• the fact that kinematics doesn’t depend much on the beam momentum, which makes

it possible to cover whole RHIC energy range from 25 to 250 GeV with a single setup;
• the fact that the event is completely defined by recoiled particle, so we can measure

only it and avoid difficulties of registration of the scattered proton, which is deflected
too slightly to leave the beam;

• weak dependence of the analyzing power on the energy, which also helps us to cover
RHIC energy range.

But there are also some drawbacks, which include comparatively small (a few percents)
analyzing power and the fact that it is not completely calculable theoretically. Due to
the first drawback we need to collect large (about 2 · 107) statistics per one measurement.
Due to the other we have to calibrate the polarimeter.
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Polarimeters. RHIC design stated a goal to measure beam polarization to 5% [4]. Fast
measurements for beam adjustments are also required. In order to achieve these goals two
types of polarimeter were built. One is a fast polarimeter with carbon target [5] and the
other is an absolute polarimeter with polarized hydrogen jet target [6]. Common features
and differences of the two polarimeters are given in Tab. 1.

Table 1: The polarimeters

Relative pC-polarimeter Absolute H-jet polarimeter
Calibration External Self calibration
Process Elastic scattering in the CNI-region
Kinematics Fixed target, recoil at 90o detected
Detectors Silicon detectors, measuring time and energy
Recoil particle
identification

Correlation between time-of-flight and kinematic energy

Readout DAQ is based on wave form digitizers(WFD)
Target Extremely thin carbon ribbon Polarized hydrogen jet
Measurement Two beams by independent

polarimeters
One beam in a time by common
polarimeter

−t range 0.007÷ 0.030 (GeV/c)2 0.0015÷ 0.01 (GeV/c)2

TR range 0.3÷ 1.3 MeV 0.8÷ 5.5 MeV
Measurement of
the recoil angle

Smashed by multiple scattering
in the target

Used for elastic event selection

Flight distance ∼ 15 cm ∼ 80 cm
Time-of-flight
range

10÷ 50 ns 20÷ 80 ns

Counting rate Up to several MHz ∼ 100 Hz
Measurement
time

20÷ 200 s Several fills

Radial polariza-
tion measurement

Yes, by 45o detectors No

Ran 2006. In run 2006 DAQ hardware and computers were set individually for each
ring pC-polarimeter and H-jet polarimeter. This allowed us more flexibility in mea-
surements and provide us with ability to upgrade H-jet DAQ without interference with
pC-polarimeters. This upgrade included new firmware for WFD and new online monitor-
ing program. The main new feature of the firmware was ability of saving long waveform
which allowed better waveform analysis in the off-line. An example of the waveform is
shown in fig. 1a together with the time and amplitude definitions used in the online. The
performance of the polarimeter in the begin of the proton run is shown in the fig. 1b. The
ratio of beam asymmetry to jet asymmetry is shown a function of fill number. Measure-
ments of the blue beam are shown in the left and of the yellow beam in the right. An
improved accelerator performance together with very high jet density allowed us to reach
10% absolute error just in one store.

High accelerator luminosity together with long run time in 2006 allow us also to make a
study of the polarization profile. Significant profile was observed in both rings and in both
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Figure 1a. An example waveform and online parameters definition.
Figure 1b. Ratio of beam asymmetry to target asymmetry at the beginning of run 2006 as a

function of fill number.

horizontal and vertical planes. The profile turned out to be also different from fill to fill
and there were some fills where it was not observed. Both polarimeters (when pC is in the
profile scan mode) measure the polarization averaged over beam intensity, while collider
experiments average over luminosity, which is proportional to the product of the beam
intensities. This introduces and additional correction to the polarimetry results. This
correction varies in the range +(0÷ 7)% depending on the actual vertical and horizontal
profiles in the given fill. Unfortunately only horizontal profile was measured regularly. So
some additional systematics will contribute to run 2006 results.

The road to 5% measurement We will assume now that we are running both po-
larimeters:

• pC-polarimeter each 1-2 hours during fills, scanning both vertical and horizontal
profiles;

• H-jet-polarimeter alternating beams each fill.

Our procedure of getting absolute polarization of the beams has following steps:

• Measure hydrogen jet polarization. This is performed by Breit-Rabi polarimeter.
The error in jet polarization including uncertainty in the contamination by molecular
hydrogen is about 2%.

• Measure ratio R of beam to jet asymmetries in the H-jet polarimeter. The data
in the fig. 1b was collected in about two weeks and has statistical error in the
asymmetry ratio about 3% for each beam. Small inelastic background contributes
to both asymmetries and is canceled in the ratio with a good precision.

• Measure beam asymmetries with pC-polarimeter and normalize to the average beam
polarization which we got in the two previous steps. The statistical precision of pC-
polarimeter is very large and doesn’t contribute to the total error. An estimation of
the stability of pC-polarimeter analyzing power comes from observed change in our
dead layer estimation. A safe limit to the systematics introduced by pC-polarimeter
analyzing power drifts is 2%.
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• Correct the polarization to the polarization profile. The correction is difficult to
measure and it is in the range +(0 ÷ 7)%. We hope that the error produced by
profile will be corrected to the precision of 2%.

Total error in the polarization value is:

(
∆P

P
)2 = (

∆Pjet

Pjet

[2%])2 + (
∆R

R
[3%])2 + (

∆P stat
pC

P stat
pC

[0%])2 + (
∆P sys

pC

P sys
pC

[2%])2 + (
∆Pprof

Pprof

[2%])2

∼ (5%)2

So RHIC polarimeters can provide both fast and precise beam polarization measurements
required for RHIC success as a polarized proton collider.
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Discussion

Comm. (G.Bunce, BNL) Due to the synchrotron motion, the protons in a bunch in
RHIC mix longitudinally. Therefore it is not useful to try to measure the polarization in
the longitudinal profile.

Q. (Y.Bedfer, CEA, Gif/Yvette) Don’t you have to measure polarization as a function
of the whole phase space of the beam rather then merely as a function of the transverse
position?

A. With our target we can measure only transverse distribution. We don’t know a way
to measure longitudinal distribution. But according to accelerator people there should be
no longitudinal distribution.
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Abstract

Examples are given of dynamically polarized targets in use today and how the
subsystems have changed to meet the needs of today’s experiments. Particular
emphasis is placed on target materials such as ammonia and lithium deuteride
and their operation in an intense beam of charged particles. Recent polarization
studies of irradiated materials such as butanol and polyethylene and their deuterated
counterparts are presented. The operation of two non-DNP target systems as well
as applications of traditional DNP targets are discussed briefly.

1 Introduction

Over more than forty years of use, solid polarized targets have seen many developments,
innovations and improvements. Early on, 4He evaporation refrigerators were used followed
by 3He evaporation refrigerators that allowed lower temperatures (˜0.5 K) to be reached.
Later, dilution refrigerators were modified to operate efficiently in beams of charged parti-
cles, reaching even lower temperatures (˜50 mK) where the concept of frozen spin became
a reality. In later years the 3He refrigerators were displaced by dilution refrigerators for
various practical reasons. Today it is a matter of scale: 4He refrigerators typically operate
in high intensity charged particle beams while dilution refrigerators operate with neutral
or very low intensity particle beams, in both continuous or frozen spin mode.

In addition to the refrigerators, improvements in magnets, microwave sources and
NMR and the use of many different materials have meant that through dynamic nuclear
polarization (DNP), proton polarizations of close to 100% and deuteron polarizations of
about 80% have been achieved. The range of operation for DNP of solid targets now goes
from 100 mK to about 1 K and from 2 T to 7 T.

2 System Improvements

2.1 Refrigerators and Magnets

Examples of high power refrigerators are the UVA/SLAC/JLab 4He refrigerator [1] and
the SMC/Compass dilution refrigerator [2]. The UVA refrigerator operates in an electron
beam of 100 nA with a small target (2.5 cm OD cylinder, 3 cm long) with 12000 m3hr−1

pumping speed, while the SMC refrigerator can cool a very large target to a temperature
of ˜50 mK, in the presence of a beam of > 107 µ s−1.
The magnet for the UVA system is a superconducting split Helmholtz pair operating at
5 T. There is a large acceptance in the field direction, while normal to the field direction
there is a split between coils of 8 cm and an opening with respect to the target center of ±
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17◦, horizontally and ± 25◦,vertically. The current trend for transversity measurements is
to open the access on the split as much as possible. Openings of about ± 22◦ are possible
while maintaining the field uniformity requirement of ˜10−4 over a 2 -3 cm DSV, but at
the expense of lowering the central field to about 4 T.

The magnet for the SMC target operates at 2.5 T and has a bore large enough to
accommodate the large diameter refrigerator nose. The target size is 1600 mm long
with a 70 mm diameter. The experiment detected muons at relatively small angles and
therefore the bore was adequate. However in the COMPASS incarnation a new magnet
has been installed; this allows detection of recoil particles at larger angles. Furthermore
transverse measurements can be made with a saddle coil wound on the refrigerator which
is operated in the frozen spin mode. As mentioned above, many experiments use dilution
refrigerators operating in the frozen spin mode with the low magnetic field provided by
an internally wound superconducting coil [3]

It is doubtful that much can be gained by going to larger systems than these. Thus
one must look elsewhere for possible improvements for either increased polarization and
the maintenance of that polarization or the better measurement of the polarization.

2.2 Microwaves and NMR

In general, the polarization of protons and deuterons increases with increasing magnetic
field, as will be seen later in this talk. However the frequency of the microwaves necessary
for the DNP process is linearly related to the value of the magnetic field. But as the
frequency output of microwave devices increases the power available decreases. At the
same time, the power required for DNP to proceed efficiently increases. Operation at 140
GHz and 5 T has been possible for some years because of EIO tubes, generating more than
15 watts at 140GHz. In the last few years EIO tubes have become available at around
200 GHz and which output a few watts and therefore allow operation with a magnetic
field of ˜7 T. However the compromise is that there is a small tuning range of ˜200 MHz,
compared to the 2 to 3 GHz available at 140 GHz, which is a consequence of removing the
mechanical tuner. The span of frequency going from positive to negative enhancement for
most materials is greater than 200 MHz so one operates at fixed frequency and adjusts
the magnetic field into resonance.

The standard for NMR measurement continues to be the so-called Liverpool Q-meter
[4]. Little has changed in more than 30 years of operation, except in the past few years
the tunable resonant circuit has been removed from the room temperature Q-meter and
placed in the refrigerator very near the target itself. This results in improved signal
stability and noise reduction because of operation around 1 K [5]. Such a system is used
on a polarized target running at PSI [6]. The target is thin, needing the noise reduction
that is described above.

For the deuteron, sometimes it is not possible to use the standard method of calibration
by measuring the area of a thermal equilibrium (TE) signal because the signal is too small
for a reasonable measurement. However it has long been known that the characteristic
shape of the deuteron signal can be used to estimate the polarization represented by that
signal by measuring the ratio of the heights of the two peaks in the spectrum. Because
of the dynamics of the polarizing, it is known that the method is not reliable below a
polarization of about 20%. Using a method developed for the SMC polarized target [7],
it has been shown [8] that this method for evaluating the polarization in deuterated
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ammonia is valid above about 25%: the deuteron polarizations measured in the GeN and
RSS experiments at JLab were obtained through careful area measurements of the TE
signal and were compared to the ratio evaluation on the same data. The ratio method
was used in the EG4 experiment at JLab and was used to obtain the calibration constant
for the target(s) in the EG4 experiment in Hall B at JLab. The polarization history of
the target is shown in Fig. 1 and discussed in Section 2.3.1

2.3 Materials
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Figure 1: Deuteron polarization during
experiment EG4. There are several se-
quences of irradiation followed by an an-
neal and repolarizing.

Several of the polarized target materials listed
by Crabb and Meyer [9], still are in regular use;
more is known about them, so there can be a
better matching of target to the experiment un-
der consideration.

2.3.1 Ammonia

For many years ammonia (14NH3,
15NH3) has

been the material of choice for operation in high
intensity beams; it has one of the best radia-
tion resistances together with a rapid polariza-
tion rise to > 90%. The material is prepared for
DNP by irradiation doping by exposing it to a
charged particle beam while under liquid argon.
An exposure of about 1017 particles cm−2 gives
the best initial performance. As shown in Fig. 2 the polarization decays under continuous
exposure to the beam used in the experiment.

Annealing (warming the target ammonia to about 90 K) restores the polarization.
Even with an electron beam of 100 nA, the target survives for many cycles of decay and
anneal, though as can be seen the decay becomes faster after each successive anneal, and
eventually the target material has to be changed. Obviously there is an advantage to
using ammonia in lower intensity beams, giving slower decay and thus a higher average
polarization. A sample of ammonia that was kept in liquid nitrogen for ten years and
never used for an experiment, was polarized about once per year and shows a slow decay
of the achievable polarization. The negative polarization fell from -95% to about -61%,
while the positive still reached 82%.

Deuterated ammonia behaves in a different way: the initial doping irradiation under
liquid argon yields a polarization of only about 15%. But then in a sequence of decay
and anneal the polarization rises to about 45% [10] as shown in Fig. 3. The annealing
procedure also changes over the dose history of the target; the temperature of the anneal
increases from about 80 K to 110K, while the time spent at that temperature increases
from 15 minutes to one hour. Deuterated ammonia has higher radiation resistance than
normal ammonia, but shows the same trend of faster decay as a function of dose; so far
a limit has not been reached.

The behaviour of the polarization in a beam is shown in Fig. 4; polarization builds up
to about 45% without beam and after an anneal. The beam is turned on and there is an
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Figure 2: Proton polarization decay through
radiation damage, as a function of incident
charge.

Figure 3: Deuteron polarization decay
through radiation damage, as a function of
incident charge.

immediate drop due to beam heating, after which there is a slower decay due to radiation
damage. The spikes in the curve are due to beam trips; there is an immediate reponse as
the target cools.
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Figure 4: Deuteron polarization be-
fore and after beam is turned on.

Because of the limited polarization available
with ND3 after the polarizing dose, it is not usually
suitable for running in a low intensity beam because
of the limitation of the substantial cold dose neces-
sary to reach 40%. However in experiment EG4 in
Hall B at JLab using the CLAS detector, it was
possible to achieve a deuteron polarization of better
than 45%. The luminosity limit for this experiment
(to avoid high rates in the detector) meant that a
beam intensity of about 2nA only could be used.
However it was possible to turn off all the detec-
tors and put 100nA through the target for about an
hour and then anneal. This sequence was performed
several times, raising the polarization from < 20%
to about 45%. [11] This sequence of irradiating, an-
nealing and polarizing is shown in Fig. 1.

2.3.2 6LiD

Abragam and co-workers [12] first showed that 6LiD could be polarized after irradiation
and under conditions of high magnetic field and low temperatures (in a dilution refriger-
ator). Deuteron and lithium polarizations of 70% were obtained. At SLAC it was first
used as a deuteron target in experiment E155, operating with a 5 T magnet and at 1
K . Polarizations of up to 30% were obtained in the deuteron and in the 6Li. The 6Li
can be considered in its simplest form, a combination of alpha particle and deuteron [13],
thus providing a second deuteron for the interaction. In the case of E155, in comparison
with E143 where the measurement of the A1 asymmetry parameter was measured with
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15ND3, the data agreed to within 5%. Fig. 5 shows the rise of the deuteron polarization,
as a function of time, before and then also after the beam is turned on. It reaches a
maximum and then turns over and starts falling due to radiation damage. Also shown is
an indication of when beam is incident on the target. The structure in the polarization is
due to beam stoppages. The radiation damage characteristic is two to three times better
than deuterated ammonia.

2.3.3 Other DNP Materials

Figure 5: Deuteron polarization in 6LiD before
and after beam is turned on. Structure in po-
larization correlated with the beam being off or
on as indicated by the charge line.

In the early days of polarized targets many
experiments were carried out with alco-
hols such as butanol, propanediol, ethane-
diol etc. with paramagnetic radicals such
as porphyrexide and Cr V. Typical pro-
ton polarizations were better than 80%,
but the deuteron polarizations were typ-
ically less than 30%. depending on the
radical-host combination. After the suc-
cess of irradiated ammonia, the University
of Virginia polarized target group thought
it worthwhile to take another look at irra-
diating materials such as those mentioned
above and others such as CH2, CD2 which
could not be chemically doped very easily.
Though earlier attempts had been made to
irradiate and polarize, it was sporadic and
not very high polarizations were obtained.

The group did a series of irradiations at
the MIRF facility at NIST in Gaithersburg,
MD with a 19 MeV electron beam at 10 or
15 µA. The results are shown in Fig. 7 and Fig. 6 at 5 T and 1 K.

The polarizations of various proton materials do not show much promise compared to
chemically doped materials, though CH2 cannot be doped in any other way and polariza-
tions of > 20 % might be sufficient for some applications.

On the other hand, the deuterated materials have some possibilities with deuterated
butanol reaching a deuteron polarization of > 50% and deuterated 1-pentanol showing a
similar response. Some measurements were done at 6.55 T and 1K and, for deuterated
butanol, deuteron polarizations of > 60% were obtained. This is the opposite effect to
that measured at PSI where the polarization dropped to zero at 5 T, from about 50% at
2.5 T, with butanol doped with EDBA [14].

In a series of ESR studies by the Bochum target group, it was shown that the deuteron
polarization, as a function of magnetic field, changes as the width of the ESR line changes.
In this study, a standard X-band ESR spectrometer as well as one operating at around
70 GHz, (a typical polarized target operating frequency) allowed some measurements of
how the line width changes with ESR frequency. Narrower lines lead to higher deuteron
polarizations.

For example the line width of d-butanol doped with EDBA increases by a factor
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Figure 6: Deuteron polarizations for various
materials as a function of incident charge.

Figure 7: Proton polarizations for various
materials as a function of incident charge.

of six from X-band to 70 GHz, while d-butanol doped with porphyrexide or TEMPO
only increases by about a factor of two. Also irradiated d-butanol has a line width
which is about half of that measured with TEMPO and porphyrexide. The polarizations
obtained with these samples directly correlates with the ESR line width. The largest
deuteron polarizations ever measured were achieved with the family of Trityl radicals
[16]. At Bochum [15] deuteron polarizations of ±80% were achieved with Trityl doped
d-butanol and d-propanediol. Unfortunately these radicals are difficult to obtain because
of proprietary concerns.

2.4 Hydrogen Deuteride (HD)

This target, which uses the so called ”brute force” method, has just finished a successful
run at the LEGS facility at BNL. [17] The polarization is the H and D thermal equilibrium
polarization obtained in a very high magnetic field (˜17 T) and very low temperatures
(˜10 mK), with either ortho-hydrogen and/or para-deuterium as the dopant. The target
is prepared over at least a month of curing, during which time the dopants decay to
their magnetically inert state. The target has to be removed from the curing refrigerator
and installed in the in-beam refrigerator without significant loss of polarization. The
experiment can proceed as the polarization slowly relaxes; the relaxation time can be
many weeks or months depending on the holding field and temperature. The deuteron
polarization can be enhanced by transferring some of the protons’ polarization through
an adiabatic transition. At LEGS, the polarizations for the duration of the scattering
experiment were about 58% for the proton and, after an adiabatic transition about 32%
for the deuteron.

The LEGS facility has been closed and the HD target will be moved to JLab over the
next year or so.

2.5 Solid Target with Aromatic Molecules

This target was developed for measurements in RI beams with very low magnetic fields
(max =0.7 T) with operation at 0.09 T and at a temperature of about 100 K. A combi-
nation of several techniques are employed to polarize the aromatic molecules (napthalene
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doped with pentacene) used in the target. The procedure and the results from an early
run are described in [18].

2.6 Other Applications

Polarized targets are being used in areas other than in direct scattering measurements.
Researchers in Malmo, Sweden [16] have used a 4He refrigerator to polarize 13C to about
45%. The idea is to use the polarized 13C in high contrast MRI: 13C enriched material,
which must be a liquid at room temperature, is frozen and polarized and then extracted
from the refrigerator, warmed to 300 K and injected into the patient (at this point, a
mouse or rat) as fast as possible without losing too much polarization. The polarized
13C is then detected in a MRI scanner in some parts of the body (e.g. heart) that are
not covered so well by polarized 3He gas. Some attempts have been made by the same
group to polarize 129Xe in a DNP apparatus to realize higher polarizations for Xe MRI
measurements.

3 Conclusions

Two examples of dynamically polarized targets have been presented as representing the
targets in use at various laboratories. A 4He evaporation refrigerator for operation in
intense particle beams and a dilution refrigerator for dynamic operation in low intensity
or neutral beams and which can be used in a frozen spin mode. At the same time,
subsystems have been improved to meet the demands of modern experiments. In an
era where difficult and/or very precise experiments are being proposed, the traditional
DNP style polarized targets have a significant rôle to play still. There have also been
developments of non DNP targets to meet a specific experimental requirement. Indeed
targets using DNP have been adapted as neutron spin filters, neutron spectroscopy and
for MRI studies. Even without further developments of this mature technology, polarized
targets will still be able to meet the future demands placed on them.
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Abstract

The report introduces and surveys nonlinear magnetic phenomena which have
been observed at high nuclear polarizations in polarized targets of the SMC and
of the COMPASS collaborations at CERN. Some of these phenomena, namely the
frequency modulation effect and the distortion of the NMR line shape, promote
the development of the polarized target technique. Others, as the spin-spin cross-
relaxation between spin subsystems can be used for the development of quantum
statistical physics. New findings bear on an electromagnetic noise and the spec-
trally resolved radiation from LiD with negatively polarized nuclei detected by low
temperature bolometers. These nonlinear phenomena need to be taken into account
for achieving the ultimate polarizations.

1. Frequency Modulation effect (FM).

A strong increase of polarization by a dramatic factor of 1.7 due to frequency modulation
(FM) was discovered in D-butanol doped with paramagnetic Cr(V) complex which was
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Figure 1. DNP-process in LiD over
time with and without FM.

the material used in the large 1.5 l target of the
SMC-collaboration at CERN [1, 2]. FM is regularly
used for the achievement of the highest polarizations.
Dynamic nuclear polarization (DNP) is obtained by
microwave (MW) saturation of the electron paramag-
netic resonance (EPR) line of the dopant diluted in
the target material. The efficiency of the method de-
pends on intensity and spatial uniformity of MW field
in a target cavity. At 2.5 T field the typical MW
wavelength of λ ≈ 4 mm is smaller than the target di-
mensions and the cavity field exhibits a standing wave
structure. Polarization will be higher in the domains
having larger paramagnetic absorptions in comparison
to those in which there are the maxima of dielectric
losses (so-called hot spots). To equalize a spatial saturation, the field maxima should be
spread out over the material volume for a short enough time interval.

The novelty of FM-invention consists in the mechanism of MW field displacement by
sweeping over the modes, in other words, by multi-mode excitation of the cavity [3]. For
this, the carrier MW frequency is slightly modulated with an external modulation of about
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20 MHz width. It was shown [3] that if the cavity design enables 3 to 4 non degenerate
modes per 20 MHz frequency band, then FM provides a good spatial uniformity of the
field as required for the highest polarizations. Following this way one can enlarge the
fraction of the nonlinear (with respect to the input power) resonant magnetic losses in
comparison with linear dielectric losses. Fig. 1 shows FM-action in case of the COMPASS
LiD-target. Polarization went down when switching-off FM and it was growing up to
ultimate values when restarting FM.

2. Line shape asymmetry.

The NMR line shape of polarized nuclei usually reveals an asymmetry which contains
useful information about the status of the spin system. Fig. 2a shows the spectra of
highly polarized deuterons (S = 1) in D-propanediol and D-butanol obtained at Bochum
University [4]. Deuteron asymmetry of these spectra arises due to an interaction between
the nuclear quadrupole moments and the electrical field gradient in the lattice. This
interaction contributes to a quadratic term in the sublevel energies.

In an amorphous solid material, the energy of S = 1 spin system in a magnetic field
can be introduced as [5]

Em = E0 − E1m + E2(θ)m
2 , (1)

where m is magnetic quantum number, E0 - doesn’t depends on the spin, E1 = hνD is
the Zeeman energy and E2(θ) = 3hνq(3 cos2 θ−1) is the quadrupole energy, dependent on
the angular distribution of the molecules about the magnetic field. In practice, the signal
asymmetry R is handy to express in terms of relative populations pm (m = +1, 0,−1)

R =
p+

p0

=
p0

p−
=

p+ − p0

p0 − p−
. (2)
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Figure 2a. NMR-signals of D-propanediol (left) and D-butanol (right) with record
polarizations of -81 % and +80 %, respectively [4]

Figure 2b. Proton spectra in NH3 with different polarizations from -90 % to +90 % [8].
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Using Eqs. 1, 2 and Boltzmann distribution for sublevels, we have [5]

R(θ) =
exp (x− y)− 1

1− exp−(x + y)
, x =

E1

kT
, y =

E2(θ)

kT
. (3)

where kT is the Boltzmann factor, E2 gives nonequidistant splitting of sublevels. Let
us estimate the quadrupole effects for spectra in Fig. 2a. Their maxima are situated at
θ = π/2, then Eqs. 1 yields E2(θ = π/2)/E1 = −3νq/νD and a signal asymmetry at low
polarization (T →∞) equals to

lim
T→∞

R(θ) =
1− E2(θ = π/2)/E1

1 + E2(θ = π/2)/E1

=
1 + 3νq/νD

1− 3νq/νD

. (4)

The value of 3νq/νD is the relative shift of the deuteron peaks about the central Larmor
frequency; from Figs. 2a this shift is equal to about 55 kHz/16300 kHz ∼= 3.4 · 10−3 and
Eq. 4 gives unity with accuracy of 0.7 %, therefore E2

∼= 0 in Eq. 1 is a good approximation
and a signal asymmetry vanishes at low polarizations. The asymmetry can be calculated
by formula [6]

R(θ) =
S+1 − S0/

√
2

S−1 − S0/
√

2
, (5)

where S+1 is the right and S−1 is the left peak amplitude of the signals in Figs. 2a; S0

is the amplitude of the medial point between these peaks. From Fig. 2a (left), they are
S+1/S0 ≈ 1.3, S−1/S0 ≈ 3.5 and from Eq. 5 R ≈ 0.59/2.8 = 0.21; also repeating the same
calculations for the spectrum of Fig. 2a (right), we find R ≈ 5.5. Since E2 ≈ 0, from
Eqs. 2 it follows the well known formula for the polarization of S = 1 spin system [7]

P = p+ − p− =
R2 − 1

R2 + R + 1
, (6)

which gives of -77 % and +78 % polarizations, as compared with more precise “area
method” measurements of -81 % and +80 % in Figs. 2a (left) and 2b (right), respectively.

In contrast with the previous consideration, 14N spins (S=1) in the ammonia exhibit
a broadened NMR-spectra (3νq/ν=1.23 MHz/6.47 MHz=0.19) at 2.1 T, S0 ≈ 0 [8] and
R = 1.46 for the limit in Eq. 4. In this case the quadrupole interaction will bring along a
strong line shape asymmetry even at the lowest nitrogen polarizations .

Fig. 2b shows another example of asymmetry of the proton spectra in ammonia (NH3)
parametrized over polarization [8]. One can see again a strong line shape asymmetry
increasing with polarization. Our preliminary analysis allows to conclude that the asym-
metrical part of these spectra vary linearly with polarization. If further studies confirm
this finding then the proton polarization in ammonia could also be determined by the
signal asymmetry along with the routine “area method”.

3. Spin-Spin Cross-Relaxation.

DNP in ammonia at 2.5 T and about 0.1 K allows to reach polarizations of about 14 %
and 90 % of 14N and 1H spins, respectively. As stated above, the nitrogen spins (S = 1)
have a strong quadrupole interaction with the lattice field. Unlike 14N nuclei, the energy
of the half-integral 1H spins depends only on the magnetic field, so that, by ramping
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down the field from 2.5 T to about 0.056 T [8], one can equalize resonant frequencies
of both species. At such a field, flip-flop interactions conserve the total energy, allowing
an effective cross-relaxation between subsystems. We estimate cross-relaxation time as
τ = W−1, where W is an approximate rate of cross-polarization [9]

τ = W−1 ≈ T2(
γH

γN

)2 cosh(ξ
∆0

∆H

) . (7)

Here T2 ≈ 10−5 s is the transverse relaxation time of proton spins, ∆H ≈ 0.05 MHz is the
proton NMR line width, γH/γN = 13.8 is the ratio of gyromagnetic constants, ξ ≈ 1 is a
free parameter and ∆0 is the frequency detuning between 14N and 1H spins. One can see
from Eq. 7 that for small detuning of ∆0 ≈ ∆H τ is of the order of T2(γH/γN)2 ≈ 2·10−3 s.
In the case of broaden 14N -spectral line, the detuning range is also broadened out within
interval of ∆H ≈ 0.05 MHz < ∆0 < 3νq ≈ 1.23 MHz. As a consequence, τ in Eq. 7 can
vary from milliseconds to hundreds of seconds depending on the field setting. Studies done
at CERN [8] confirm this conclusion. Different cross-relaxation tests allowed to gain the
vector polarization of 14N up to 40 % or they destroyed the equilibrium spin distribution.
Cross-relaxation can be suppressed by replacing 14N by the 15N isotope. This isotope
has spin S = 1/2 and γH/γ15N ≈ 9.9 with no quadrupole effects. In this case the cross
coupling effects will vanish at a field larger than 0.05 T.

4. Self-induced spin spectroscopy.

NMR and EPR spectra are usually studying a response of a spin system to an external
field excitation within their Larmor frequency [10]. Here, we consider the self-induced
spectroscopy of negatively polarized, better saying, active spins without exciting field.

Fig. 3a shows an equivalent resonant circuit coupled with active spin media situated
inside the coil which axis is perpendicularly directed about the field (B0). In this circuit
the coil resistance (r) is counterbalanced by the sample energy so that r = −ηωχ′′L0 and
the coil reactive impedance equals to

Z = r + jωL0(1 + η(χ′ − jχ′′)) = jωL0(1 + ηχ′(ω)) , (8)

where j =
√−1, η, r, L0, ω = 2πν, χ′ − jχ′′ are the coil filling factor, resistance,

inductance, the circuit resonant frequency and a sample susceptibility, respectively.

Bo
C

H1

Cavity 2

bolometer  bolometer 

B0

Cavity 1

3He/4He coolant 

P+ P-

(a) (b)

Figure 3a. A circuit coupled with the active media looses a resistance and it acts as a
transformer of any external flux deviations into ringing resonant current, generating H1-field.
Figure 3b. Twin-cavity with opposite target polarizations. The electromagnetic radiation is

detected by the temperature disbalance between bolometers (Speer-220).
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For example, in the case of a sample made of frozen ammonia bits with a density of
N ≈ 5.4 · 1028 spin/m3, the averaged value of χ′′ = −πχ0ν/2∆H , where χ0 is the static
magnetization. Eq. 8 holds when coil impedance is less than

r = −η{χ′′}ωL0 = 0.5 · {π

2

νH

∆H

Nµ0µB

B0

}ωL0 = 13 Ohm . (9)

Here µ0 = 4π · 10−7 H/m is the permeability of vacuum, µB = 5.0 · 10−27 J/T is the
nuclear magneton and we assume η ≈ 0.5, ν ≈ 108 Hz at B0 = 2.5 T, ∆H = 5 · 104 Hz,
L0 = 10−7 H and proton polarization of 100 %. Since typical coil resistance of (1÷3) Ohm
¿ r the lossless (superconducting) circuit will transform any flux deviations through the
coil into a ringing current generating H1-field (see Fig. 3a). In turn, the H1-flux feedback
will change the sample susceptibility and the coil inductance (see Eq. 8), self-tuning of
the circuit and the Larmor spin frequencies to a resonance; in full analogy with “pulling
effect” in laser technique [12].

One can see that it should exist a particular “self-induced spectroscopy” which oper-
ates without an external excitation, with self-tuning to a circuit resonance, with direct
indication of electromagnetic radiation using the extra low-noise cryo-bolometers; it is
true, on the other hand, that the method can not be realized without an active media.

Our set-up [13] shown in Fig. 3b consists of the two electrically isolated MW cavities
with oppositely polarized LiD-material in cells. The two resonance circuits enable radia-
tion: NMR-circuits for polarization measurements and the MW cavity. The studies were
performed with LiD at low fields of ≈ 0.1 T, where NMR circuits have not any resonance
for Larmor frequencies for all nuclear species, therefore only electron spins can activate
the radiation in the microwave cavity. This radiation will unbalance the bolometer tem-
peratures which were measured by the low-frequency cryo-bridges.

The fast electromagnetic energy release, shown in Fig. 4a [11], with τf ≈ 18 min
originated by electron spins coupled through the electron dipole-dipole reservoir [7] with
Zeeman reservoir of negatively polarized nuclear species in LiD. It is most probable that
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Figure 4a. Bolometer detects a fast release of spin energy with τ ≈ 18 min. After the
exposure, NMR-reading confirms the different relaxation times T1(−) ¿ T1(+) (in hours) for

opposite polarizations. This effect vanishes at the lower polarization in the second
exposure [11].

Figure 4b. Specified spectrum from [11]; the specra-resolved spin-radiation (from the left to
right): 1H (90), 7Li (101), D (121) and 6Li (127) mT.
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the generation goes in TM002 or TM022 modes of our cavity having a large radius of
10.5 cm with the low resonant frequencies in region of 2.5÷ 3.5 GHz and a large quality
factor of the order of 104. Such radiation means that nuclear spins can relax their energy
over a broad-band microwave noise due to their dipole-dipole contact with electron spins.

Figure 4b shows the first observation of the spectra-resolved radiation during reversal
of B0-magnetic field [11]. In this case, radiation discloses the individual contributions of
nuclear species into the electron dipole-dipole reservoir.

In conclusion, we hope that our observations may provide useful information to a
deeper understanding of self-induced processes in polarized spin systems.
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ized target materials.
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Discussion

Comm. (D.Crabb, Univ. of Virginia) In fact did see an improvement of deuteron
polarization with fn in the UVA target, but not so big an effect (target is much smaller
than COMPASS).

A. Finally!
Crabb. It was reported about the same time as SMC.
Kiselev. We can discuss it later.
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LAMB SHIFT POLARIMETER FOR A HELIUM-3 ION BEAM

Yu.A. Plis

Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
E-mail: plis@nusun.jinr.ru

Abstract

The principle of the Lamb shift polarimeter intended for polarization measure-
ment of 3He++ ions emerging from the polarized ion source is described. The results
of numeric calculations are presented. With use of level crossing at 0.75 T or 1.5 T
it seems possible to develop a simple polarimeter of a low energy (10-20 keV) 3He++

beam. Also, microwave irradiation at 2.5 T can be used for polarization measure-
ment.

In first experiments with a polarized 3He ion source, the nuclear scattering at rather a
high energy was used to measure the polarization of the accelerated beam [1]. It would be
very useful to measure the polarization at the ion source extraction energy of 10-20 keV,
as it was made for protons or deuterons.

Heberle [2] first proposed to convert a portion of the protons (or deuterons) into
metastable hydrogen atoms and to observe the intensity of the Lyman α-quanta after
quenching the beam in suitable electric and magnetic fields. This idea was realized in [3,4].

By analogy, the polarization of slow (10 − 20 keV) 3He++ ions can be measured by
converting them into metastable ions 3He+(2S) in the electron capture process [6]. The
method is based on the relation between the nuclear polarization of the primary 3He++

ions and the populations of the hyperfine states of the 3He+(2S) ions, produced in the
reaction

3He++ + X → 3He
+

+ X+. (1)

between the incident ions and target gas atoms or molecules X (for example, N2). Sub-
sequent radiative decays of the initial states lead to a mixture of the desired metastable
3He+(2S) ions and the ground state ions 3He+(1S).

The cross sections for the charge-transfer processes of this type in He, Ar, Kr, H2,
N2 and O2 were measured by Shah and Gilbogy [5] in an energy range of 10-60 keV. At
impact energies of 20-30 keV the maximum fractional yield of 3He+(2S) ions was 2.5%

The populations of the states of the 3He+(2S), produced in a sudden process of the
capture of unpolarized electrons by the 3He++ ions with polarization P , are
(1) φ+

Heφ
+
e population 1+P

4
, (2) φ−Heφ

+
e population 1−P

4
, (3) φ+

Heφ
−
e population 1+P

4
,

(4) φ−Heφ
−
e population 1−P

4
. These states are not the eigenfunctions of a time-independent

Hamiltonian:

Ĥ = −µJBσe − µHeBσHe +
1

4
∆WσeσHe. (2)

which are ψ(F = 1, m = 1) = φ+
Heφ

+
e , ψ(1, 0) = cos βφ+

Heφ
−
e + sin βφ−Heφ

+
e , ψ(1,−1) =

φ−Heφ
−
e , ψ(0, 0) = sin βφ+

HeΨ
−
e − cos βφ−Heφ

+
e . Where

sin β =
1√
2

(
1− x√

1 + x2

)1/2

, cos β =
1√
2

(
1 +

x√
1 + x2

)1/2

, (3)
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x =
B

Bc

, Bc =
|∆W |

−2µJ + 2µHe

. (4)

For the 3He(2S1/2) states ∆W = −1.083 GHz, Bc = 38.6mT.
The states (1)–(4) evolve in time:

φ+
Heφ

+
e → ψ(1, 1) exp[−iω(1, 1)t],

φ−Heφ
+
e → sin βψ(1, 0) exp[−iω(1, 0)t]− cos βψ(0, 0) exp[−iω(0, 0)t],

φ+
Heφ

−
e → cos βψ(1, 0) exp[−iω(1, 0)t] + sin βψ(0, 0) exp[−iω(0, 0)t],

φ−Heφ
−
e → ψ(1,−1) exp[−iω(1,−1)t],

Zeeman effect for 2S1/2 states gives the following energy values:

W (1, 1) = −∆W

4
− µJB − µHeB, W (1, 0) = −∆W

4
+

∆W

2

√
1 + x2,

W (1,−1) = −∆W

4
+ µJB + µHeB, W (0, 0) = −∆W

4
− ∆W

2

√
1 + x2.

In usual consideration, correct only for high magnetic fields, the populations of the
four 2S1/2 states are considered to be

N(1, 1) = (1 + P )/4, N(1,−1) = (1− P )/4,

N(1, 0) = cos2 β0(1 + P )/4 + sin2 β0(1− P )/4 =
1

4

(
1 + P

x√
1 + x2

)
,

N(0, 0) = sin2 β0(1 + P )/4 + cos2 β0(1− P )/4 =
1

4

(
1− P

x√
1 + x2

)
.

The strict consideration will be given in APPENDIX.
In the absence of any fields τ2S = 2 × 10−3 sec. The presence of an electric field

shortens the lifetime of the metastable state of the Stark effect, which produces a mixing
of the 2S1/2 and 2P1/2 states and a fast decay of the 2S state to the ground 1S state,
τ2P = 10−10 sec.

According to Lamb and Skinner [7]:

τ2S = τ2P

(
~2(ω2 + γ2/4)

|V |2
)

, (5)

where ~ω is the energy difference between the levels involved in the transition, γ = 1/τ2P

(γ/2π = 16 GHz), |V | = ∫
< ϕb|eEr|ϕa > dr is the electric dipole matrix element.

If an electric field is perpendicular to B, the allowed mixings: ∆mJ = ±1, that is,
α− f and β− e, if E parallel to B, ∆mJ = 0, the allowed transitions are α− e and β− f .
The labels for the levels follow the usage of Lamb and Retherford [8]: α − 2S1/2(mJ =
+1/2), β−2S1/2(mJ = −1/2), e−2P1/2(mJ = +1/2), f −2P1/2(mJ = −1/2). The matrix
element equals

|V | =
√

3

2
a0εE cos ωt ≈ 2.2× 10−18E cos ωt, (6)

where a0 = 0.529× 10−8 cm, ε ' 1, ω – angular frequency of an oscillating electric field,
equals zero for a static field, E (units of CGSE).
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Populations of the α states:

N(α) = N(1, 1) + N(0, 0) =
1

2

[
1 +

P

2

(
1− x√

1 + x2

)]
, (7)

where I0 is zero polarization, I+ – polarized beam, I− – reversed polarization.

P =
2

1− x/
√

1 + x2

(
I+

I0

− 1

)
. (8)

P =
2

1− x/
√

1 + x2

(
I+ − I−
I+ + I−

)
. (9)

At the level crossing

τS = τP
~2γ2

4|V |2 . (10)

First level crossing (β− e) takes place at B ≈ 0.75 T. In this case, the static electric field
E should be perpendicular to the magnetic field B,

τβ = 5.4× 10−5/E2 s, E (V/cm), τα = 6.8× 10−2/E2 s, ratio equals 1380.
Let a beam of metastable helium ions pass through a magnetic field (length L) corre-

sponding the level crossing and in a rather weak electric field, so chosen that only small
quantity of the ions in the α state decays, while practically all the ions in the β state are
quenched to the ground state.

In numeric calculations the magnetic field along the axis was accepted as linearly
increasing up to maximum value at the length of 50 cm, hyperfine splitting of the states
has been accounted. Electric dipole matrix elements have been taken from [9].

At W = 20 keV, L = 3.4 cm, E = 90 V/cm, 0.4% of the ions in the α state and 99%
of the ions in the β state are quenched.

Second crossing (β − f) is at B ≈ 1.5 T. Here E should be parallel B,
At W = 20 keV, L = 1.2 cm, E = 150 V/cm, U = EL = 180 V, the result is

approximately the same.
Another possibility is to detect the atoms in α state using microwave quenching (ν =

9.35 GHz, λ = 3.2 cm) of β states at a relatively weak magnetic field 0.25 T [10].
In this case for Eampl. = 300 V/cm at ν = 9.35 GHz at L = 1.2 cm, 3% of the ions in

the α state and 97% of the ions in the β state are quenched.
For final quenching (and measurement) of the atoms in the α state with transverse

electric field E with B = 0, accepting W = 20 keV, L = 3.4 cm, E = 90 V/cm, 99% of
the atoms in the α state are quenched.

Detecting 40.8 eV photons, we can measure nuclear polarization [11].

APPENDIX
The exact wave function of the Schroedinger equation

i~
∂Ψ

∂t
= (Ĥ + Ĥ ′)Ψ,

where Ĥ is a time-independent Hamiltonian (Ĥun = Enun), is written in the form

Ψ =
∑

an(t)une
−iEnt
~ .
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The coefficients an must satisfy to the equation: i~ȧk =
∑

Vknaneiωknt, where ωkn =
(Ek − En)/~, Vkn =

∫
u∗kH

′un dr.
Ψ(t) = c1(t)φ

+
Heφ

+
e + c2(t)φ

−
Heφ

+
e + c3(t)φ

+
Heφ

−
e + c4(t)φ

−
Heφ

−
e .

Initial φ+
Heφ

−
e evolves as cos β0ψ(1, 0) exp[−iω(1, 0)t] + sin β0ψ(0, 0) exp[−iω(0, 0)t] →

[cos β0 cos β1 + sin β0 sin β1 exp(iθ)]φ+
Heφ

−
e + [cos β0 sin β1 − sin β0 cos β1 exp(iθ)]φ−Heφ

+
e .

After averaging: |c2(t)|2 = cos2 β0 sin2 β1(t) + sin2 β0 cos2 β1(t),
|c3(t)|2 = cos2 β0 cos2 β1(t) + sin2 β0 sin2 β1(t).

Initial φ−Heφ
+
e evolves as sin β0ψ(1, 0) exp[−iω(1, 0)t] − cos β0ψ(0, 0) exp[−iω(0, 0)t] →

[sin β0 cos β1 − cos β0 sin β1 exp(iϑ)]φ+
Heφ

−
e + [sin β0 sin β1 + cos β0 cos β1 exp(iϑ)]φ−Heφ

+
e .

After averaging: |c′2|2 = cos2 β0 cos2 β1(t) + sin2 β0 sin2 β1(t),
|c′3|2 = cos2 β0 sin2 β1(t) + (sin2 β0 cos2 β1(t).

If x À 1, sin β1 → 0, cos β1 → 1,
φ+

Heφ
−
e → cos β0φ

+
Heφ

−
e − sin β0 exp(iθ)φ−Heφ

+
e

φ−Heφ
+
e → sin β0φ

+
Heφ

−
e + cos β0 exp(iϑ)φ−Heφ

+
e .

N(α) = 1+P
4

+ 1+P
4
|c2|2 + 1−P

4
|c′2|2 = 1

2
+ P

4
[1 + cos2 β0 sin2 β1(t) + sin2 β0 cos2 β1(t) −

cos2 β0 cos2 β1(t)−sin2 β0 sin2 β1(t)] → 1
2
+P

4
(1+sin2 β0−cos2 β0) = 1

2

[
1 + P

2

(
1− x√

1+x2

)]
.
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Abstract

The physical spin program at high pT region and energies s
1/2
NN ∼ 10 GeV is

discussed. It’s shown that cumulative processes, color transparency problem and
polarization phenomenons directly connect with properties new form of the nuclear
matter as Color Quark Condensate(CQC). Studies of CQC one of the most im-
portant physical problem and can be realized using polarized ion beams at JINR
nuclotron-M (and in future at NICA). The calculations of spin resonance strengthes
in the linear approximation for p, d, t and 3He beams in the JINR nuclotron are
presented. The methods to preserve the degree of polarization during crossing the
spin resonances are examined. The method of matching the direction of polariza-
tion vector during the beam injection in to the ring of the nuclotron is given. These
methods of spin resonance crossing can be used to accelerate polarized beams in the
other cyclic accelerators.

In the recent decades occurred the radical revision our understanding of forms of the
nuclear matter which can be realized at different temperatures and densities [1]. Nowadays
it is predicted that at low temperatures and high densities the nuclear matter is formed
completely the new form, in which the dominant role play the constituent quarks. This
state can be named as a Quark Color Condensate (QCC). The properties of this form of
nuclear matter determine the physical properties of matter in the center of massive stars
and, possibly, it is directly connected with the riddles of the explosions of supernovas.
The discovered enormous magnetic fields in stars (up to ∼ 1017 T) can lead to the fact
that the Quark Color Condensate (QCC) will be polarized. Therefore the polarization
characteristics of super-dense nuclear matter not only are interesting by themselves, but
they have important significance to developing the theory of evolution of massive stars.

Is it possible to obtain nuclear matter at the high densities and low temperatures in a
laboratory? Studies of cumulative (subthreshold) processes have shown that we observe
the processes, in which nuclear matter exist at low temperatures and densities which
exceed the ordinary nuclear (hadron) density up to ten times [2]. The density three times
greater then ordinary density was observed in the processes of the deep inelastic scattering
(DIS) of electrons on the nuclei in JLAB [3]. Studies of cumulative processes and DIS
processes have shown that the high density state with a certain probability exists in the
ordinary nuclei (the fact that it is not the product of compression during the collision was
shown by study of the special features of cumulative processes and lepton DIS processes
at x up to 3, because lepton cannot compress the nuclear matter).

It means that in the nuclear matter exist nucleon clusters (Blokhintsev had named its
as fluctons) with the density several times higher than usual and there is no energy gap for
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the transition to the QCC phase. Most likely in the region at low temperature and high
density for the nuclear matter there is not first-order transition. If we take additionally in
to account the absence of the first-order transition in the region of high temperatures it
can be considered as the indication for the nuclear matter generally there are not regions
of the first-order transition. This is a picture of the phase transition of nuclear matter
which was popular in the 90’s years of the last century [1].

The high pT processes (region of xT ∼ 1) deal with the high density of the nuclear
(hadron) matter too. The color transparency (CT) (observed for the first time in 1988) [4]
and elastic p−p cross-sections in the singlet and triplet spin states at angles 90o

cm (middle
of 70th) [5] may be the most interesting phenomenons.

The cumulative processes and processes with high pT in the range of energies up to√
sNN ∼ 10 GeV is possible to describe well using phenomenological approaches based

on the constituent picture only not polarization characteristics. However till now we can
say that there are not complete understanding (”microscopic” models) of the nature of
discovered effects. Especially difficultly to explain the nature of polarization effects. It
means that there are very poor understanding of properties of the nuclear matter at high
densities and low temperatures. Very important properties all these phenomenons that its
not vanish at high energy region. Moreover some features very close to new phenomenons.
Let us compare CT data [4] with data from RHIC for the so-called ”jet quenching” effect
(Figure 1). We can see very close shape of the CT data and the RHIC data. That’s why
we can say that the nature of high pT suppression at RHIC directly connect with the
nature of CT phenomena.

Before we have said that the cumulative effects and high pT effects have been dis-
covered in the energy range up to

√
sNN ∼ 10 GeV . JINR nuclotron is the accelerator

of relativistic nuclei which works and continues to be improved in the V.I. Veksler and
A.M. Baldin Laboratory of high energies(LHE). The accelerator uses the magnets with
superconductor coils developed in LHE and has been created to work with proton beams
up to energy 12 GeV and nuclei up to 6 AGeV . In JINR is discussing plan to built new
collider NICA with maximal energy

√
sNN = 9 GeV . The first stage to NICA project

will be upgrade of the nuclotron to the nuclotron-M. Polarized light ion beams will be
important part of this new project. With polarized ion beams we will have real possibility
to resolve many problems connected with CQC properties there are:

– resolve the ”spin crisis” of 70�s using complete set polarized states
(p ↑ −p ↑, p ↑ −n ↑, n ↑ −n ↑,...);

– understand the nature of color transparency phenomenon
(p ↑ −A, p ↑ −3He(d) ↑);

– understand the nature of cumulative(subthreshold) particle production;

– the first time study the properties of polarized nuclear matter
(d ↑ −d ↑,3He ↑ −3He ↑).

As the first step to realize this programm we will need to know details of the spin
dynamic in the nuclotron-M.

Complete description of spin dynamic in circular accelerators can be realized using
concept of a periodic precession axis n(θ), which is periodical function of generalized
azimuth θ: n(θ) = n(θ + 2π) [6, 7].
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Spin motion on the equilibrium orbit is a precession around the axis n: the spin
projection J = sn on the axis n will be conserved and a transversal projection to n is
turn to the angle Ψ = 2πν. Spin frequency ν is shown the turn number of the particle
spin during one turn of particle in an accelerator. In traditional accelerator with the
transverse master field (nuclotron is the accelerator this type) the precession axis n is
parallel to the vertical axis. The spin frequency ν will changing in proportion to the
particle energy: n = ez, ν = Gγ, where γ — the relativistic factor, G = (g − 2)/2 —
anomalous part of the gyromagnetic ratio. Main characteristic to describe the collective
spin motion of particle beam is a polarization vector Π =

〈
s
〉

=
〈
Jn

〉
and a power of

depolarization D = D = 1 − |Π|. The angular brackets define that we take averaging
over particle distribution in the beam.

The motion of particles on non-equilibrium orbits give deviation (spread) of precession
axes ∆n and spread spin frequencies ∆ν. If we inject beam of polarized particles in
to the nuclotron with a spin perpendicular to the precession axis n during the ”time”
θ ∼ 1/∆ν (for the nuclotron it is a some hundreds tunes) will be full randomization spin
directions related to the axis n and polarization will be lost fully. Therefore we need to
match the polarization vector of the beam with the direction precession axis n (vector
of polarization must be parallel to the axis n). The existing channel of transportation
have not this coordination. After the ion source the polarization vector is directed to the
vertical direction. The vector polarization is not changing direction in the linac. During
transportation to the nuclotron the rotation of polarization vector take place in vertical
and in horizontal planes. As a result the direction of the vector of polarization will have
the angle αz with vertical axis ( see Table 1). The power of depolarization for not correct
matchings is

Dinj = 2 sin2 αz

2
.

For eliminating this effect will be enough, for example, install the pair of the solenoids
at the beginning and the end of the transport channel which do not influence the particle

(a) (b)

Figure 1a. The CT data from [4]. Figure 1b. RHIC data for ”jet quenching” effect.
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trajectory and same time will turn polarization vector to the vertical line.

1H 2H 3H 3He

αz, degree 67 9.8 116 79

Dinj, % 62 1.5 55 81

Table 1: The power of the beam depolarization at some mismatching of polarization during
injection in the nuclotron.

Degree of polarization in the process of acceleration can changes in region of the spin
resonance, when spin frequency becomes equal to

ν = νk , νk = k + kz νz + kx νx + kγ νγ . (1)

where νx and νz are betatron frequencies, νγ is frequency of synchrotron motion. The
values of betatron frequencies are equal νx = 6.8, νz = 6.85 for the Nuclotron.

The most strongest there are resonances of linear approximation, which include in-
trinsic resonances and resonances of structural imperfections: integer, nonsuperperiodical
and the coupling resonances of x and z oscillations.

Intrinsic resonances appear when spin interact with the betatron motion. Remaining
resonances are connected with the distortion of the magnetic structure of the rings which
are caused by inaccuracies in production and misalignment of the structural elements,
with the nonlinear effects of spin and orbital motions, with switching of corrective and
functional elements(dipoles, quadrupoles, sextupoles and s.o.).

Table 2 shows the number of linear resonances for different particle beams 1H, 2H,
3H, 3He in the nuclotron (k and m — integer, p = 8 — number of superperiods).

Resonance type Resonance condition Number of resonances
1H 2H 3H 3He

Intrinsic resonances ν = k p± νz 6 — 8 9

Integer resonances ν = k 25 1 32 37

Nonsuperperiodical resonances ν = k ± νz (k 6= mp) 44 2 55 64

Coupling resonances ν = k ± νx 49 2 63 73

Table 2: Linear resonances in the ring of the nuclotron.

The spin frequency grows proportionally to energy with acceleration of beam and the
intersection of spin resonances becomes unavoidable. The basic parameters for crossing
the spin resonance are the spin resonance strength wk, detuning from the resonance ε =
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ν−νk and speed of detuning changing ε′ = dε/dθ (speed of crossing). The spin resonance
strength wk is the corresponding Fourier-harmonic of transverse spin disturbance w and
determines the width of dangerous interval in region of the spin resonance.

We can distinguish three possibility to cross the resonance with constant speed there
are fast, adiabatic and intermediate crossings. The beam practically completely will
be depolarized with the intermediate crossing of resonance ( |wk|2 ∼ ε′).With the fast
intersection (|wk|2 ¿ ε′) the polarization vector Π hasn’t time to considerably change and
the degree of depolarization is equal to D ' (π 〈|wk|2〉)/ε′. With the slow (adiabatic)
crossing when (|wk|2 À ε′) take place overturn of the polarization vector relative to
the vertical direction. In this case should be distinguished the case of ”coherent” and
”incoherent” crossing. ”Coherent” crossing means that the resonance strength is identical
for all particles (integer resonances). In this case the condition (w2

k À ε′) is satisfied for all
particles of the beam and degree of polarization after crossing remains with exponential
accuracy. With the ”incoherent” crossing the resonance strength is different for different
particles and, for example, it depends on the amplitude of betatron oscillations (intrinsic
resonances). There are not only particles with adiabatic type crossing in the beam, but
the intermediate and fast types of crossing, which leads to the partial depolarization of
the beam. With the normal distribution of particle coordinates and momentums in the
beam the degree of depolarization will be equal: D ' ε′/(π 〈|wk|2〉). With the adiabatic
crossing it is necessary to consider the synchrotron oscillations of the particles, whose
accounting can lead to the partial or even complete depolarization.

It is convenient for calculations to introduce new parameter as the characteristic res-
onance strength wd =

√
ε′/π. Intersection of the spin resonance lead to practically the

complete depolarization of the beam when the resonance strength is equal to wd. Then
the resonance strength, which corresponds to loss by 1% of polarization with the fast
crossing, is equal to 0.1 wd, and the resonance strength, which corresponds to loss by 1%
of polarization with the adiabatic crossing, is equal to 10 wd (”incoherent” resonances),
3.26 wd (”coherent” resonances).

The results of calculation of main characteristics for crossing of the spin resonances
and their strengthes are given in Table 3 [8, 9].

1H 2H 3H 3He

G 1.793 -0.143 7.92 -4.184

Emax
k , [GeV/u] 12.84 6.00 3.74 8.28

νmin – νmax 1.8 – 26.3 -1.05 – -0.144 7.92 – 39.5 -41.1 – -4.19

ε′, (τaccel = 0.5s) 7.0 · 10−6 2.8 · 10−7 1.0 · 10−5 1.1 · 10−5

wd, (τaccel = 0.5s) 1.5 · 10−3 3.0 · 10−4 1.8 · 10−3 1.9 · 10−3

Table 3: Crossing characteristics of the spin resonances in the nuclotron.

Figures 2-3 show the logarithmic graphs of the resonance strengthes of linear approx-
imation in units of the characteristic strength wd in the operating range of beam kinetic
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Figure 2: Intrinsic resonances.
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Figure 3: Integer resonances.

energy Ek. Each graph is split into three regions, which correspond to the intermediate
crossing (region between the continuous and dotted lines), fast crossing (under the dotted
line) and adiabatic crossing (above the solid line). It was assumed in calculation of the
resonance strengthes that the emittances in the horizontal and vertical direction at the
energy of injection there are equal 45π mm · mrad, adjustment errors of quadrupoles —
0.1 mm and adjustment errors of the turning for main magnets — 0.001 rad.

The resonances located in the zone of intermediate crossing lead to the depolarization
of the beam. From the comparison of graphs it follows that almost in full of energy
range the depolarization take place for intrinsic and integer resonances (Figure 2-3). The
coupling resonances and nonsuperperiodical resonances also can lead to the depolarization
of the beam in the same regions of energy where intrinsic resonances are located.

Let us consider methods of crossing of the spin resonances the most suitable for the
nuclotron. In crossing of the integer resonances with the intermediate strength (|wk|2 ∼ ε′)
it is expedient to use a method of premeditated increasing of the resonance strength [7].

414



For this purpose it is enough to insert in free nuclotron gaps some longitudinal magnetic
field. The resonance strength with this longitudinal field is determined by expression

wk =
ϕy

2π
=

(1 + G)HyLy

2πHR

and must be correspond to the condition of the adiabatic crossing |wk|2 À ε′. Furthermore
in order to avoid the effects of depolarization because of synchrotron modulation of energy

necessary to satisfy also the condition: |wk|2 À σ νγ ∼ 10−2 , where σ = ν
√〈

(∆γ/γ)2
〉

—

the amplitude of synchrotron modulation of energy, and νγ — the frequency of synchrotron
oscillations [9].

The maximal values of integrals of the longitudinal field (on the energy of extraction)
which need to guarantee the adiabatic crossing of the integer resonances in full range of
the energy are given in Table 4.

1H 2H 3H 3He

(HyLy), T ·m 1 3.4 0.3 0.9

Table 4: The integrals of the longitudinal field for the adiabatic crossing.

When crossing the resonances with the betatron frequencies it is possible to use a
method of compensation the degree of depolarization [10]. Conservation of the degree of
polarization is ensured due to control of detuning ε = ν − νk inside the resonance region.
The control of detuning ε during crossing is possible due to changing the spin frequency
ν. For this it is necessary to introduce into the ring of nuclotron an ”insert” with an
additional magnetic field which makes it possible to obtain the required dependence of
the spin frequency on a magnetic field ν = ν(H). There is possible to use the ”insert”
with the longitudinal and radial fields, depicted in Figure 4, where ϕx, ϕy — angles of
spin turns around the radial and the longitudinal fields.

Hx,
Lx

2

ϕx

2

Hy, Ly

ϕy

−Hx, Lx

−ϕx

−Hy, Ly

−ϕy

Hx,
Lx

2

ϕx

2

Figure 4: The ”insert” to control the spin frequency.

In the approximation of a small spin angular turn (ϕx, ϕy ¿ 1) the direction of the
equilibrium polarization remains vertical and changing of the precession frequency of the
spin is equal to ∆ν = (ϕxϕy)/(2π). The maximal vertical deviation of the equilibrium
orbit caused by radial fields will be ∆zmax = ϕx/(8ν)(4Ly + 5Lx) . The maximal length
of the ”insert” is limited by the length of free space in the accelerator which in the
Nuclotron is about 350 cm.

The depolarization of beam is possible during the slow beam extraction from the
Nuclotron when the energy of the beam close to energy of the spin resonances. The
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degree of depolarization in this case depends on the spin resonance strength wk and the
detuning from the resonance ε. For the completely polarized beam at the beginning power

of depolarization will be: D '
〈
w2

k

〉

2 ε2
. In this case to avoid depolarization one need move

away from the resonance to the value ∆ε ∼ 10wk (∆γ = ∆ε/G). For example, for the
beam of protons this value will be ∆γ ' 50MeV for the detuning from the resonance with
the strength w = 10−2 (adiabatic crossing) and ∆γ ' 5MeV for the detuning from the
resonance with the strength w = 10−3 (intermediate crossing).
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Abstract

The HERMES experiment, installed in the 27.5 GeV HERA lepton ring at
DESY/Hamburg, is used to study the spin structure of the nucleon. To get infor-
mation about the orbital angular momentum Lq of quarks, exclusive DIS reactions
are investigated. The HERMES Collaboration installed a new Recoil Detector to
upgrade the existing spectrometer to improve the study of hard exclusive processes
by detecting recoil protons with low momentum. Deeply Virtual Compton Scatter-
ing is the main processes to be studied. The HERMES Recoil Detector consists of
three subcomponents inside a superconducting magnet that provides a longitudinal
superconducting magnetic field of 1 Tesla. From the beam-line, surrounding the
target cell inside the HERA e-beam vacuum, going outwards, the Silicon Detector
is positioned, followed a by Scintillating Fibre Tracker and a Photon Detector with
three tungsten/scintillator layers. The Recoil Detector was installed in January
2006 and commissioning started in February. First results from the detector are
presented.

1 Introduction

Generalized Parton Distributions (GPD’s) offer a way to unify the previously disjunct pic-
tures of the nucleon given by Parton Distribution Functions on the one hand and nucleon
Form Factors on the other. For the first time GPD’s may provide detailed information on
the localization of partons inside hadrons and access to their orbital angular momentum
Lq [1]. GPD’s can be accessed experimentally through the measurement of hard exclusive
reactions, the cleanest of which is the Deeply Virtual Compton Scattering (DVCS) [2]
(Figure 1, left panel). In the reaction ep → e′γp at the beam energy of HERMES (27.5
GeV), the Bethe-Heitler process, Figure 1, right panel dominates over DVCS in most of
the kinematic region. However, measurable asymmetries in beam spin and beam charge
arise from the interference of both processes. The beam spin asymmetry is proportional
to the imaginary part of the DVCS amplitude, while the beam charge asymmetry is pro-
portional to the real part of the DVCS amplitude. Both can in turn be expressed in terms
of GPD’s.

2 The Recoil Detector

The HERMES Recoil Detector [3] has been designed to upgrade the HERMES spectrom-
eter [4] for the measurement of hard exclusive reactions, in particular DVCS. Its objec-
tives are the detection and identification of recoil protons and the rejection of background
events, coming mainly from intermediate ∆-production and from semi-inclusive processes.
The Recoil Detector is shown in Figure 2: it consists of three active components: a Silicon

417



p p’

e

e’

*γ γ

,t)ξGPDs(x,

ξx+ ξx-

p p’

e e’

*γ

γ

p p’

e e’

*γ

γ

DVCS Bethe-Heitler
Figure 1: Feynman graphs of DVCS (left panel) and Bethe-Heitler (BH) processes (right panel).
Both processes lead to the same final state, thus their amplitudes interfere.

Strip Detector surrounding the target cell inside the beam vacuum, a Scintillating Fibre
Tracker and a Photon Detector consisting of three layers of tungsten/scintillator. All three
detectors are located inside a superconducting solenoidal magnetic field of 1 Tesla. To-
gether these detectors cover most of the kinematic region for DVCS/Bethe-Heitler events.
The technical details of the different subsystems of the Recoil Detector will be described
in the next subsections.

2.1 The Silicon Detector

The first sub-detector closest to the beam axis is the Silicon Strip Detector (SSD). The
SSD is located inside the scattering chamber within the beam vacuum in order to detect
recoil protons with momentum in the range of 135 - 400 MeV/c. The momentum and
particle type of the detected particle are determined from the energy deposited in the
silicon layers. Due to the very low energy of the recoil protons it is necessary to minimize
the amount of material between the interaction point and the detector. Therefore the
SSD is mounted inside the HERA ring vacuum in a scattering chamber. For this reason,
all of the components and techniques used for the SSD must be vacuum compatible. The
SSD consists of 8 modules mounted in two layers symmetrically around the target cell
in roof-shaped structures. The main components of the SSD include two TIGRE (The
Tracking and Imaging Gamma Ray Experiment) sensors and two readout hybrids with
digital control and analog readout circuits. The double-sided silicon TIGRE sensors are
from Micron Semiconductors Ltd with a size of 9.9× 9.9 cm2. The active thickness of the
sensors is 300 µm. On each side of the sensor there are 128 strips with a 758 µm wide
pitch. The necessary momentum dynamic range is established by splitting the signal into
a high gain and a low gain path: each strip is read out by one HELIX chip connected
directly to the sensor and by a second chip connected via a 10 pF capacitor [5]. The
total surface area of the 16 silicon sensors constituting the SSD is 0.16 m2, resulting in
4096 strips. The strip directions of the p-side and the n-side in one sensor are arranged
perpendicularly to each other so that 2-dimensional position information is available.
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Figure 2: Schematic drawing of the Recoil Detector and its support structure. The electron
beam enters from the left side, where an additional collimator protects the Recoil Detector from
synchrotron radiation.

2.2 The Scintillating Fibre Tracker

The Scintillating Fibre Tracker (SFT) is the second detector located after the SSD, going
from inside. Protons of higher momenta (above 250 MeV/c) which escape the 1.2 thick
Aluminium scattering chamber are detected by the SFT. Their momentum is determined
by the deflection of their track in the longitudinal magnetic field which also allows the
identification of the sign of the charge. The radius of curvature ρ of a particle track in a
magnetic field is given by

ρ =
p⊥
eB

(1)

with p⊥ being the transverse momentum with respect to the magnetic field B and e being
the particle charge. The SFT consists of two concentric barrels of scintillating fibres.
Kuraray SCSF-78M with a diameter of 1 mm were chosen as active material for the SFT.
Each SFT barrel in turn consists of two sub-barrels, resulting in 5120 channels in total,
but, whereas the inner sub-barrel is oriented parallel to the beam axis, the outer sub-barrel
is inclined by 10◦ in a stereo configuration. This configuration allows the determination
of a space point of a particle track for each barrel. The scintillating fibres are connected
via 4 m long light guides made of clear fibres to Multi-Anode Photo-Multiplier Tubes.

2.3 The Photo Detector

The outermost sub-detector of the Recoil Detector is the Photon Detector (PD). The
PD improves the capability of the Recoil Detector to suppress background by rejecting
semi-inclusive events in which a π0 is produced and events in which an intermediate ∆-
resonance is produced. This is achieved by detecting at least one of the photons into
which a neutral pion emitted from a ∆-decay subsequently decays. Also, the first layer
of the PD improves the pion/proton separation capability of the SFT: a pion rejection
factor of ten is expected for momenta up to 800 MeV/c [3]. Finally, the PD provides
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a method by which to align the subcomponents of the Recoil Detector by acting as a
trigger for cosmic ray events. The PD is constructed from six layers, alternating between
a tungsten converter layer from which incident photons and charged particles produce
electromagnetic showers, and a scintillator layer which detects these showers. The inner
layer is segmented into 60 trapezoidal blocks aligned parallel to the beam axis, the middle
and outer layers are segmented into 44 blocks, aligned at +45 and -45 degrees to the
beam.

2.4 The Magnet

The Recoil Detector is finally surrounded by a Superconducting (SC) 1 Tesla solenoid
magnet. The primary purpose of the Recoil Detector SC magnet is to provide a means
for the SFT to measure track momentum by bending charged particle tracks in a 1 T
magnetic field. Additionally, the magnet protects the SSD from background electrons
emitted from Møller scattering events by constraining these electrons to spiral forward in
the magnetic field.

3 First Data
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Figure 3: Energy loss in the inner sil-
icon layer versus the energy loss in the
outer silicon layer. The black line rep-
resents a Monte Carlo prediction.

The Recoil Detector was installed in January 2006
and took first data in February. The tracking in the
magnetic field using the SFT was possible with the
recoil detector superconducting magnet. In March
the target cell was damaged while it was being in-
spected which resulted in large radiation doses to
the SSD when the beam was injected. This required
rebuilding the SSD in March - June. End of June
HERA switched the beam polarity from negative to
positive. The data taking was continued with the
fully installed Recoil Detector in July 2006 till the
30th of June 2007, last day of HERA running.

As a demonstration of the performance of the
SSD, Figure 3 shows the energy loss in the inner
layer of the SSD versus the energy loss in the outer
silicon layer. The black line in the Figure represents
a Monte Carlo prediction. The upper line represents
protons which punch through the first layer but get stuck in the second and the lower
line represents protons which punch through both layers. Figure 4 shows the energy
deposits in individual detection layers (SSD on the left and SFT on right) versus the
reconstructed particle momentum: from the Figure a well defined proton/π+ separation
can be easily seen (π− are recognized from their charge). Figure 5 shows a selection
of events containing mainly e-p elastic scattering. It shows the azimuthal angle φ and
the sin θ (polar angle) measured by the Recoil Detector for the scattered proton versus
the same quantities reconstructed by the spectrometer for the lepton track. An angular
resolution of 8 mrad in φ is obtained. The gap in the azimuthal angle results from the
spectrometer acceptance.
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Figure 4: Energy deposits in individual detection layers (SSD on the left and SFT on right)
versus the reconstructed particle momentum.
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Figure 5: The azimuthal angle φ and the sin θ (polar angle) measured by the Recoil Detector
for the scattered proton versus the same quantities reconstructed by the spectrometer for the
lepton track.

Figure 6: Sum of energy
deposits in the SSD after a
missing mass cut (MX < 1.7
GeV).

Figure 6 shows the sum of energy deposits in the SSD
after a missing mass cut (MX < 1.7GeV ): it can be easily
seen that only protons survive to this cut, as well as a small
amount of π+ coming from the ∆+-decay. Therefore the
Recoil Detector can also be used as a tool to measure back-
ground contribution to the previous Hermes DVCS analysis
without the Recoil Detector.
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Discussion

Q. (N.d’Hose, CEA Saclay) 1. How large will be the statistics for BCA with the RPD?
2. What will be the effect of the absence of Si detector?

A. 1. The statistics collected for BCA with the RPD amount to an integrated lumi-
nosity of about 60pb−1 (electron data): a factor of 5 more data component to the BCA
published by HERMES.
2. The absence of Si detector affects BCA (it will be extracted only with the SFT).
Moreover the first proton momentum detectable in this period is 250 MeV/c (instead of
135 Mev/c with the full detector): effective measurements of small t.

Q. (J.Nassalski, SINS, Warsaw) 1) There is a systematic shift on your (Zrec − 2spect)
plot. What is the reason?
2) Si was not reacting for part of data. What will be the impact of BCA measurements?

A. 1) The shift is due to the poor resolution of the spectrometer for elastic events and
also to the beam position. A small shift equal to 1 mm in beam position can lead to a
shift equal to 2 cm in Z calculation.
2) Recoil protons at small −t are not detected as the SSD was not operating. The BCA
measurements can be still extract using only SFT data, but it has to be demonstrated.
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POLARIZATION BUILDUP BY SPIN FILTERING IN STORAGE RINGS

D. S. O’Brien

School of Mathematics, Trinity College Dublin, Ireland
E-mail: donie@maths.tcd.ie

Abstract

There has been much recent research into polarizing an antiproton beam, in-
stigated by the recent proposal from the PAX (Polarized Antiproton eXperiment)
project at GSI Darmstadt [1]. It plans to polarize an antiproton beam by repeated
interaction with a polarized internal target in a storage ring. The method of po-
larization by spin filtering requires many of the beam particles to remain within
the ring after scattering off the polarized internal target via electromagnetic and
hadronic interactions. Sets of differential equations which describe the buildup of
polarization by spin filtering in many different scenarios have recently been pre-
sented and solved [2 – 8]. In this paper we add to this literature by investigating a
scenario where unpolarized particles are input into the beam at a linearly increasing
rate, i.e. the input rate is ramped up.

The spin filtering method of polarization buildup [9–11] consists of a circulating beam
repeatedly interacting with a polarized internal target in a storage ring. Many particles
are scattered at small angles but remain in the beam. This introduces a characteristic
acceptance angle θacc, scattering above which causes particles to be lost from the beam.
There is also a minimum scattering angle θmin, corresponding to the Bohr radius of the
atoms in the target, below which scattering is prevented by Coulomb screening. The two
physical processes that contribute to polarization buildup in spin filtering are: (a) spin
selective scattering out of the ring, and (b) selective spin-flip, i.e. particles in one spin
state may be scattered out of the beam (a), or have their spin flipped (b), at a higher rate
than particles in the other spin state. Thus over time one spin state is depleted more than
the other leading to a beam polarization. A problem with this method is that while there
is an increase of beam polarization there is a significant decrease in beam intensity, since
particles are continuously scattered out of the beam. We are investigating continuously
inputing unpolarized particles into the beam, during spin filtering, to compensate this
effect.

When circulating at frequency ν, for a time τ , in a ring with a polarized internal target
of areal density n and polarization Pe oriented normal to the ring plane, (or longitudinally
with rotators)

d

dτ

[
N

J

]
= −n ν

[
I out Pe A out

Pe A all −Pe K in I all −D in

] [
N

J

]
, (1)

describes the rate of change of the number of beam particles N(τ) = N↑(τ) + N↓(τ) and
their total spin J(τ) = N↑(τ)−N↓(τ) [3, 4]. The matrix entries are the spin observables
integrated with respect to scattering angle θ over the following ranges. The “in” subscript
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refers to particles that are scattered at small angles ≤ θacc remaining in the beam, and the
“out” subscript refers to particles that are scattered out of the beam. Thus the integrals
over scattering angle θ are labeled “in” where the range of integration is θmin ≤ θ ≤ θacc,
“out” where the range of integration is θacc < θ ≤ π and “all” = “in” + “out” where
the range of integration is θmin ≤ θ ≤ π as seen in table 1 of ref. [8]. I = dσ / dΩ is the
spin averaged differential cross-section and A, K and D are the double spin asymmetry,
polarization transfer and depolarization spin observables respectively as calculated in
ref. [12]. The eigenvalues of the above matrix of coefficients are found to be

λ1 = −n ν ( I out + L in + L d ) and λ2 = −n ν ( I out + L in − L d ) , (2)

where the discriminant Ld of the quadratic equation for the eigenvalues is

L d =
√
P 2

e A out (A all − K in) + L 2
in , (3)

and L in = ( I in − D in) / 2 is a loss of polarization quantity. Note that I out, L in and Ld

are all positive. As a consequence the eigenvalues are negative and λ1 < λ2 < 0.
The system above and various alternative scenarios have been developed and solved

recently in ref. [8]. These scenarios are: 1) spin filtering of a fully stored beam, 2) spin
filtering while the beam is being accumulated, i.e. unpolarized particles are continuously
being fed into the beam at a constant rate, 3) the particle input rate is equal to the rate
at which particles are being lost due to scattering beyond ring acceptance angle, the beam
intensity remaining constant, 4) increasing the initial polarization of a stored beam by
spin filtering, 5) the input of particles into the beam is stopped after a certain amount of
time, but spin filtering continues. In this paper we add to the literature by investigating
a scenario where unpolarized particles are input into the beam at a linearly increasing
rate, i.e. the input rate is ramped up. This is accounted for by the following system of
spin evolution equations

dN(τ)

d τ
= −n ν [ I out N(τ) + Pe A out J(τ) ] + β τ , (4)

d J(τ)

d τ
= −n ν [Pe ( A all −K in ) N(τ) + ( I all −D in ) J(τ) ] , (5)

where β τ is the rate at which particles are fed in, the input ramped up at a rate pro-
portional to the time elapsed. The initial conditions are N(0) = N0 which we may later
set to zero, and J(0) = 0. By differentiating eq.(5) with respect to τ and substituting in
eq.(4) one obtains a second order linear inhomogeneous differential equation for J(τ):

d 2 J(τ)

d τ 2
− ( λ1 + λ2 )

d J(τ)

d τ
+ λ1 λ2 J(τ) = −n ν Pe ( A all −K in ) β τ , (6)

the solution of which is

J(τ) = Fλ2 λ1 eλ1 τ + Fλ1 λ2 eλ2 τ + β ( A1 τ + A2 ) . (7)

Where for convenience we have defined the constants

A1 ≡ −n ν Pe ( A all −K in )

λ1 λ2

and A2 ≡ 2 n 2 ν 2 Pe ( A all −K in ) ( L in + I out )

λ 2
1 λ 2

2

, (8)
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Fλ2 λ1 ≡ n ν ( A all −K in ) N0 Pe + β ( A1 − λ2 A2 )

λ2 − λ1

, (9)

obtained by imposing the initial conditions J(0) = 0 and N(0) = N0 thus d J(0)/d τ =
−n ν Pe ( A all −K in ) N0. The function Fλ1 λ2 is Fλ2 λ1 with λ1 and λ2 interchanged.
Differentiating eq.(7) with respect to τ and substituting into eq.(5) gives an expression
for N(τ):

N(τ) =
−1

( A all −K in ) Pe

{
Fλ2 λ1 eλ1 τ ( L in − Ld ) + Fλ1 λ2 eλ2 τ ( L in + Ld ) (10)

+ β

[
A1

n ν
+ ( I out + 2 L in ) ( A1 τ + A2 )

]}
. (11)

As a consistency check it can be seen that the inhomogeneous solutions for J(τ) and N(τ)
satisfy the initial conditions, and that when β = 0 they reduce to the solutions of the
homogeneous system eq.(1) presented in refs. [5, 8].

Dividing J(τ) by N(τ) we obtain an expression for the polarization as a function of
time (τ),

P(τ) =
J(τ)

N(τ)
=

−Pe ( A all −K in )

L in + Ld


 2

1− e λ1 τ Fλ2 λ1
( λ2−λ1 )−β [ A1 ( 1−λ2 τ )−λ2 A2 ]

e λ2 τ Fλ1 λ2
( λ1−λ2 )−β [ A1 ( 1−λ1 τ )−λ1 A2 ]

− 1




. (12)

When β = 0 the above equation simplifies to

P(τ) =
−Pe ( A all − K in )

L in + Ld coth (L d n ν τ)
, (13)

which is the solution of the homogeneous case eq.(1) presented in refs. [5, 8].
Of interest is the case when N(0) = N0 = 0, i.e. there are no particles in the beam

initially. To obtain this result we set N0 = 0 in the above equation to obtain

P(τ) =
−Pe ( A all −K in )

L in + Ld


 2

1− ( e λ1 τ−1 )λ2 A2−A1 ( e λ1 τ+λ2 τ−1 )
( e λ2 τ−1 )λ1 A2−A1 ( e λ2 τ+λ1 τ−1 )

− 1




, (14)

where for β 6= 0 the β dependence vanishes. We should note the obvious physical fact
that if N0 = 0 and β = 0, i.e. there are no particles in the beam initially and no particles
are fed into the beam, then there will never be any particles in the beam; so measuring
the beam polarization is meaningless. Using a Taylor Series expansion we obtain the
approximate initial rate of polarization buildup

dP
dτ

≈ −n ν Pe (A all − K in) , (15)

identical to that of the homogeneous case eq.(1) presented in refs. [5, 8]. The maximum
polarization achievable is the limit as time approaches infinity:

Pmax = lim
τ→∞

P(τ) =
−Pe ( A all −K in )

I all −D in

=
−Pe ( A all −K in )

I out + 2 L in

. (16)
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The above expression is only valid for β 6= 0, the β = 0 expression is presented in refs. [5,8].
The Figure Of Merit (FOM) provides a measure of the quality of the polarized beam,

taking into account the trade-off between increasing beam polarization and decreasing
beam intensity. For this inhomogeneous case the FOM is:

FOM(τ) = P 2(τ) N(τ) =
J 2(τ)

N(τ)
= (17)

−Pe ( A all −K in )
[
Fλ2 λ1 eλ1 τ + Fλ1 λ2 eλ2 τ + β ( A1 τ + A2 )

] 2

Fλ2 λ1 eλ1 τ ( L in + Ld )− Fλ1 λ2 eλ2 τ ( L in + L d ) + β
[

A1

n ν
+ ( I all −D in ) ( A1 τ + A2 )

] .

If the particle accumulation rate β τ is high enough to make the beam intensity constant
or increase with time the FOM will be a monotonically increasing function of time, i.e. it
will not have a finite maximum.

This research is funded by the Irish Research Council for Science, Engineering and
Technology (IRCSET).
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KERR GEOMETRY PREDICTS THE COMPTON SIZE OF ELECTRON
A.Burinskii1†,

(1) NSI Russian Academy of Sciences
E-mail: bur@ibrae.ac.ru

Abstract

The combined Dirac-Kerr model of electron is suggested, in which the Dirac
equation plays the role of a master equation controlling the extended space-time
structure of Kerr geometry. The extended Kerr source of this model contains a
spinning disk bounded by a closed singular string of Compton size. It is conjectured
that this Compton structure is formed by a coherent set virtual photons and it can
be observed in the experiments with a very soft coherent scattering.

Introduction. The Kerr-Newman solution has gyromagnetic ratio g = 2, as that of the
Dirac electron, which created series of works on the classical model of extended electron
based on the Kerr geometry (see for references [1,2,3,4]). There appears a natural question,
what is the relation between the Dirac equation and Kerr-Newman solution?

The related problem concerns the coordinate description of electron. In the Dirac
theory electron is structureless and cannot be localized inside the Compton region. It
does not allow one to incorporate gravity which demands clear coordinate description.
Similar, in the multi-particle QED theory, the “naked” electron is point-like, however, the
“dressed” one is to be smeared over the Compton region. However, coordinate description
is again very obscure and central role is played by the momentum space. As a result, there
appears the extreme point of view that the subsequent relativistic theory has to refuse
from coordinate description at all [5].

One can ignore gravity, arguing that gravitational field of electron is negligibly weak.
However, electron has the extremely large spin/mass ratio (about 1044 in the units ~ =
c = G = 1,) which shows that gravitational effects have to be estimated on the base
of the Kerr-Newman solution. Corresponding analysis shows that the extremely high
spin leads to the very strong polarization of space-time and to the corresponding very
strong deformation of electromagnetic (em-) field which has to be aligned with the Kerr
congruence. However, the electromagnetic field of electron cannot be considered as small,
and the resulting influence turns out to be very essential! In particular, the em-field turns
out to be singular at the Kerr ring which has the Compton size a = J/m. The space-time
acquires two folds with a branch line along the Kerr ring, which gives a new background
for the treatment of this problem.

In this work we obtain an exact correspondence between the spinor solutions of the
Dirac equation and the spinor (twistorial) structure of the Kerr geometry. This relation-
ship allows us to suggest a combined Dirac-Kerr model of an extended electron which
acquires a natural coordinate description from the Kerr geometry displaying explicitly a
peculiar role of the Compton region. The Dirac equation plays in this model the role of
a master equation controlling twistorial polarization of the Kerr space-time and its dy-
namics in the external electromagnetic fields which turns out to be undisguised from the
behavior of the Dirac electron.

Real structure of the Kerr geometry Angular momentum of electron J = ~/2 is
extremely high with respect to the mass, and the black hole horizons disappear opening
the naked Kerr singular ring which represents a closed string [3], excitations of which
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generate spin and mass of the extended particle-like object - “microgeon” [1]. Singular
ring may be regularized by Higgs field. If the Kerr string acquire tension T, m = E = Ta,
the Kerr relation J = ma yields the Regge behavior J = 1

T
m2.

The Kerr principal null congruence is a twisted family of the lightlike rays – twistors.
Frame of the Kerr geometry is formed by null vector field kµ(x) which is tangent to the
Kerr congruence. The Kerr-Schild form of metric is

gµν = ηµν + 2Hkµkn, (1)

where ηµν is auxiliary Minkowski space-time with coordinates xµ = (t, x, y, z).
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Figure 1. The Kerr singular
ring and congruence.

Vector potential of the Kerr-Newman solution is aligned
with this congruence

Aµ = A(x)kµ, (2)

and the Kerr singular ring represents its caustic, see Fig. 1.
The Kerr theorem determines the Kerr congruence via a
holomorphic surface in the projective twistor space which
has coordinates

Y, λ1 = ζ − Y v, λ2 = u + Y ζ̄ , (3)

where 2
1
2 ζ = x + iy, 2

1
2 ζ̄ = x− iy, 2

1
2 u = z− t, 2

1
2 v =

z + t are the null Cartesian coordinates. Such congruences
lead to solutions of the Einstein-Maxwell field equations with metric (1) and em-field in
the form (2). Congruence of the Kerr solution is built of the straight null generators,
twistors, which are (twisting) geodesic lines of photons. Therefore, for any holomorphic
function F, the solution Y (xµ) of the equation F (Y, λ1, λ2) = 0 determines congruence of
null lines by the 1-form

e3 = du + Ȳ dζ + Y dζ̄ − Y Ȳ dv . (4)

The null vector field kµdxµ = P−1e3 up to a normalizing factor P. Coordinate Y is a
projective spinor Y = φ2/φ1, and in spinor form kµ = φ̄α̇σ̄α̇α

µ φα.
Complex representation of Kerr geometry. Complex source of Kerr geometry is

obtained as a result of complex shift of the ‘point-like’ source of the Schwarzschild solution
written in the Kerr-Schild form. Applying the complex shift (x, y, z) → (x, y, z + ia) to
the singular source (x0, y0, z0) = (0, 0, 0) of the Coulomb solution q/r, Appel (in 1887 !)
obtained the solution φ(x, y, z) = Ree q/r̃, where r̃ =

√
x2 + y2 + (z − ia)2 turns out to

be complex. On the real slice (x, y, z), this solution acquires a singular ring corresponding
to r̃ = 0. It has radius a and lies in the plane z = 0. The solution is conveniently described
in the oblate spheroidal coordinate system r, θ, where r̃ = r + ia cos θ. The resulting real
space is twofold having positive sheet r > 0, and negative one r < 0.

The Appel potential corresponds exactly to electromagnetic field of the Kerr-Newman
solution written in the Kerr-Schild form [1]. The vector of complex shift a shows angular
momentum of the Kerr solution J = ma. Newman and Lind suggested a description
of the Kerr-Newman geometry in the form of a retarded-time construction, where its
source is generated by a complex point-like source, propagating along a complex world
line Xµ(τ) ∈ CM4.
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Figure 2. Singular ring and
two singular half-strings.

In the rest frame of the Kerr particle, one can form two
null 4-vectors kL = (1, 0, 0, 1) and kR = (1, 0, 0,−1), and
represent the 3-vector of complex shift ia = i=mXµ as the
difference ia = ia

2
{kL−kR}. The straight complex world line

corresponding to a free particle may be decomposed to the
form Xµ(τ) = Xµ(0)+τuµ+ ia

2
{kL−kR}, where the time-like

4-vector of velocity uµ = (1, 0, 0, 0) can also be represented
via vectors kL and kR uµ = ∂tReeXµ(τ) = 1

2
{kL +kR}. One

can form two complex world lines related to the complex
Kerr source,

Xµ
+(t + ia) = ReeXµ(τ) + iakµ

L ,

Xµ
−(t− ia) = ReeXµ(τ)− iakµ

R , (5)

which allows us to match the Kerr geometry to the solutions of the Dirac equation.
Complex Kerr string. The complex world line Xµ(τ) is parameterized by complex
time τ = t + iσ and represents the world sheet of a very specific string extended along
imaginary time parameter σ ∈ [−a, a]. The Kerr congruence, gravitational and em- fields
are obtained from this stringy source by a retarded-time construction which is based on
the complex null cones, emanated from the worldsheet of this complex string [3,4]. The
complex retarded time equation τ = t−r+ia cos θ sets the relation σ = a cos θ between the
complex points Xµ(t, σ) and angular directions θ of the real twistor lines. One sees that
this string is open with the end points cos θ = ±1 which correspond to Xµ

± = Xµ(t± ia).
By analogue with the real strings, the end points may be attached to quarks. The complex
light cones adjoined to the end points have a real slice in the form of two especial twistors
having the discussed above null directions kµ

L and kµ
R which determine momentum and

spin-polarization of the Kerr solution. These twistors form two half-strings of opposite
chirality, see Fig. 2.

Chirons and excitations of the Kerr singular ring. The twistor coordinate
Y is also the projective angular coordinate Y = eiφ tan θ covering the celestial sphere,
Y ∈ CP 1 = S2. The exact Kerr-Schild solutions have em-field which is determined by
arbitrary analytical function A(Y ), in particular A = eY −n. The simplest case n = 0
gives the Kerr-Newman solution. The case n = 1 leads to an axial singular line along
the positive semi-axis z. Due to factor eiφ, em-field of this solution has winding number
n=1 around axial singularity. Since there is also pole at singular ring, ∼ (r + ia cos θ)−1,
the em-field has also a winding of phase along the Kerr ring. Solution with n = −1 has
opposite chirality and singular line along the negative semi-axis z. These elementary exact
solutions (‘chirons’) have also the wave generalizations A = eY −neiωτ acquiring the extra
dependence from the complex retarded time τ. The wave chirons are asymptotically exact
in the low-frequency limit and describe the waves propagating along the Kerr circular
string and induced waves along axial half-strings [3,4]. By lorentz boost the axial half-
strings acquire modulation by de Broglie periodicity [3,4].

Dirac Equation in the Weyl Basis In the Weyl basis Dirac spinor has the form

Ψ =

(
φα

χα̇

)
, and the Dirac equation splits into

σµ
αα̇(i∂µ + eAµ)χα̇ = mφα, σ̄µα̇α(i∂µ + eAµ)φα = mχα̇. (6)
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The Dirac current Jµ = e(Ψ̄γµΨ) = e(χ̄σµχ + φ̄σ̄µφ), can be represented as a sum of
two lightlike components of opposite chirality Jµ

L = eχ̄σµχ , Jµ
R = eφ̄σ̄µφ. The corre-

sponding null vectors
kµ

L = χ̄σµχ , kµ
R = φ̄σ̄µφ, (7)

determine the considered above directions of the lightlike half-strings. The momentum of
the Dirac electron is pµ = m

2
(kµ

L + kµ
R), and the vector of polarization of electron in the

state with a definite projection of spin on the axis of polarization is nµ = 1
2
(kµ

L − kµ
R). In

particular, in the rest frame and the axial z-symmetry, we have kL = (1,kL) = (1, 0, 0, 1)
and kR = (1,kR) = (1, 0, 0,−1), which gives pµ = m(1, 0, 0, 0), and nµ = (0, 0, 0, 1), which
corresponds to transverse polarization of electron, np = 0. The Dirac wave wave function
sets also synchronization of the null tetrad in the surrounding space-time, playing the role
of an ‘order parameter’.

Dirac Equation as a Master Equation Controlling Twistorial Polarization.
Em-field of the Kerr-Schild solutions Fµν is to be aligned with the Kerr congruence,
obeying the constraint Fµνk

µ = 0. Therefore, twistorial structure of the Kerr-Schild so-
lutions determines strong polarization of the em field. In particular, the elementary
em-excitations on the Kerr background lead to the waves propagating along the Kerr cir-
cular string. Virtual photons are also concentrated near this string, forming its excitation.
There is exact correspondence between two null vectors (7) obtained from the Dirac wave
function and similar vectors kL and kR related to the ends of the complex Kerr string,
Fig. 2. It allows us to unify the Dirac and Kerr structures, considering the Dirac equation
as a master equation controlling twistorial polarization of the Kerr space-time.

Scattering. Contradiction between the discussed Compton size of electron and the
results obtained for the deep inelastic scattering has simple explanation. Relativistic
boosts lead to asymmetry: pL << pR or pL >> pR which determines the sign of helicity.
As a result one of the axial half-strings turns out to be strongly dominant. It allows one
to use perturbative twistor-string model [6,7] which is based on a reduced description in
terms of the lightlike momentum and helicity, and amplitude of scattering is determined
only by one of the axial half-strings. One can conjecture that the Compton size of the
Dirac-Kerr electron may be observed for polarized electrons in the experiments with a very
soft resonance scattering.
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Abstract

An axisymmetric static solution of a nonlinear electrodynamics is considered
as a massive charged particle with spin and magnetic moment. A linearization
of the nonlinear electrodynamics around the static solution is investigated. The
appropriate problem for linear waves around the static solution is considered. This
wave part of the particle solution is considered to provide the appropriate wave
properties for the particle. It has been found that the right (experimentally proved)
formula for frequency of this wave appears theoretically for the static solution with
ring singularity.

1. Introduction. The field electromagnetic particle concept in the framework of a
unified nonlinear electrodynamics is considered here. In this approach a space-localized
(soliton) solution of a nonlinear electrodynamics field model conforms to a physical el-
ementary particle. The term “particle solution” will be used here. This theme was
discussed in my articles (see, for example, [1–4]). The present work is concerned mainly
with possible existence of a quick-oscillating part for a particle solution in intrinsic coordi-
nate system. This quick-oscillating part in intrinsic coordinate system of the particle will
be a wave part for arbitrary coordinates. This wave part must provide the appropriate
wave properties for the particle.

2. Static electromagnetic particle with spin. Axisymmetric static electromag-
netic field configuration can have the spin defined as the full angular momentum of the
electromagnetic field:

s =

∫
MMMdV , (1)

where MMM + r×PPP is an angular momentum density (spin density), r is a position vector,
PPP + (D × B)/4π is a momentum density (Poynting vector), D and B are electric and
magnetic inductions.

The origin of the spin density is discussed in my articles. In particular, it was con-
sidered three topologically different static field configuration with spin [4]. These are
configurations with two dyon, with singular disk, and with singular ring.

Let us consider more closely the field configuration with singular ring.
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3. Toroidally symmetrical configuration with singular ring. A consideration
of the static linear electrodynamics equations in toroidal coordinates (ξ, η) gives the ap-
propriate solution with toroidal symmetry. This solution can include an electric and a
magnetic parts. They can be represented with the help of toroidal harmonics which are
the spheroidal harmonics with half-integer index: P l

n− 1
2

(cosh ξ), where n and l are integer.

To obtain the right behaviour of the electromagnetic field at infinity for a charged particle
with magnetic moment we must take the toroidal harmonics P 0

− 1
2

(cosh ξ), P 0
− 3

2

(cosh ξ) for

the electric field and P 1
− 1

2

(cosh ξ), P 1
− 3

2

(cosh ξ) for the magnetic one. Because we intend to

consider this solution as an initial approximation to a solution of a nonlinear electrody-
namics model, it is reasonable to take the condition of vanishing of two electromagnetic
invariants near the singular ring. This condition will be satisfied when the ratio between
the electric and magnetic vector magnitudes tends to unit near the ring.

We have the following appropriate solution of the linear electrodynamics:

Dξ = − e√
2 π ρ2

√
cosh ξ − cos η cschξ

[
2 (cosh ξ − cos η)

∫
E

(
− sinh2 ξ

2

)

− (1− cos η) (1 + cosh ξ)
∫
K

(
− sinh2 ξ

2

)]
,

Dη = − e√
2 π ρ2

√
cosh ξ − cos η

∫
K

(
− sinh2 ξ

2

)
sin η ,

Hξ = − e√
2 ρ2

i
√

cosh ξ − cos η P 1
− 1

2

(cosh ξ) sin η ,

Hη =
e√
2 ρ2

i
√

cosh ξ − cos η cschξ
[
(cosh ξ − cos η) P 1

− 3
2
(cosh ξ)

+ (cos η cosh ξ − 1) P 1
− 1

2

(cosh ξ)
]

,

(2)

where Dξ, Dη, Hξ, Hη are the physical components of the electric induction and magnetic
strength vectors in toroidal coordinates,

∫
K(m) and

∫
E(m) are complete elliptic integrals

of the first and second kinds accordingly (can be expressed by means of P 0
− 1

2

(cosh ξ)

and P 0
− 3

2

(cosh ξ)), P l
− 1

2

(z) and P l
− 3

2

(z) are associated Legendre functions with half-integer

negative index. Here ρ is the radius of the ring and e is a constant.
The field configuration (2) has the electric charge e and the magnetic moment

µ =
e ρ

2
. (3)

About the definition of the electric charge and the magnetic moment see my article [3].

4. Wave part of the particle solution. In general case particle solution can include a
time-periodic part. Having in view the wave properties of the physical particles this time-
periodic part must be considered as quick-oscillating one. For the intrinsic coordinate
system of the particle this quick-oscillating part can be a standing wave or a progressive
wave around a closed singular line (ring, for example). A hyperbolic rotation of the
particle solution with the quick-oscillating part gives the solution for moving particle
having evident wave properties.
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The appropriate time-periodic solutions well known for the linear electrodynamics. In
particular, they exist for considered topologically different configurations of singularities:
bidyon, disk, and ring.

For the nonlinear case we can investigate the time-periodic part by means of the
linearization of the problem around the appropriate static field configuration (which may
not be exact solution). The general method for the linearization is based on Frechet
derivative for the nonlinear operator:

NY = 0
Nonlinear

system of equations

→

Y = Y0 + Ỹ

N ′(Y0)Ỹ = −NY0

Linearized around Y0

system of equations
.

This problem for point singularity was considered in my article [5].

5. About circular frequency of the time-periodic part of the particle solution.
Let us consider that the circular frequency of the time-periodic part of the particle solution
is given by the known formula: m = ~ω (c = 1).

The magnetic moment of the Dirac spin one-half particle is µ =
e ~
2 m

.

Thus we have the important formula for the circular frequency:

µ =
e ~
2 m

⇒ m

~
=

e

2 µ

m = ~ω ⇒ m

~
= ω





⇒ ω =
e

2 µ
(4)

Here the initial formulas have the experimental confirmations. Thus the obtained formula
must be considered as experimental one.

6. The advance for particle solution with ring singularity. The ring configuration
gives birth to the appropriate periodic space boundary condition (on the ring). Thus it
would appear reasonable that we will have the time-periodic part of the particle solution
in the form of wave propagating along the ring. The wave-length of the appropriate
fundamental mode is

λ = 2 π ρ . (5)

In general case the static part of the solution can modify the conditions of propagation
for the wave part of the solution (see my article [6]). But for the special case of vanishing of
the electromagnetic invariants for the static part of the solution we can have the changeless
speed of light c = 1 for the wave part.

In this case the fundamental circular frequency for the time-periodic part is

ω =
2π

λ
=

1

ρ
. (6)

Combining the formulas (3) and (6) we have:

µ =
e ρ

2

ω =
1

ρ





⇒ ω =
e

2µ
. (7)
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As we see this formula coincides with the experimental formula (4).
It should be noted that the appropriate field configuration with disk-shaped singularity

(see, for example, [7]) has the magnetic moment described by formula µ = e ρ that is not
leading in this approach to the right formula (4).

7. Conclusions. Thus we must call our attention to the particle solutions with ring
singularity. Such particle solutions may represents the real physical elementary particles.
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Abstract

It is shown that the asymmetry in heating of charged leptons and charged antilep-
tons by neutrinos in a strongly magnetized thermal plasma is sensitive to neutrino
flavor and spin variables of initial charged leptons and charged antileptons and it
also depends on the charged lepton (charged antilepton) energy and the medium
characteristics. The obtained result is evidence for the asymmetry in heating of a
matter and an antimatter by neutrinos in a strongly magnetized thermal plasma.

1 Introduction

We consider the neutrino-charged lepton scattering (NCLS) νi + l− → νi + l− and the
neutrino-charged antilepton scattering (NCAS) νi + l+ → νi + l+ in a magnetic field (MF).
Neutrino-electron scattering (NES) in a magnetized thermal plasma has been considered
in [1], where spin effects have not been investigated. One of the main purposes of this work
is to present an analytic formula for the asymmetry in heating (AH) of a charged lepton
(CL) gas and a charged antilepton (CA) gas in a strongly magnetized thermal plasma
(SMTP) with allowance for longitudinal polarizations (LP) of CLs (CAs) in initial and
final states and to demonstrate the AH of a matter and an antimatter by neutrinos in
a SMTP in the model of CLs and CAs. When the momentum transferred is relatively
small,|q2| ¿ m2

W ,m2
Z (mW is the W±-boson mass, mZ is the Z-boson mass), the 4-fermion

approximation of the Weinberg-Salam-Glashow standard model can be used. The gauge
of a 4-potential is Aµ = (0, 0, xH, 0) and an external MF vector H is directed along the
axis OZ. We deal with a massless neutrino.

2 The differential cross sections of the processes

The differential cross sections of the considered processes with allowance for the LP of
CLs (CAs) are given by the following formulae (compare with [2])

dσ∓
dω′dΩ′ =

G2
F eHω′2

32π4

∞∑

n,n′=0

∑
i

EiE
′
i

|E ′
ipzi − Eip′zi|

f∓(1− f ′∓)Q∓, (1)
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where Q∓ is the function of a MF strength H, the spin variables ζ, ζ ′ and energies E,E ′ of
CLs (CAs) in initial and final states, the polar angle of the incident (scattered) neutrino
momentum (INM (SNM)) ϑ (ϑ′), the difference between the azimuthal angles of the INM
and the SNM α − α′, the angle ϕ (tan ϕ = qy

qx
, q = k − k′, k(k′) is the INM (SNM)) and

the parameter

x = (1/2eH)[ω2 sin2 ϑ + ω′2 sin2 ϑ′ − 2ωω′ sin ϑ sin ϑ′ cos(α− α′)]. (2)

ω(ω′) is the incident (scattered) neutrino energy, GF is the Fermi constant, e is the
elementary electric charge, dΩ′ is a solid angle element along the SNM, f∓ = fl∓(E, Tl∓) =
{exp[(E ∓ µ)/Tl∓ ] + 1}−1 is the Fermi-Dirac distribution of CLs (CAs) in initial state, E
is the energy of CLs (CAs) in initial state, µ is the CL (CA) chemical potential, Tl∓ is
the temperature of the matter (CL (CA) gas) before scattering, f ′∓ = f ′l∓(E ′, T ′

l∓) is the
Fermi-Dirac distribution of CLs (CAs) in final state, E ′ is the energy of a CL (CA) in the
final state, T ′

l∓ is the temperature of the matter (CL (CA) gas) after scattering. Here the
plus (minus) sign belongs to CAs (CLs). pz(p

′
z) is the third component of the CL (CA)

momentum and pzi(p
′
zi) satisfy the conservation law pz + kz = p′z + k′z.

3 AH of charged leptons and charged antileptons by
neutrinos

The AH of CLs and CAs by neutrinos in a SMTP is determined by the expression

A =
dσ− − dσ+

dσ− + dσ+

=
Q−h− −Q+h+

Q−h− + Q+h+

, (3)

where

h− = fl−(1− f ′l−) = exp[(E ′
−−µ)/T ′

l− ]/{{exp[(E ′
−−µ)/T ′

l− ]+ 1}{exp[(E−−µ)/Tl]+ 1}},
(4)

h+ = fl+(1− f ′l+) = exp[(E ′
+ +µ)/T ′

l+ ]/{{exp[(E ′
+ +µ)/T ′

l+ ] + 1}{exp[(E+ +µ)/Tl] + 1}},
(5)

Tl = Tl∓ . When E, E ′ À ml and υ = pz/
√

E2 −m2
l ¿ 1, υ′ = p′z/

√
E ′2 −m2

l ¿ 1, in
the kinematics ϑ′ = π/2, α′ = ϕ we have for the AH

A =
H1−ζ−(I2

4 − 2I2I3) + H2−ζ+(I2
3 − 2I2I4)− [G−ζ(1 + h0)−G+(1− h0)](1 + ζζ ′)I2

2

H1+ζ−(I2
4 − 2I2I3) + H2+ζ+(I2

3 − 2I2I4)− [G−ζ(1− h0)−G+(1 + h0)](1 + ζζ ′)I2
2

(6)
where H1± = g2

L ± g2
Rh0, H2± = g2

R ± g2
Lh0, G± = g2

L ± g2
R, gL = 0.5 + sin2 θW and

gR = sin2 θW for νll -scatterings, gL = −0.5 + sin2 θW , gR = sin2 θW for νil - scatterings
(i 6= l) h0 = h+/h−, ζ± = (1 ± ζ)(1 ± ζ ′) and I1 = In,n′−1, I2 = In−1,n′ , I3 = In−1,n′−1,
I4 = In,n′ are the Laguerre functions. In the considered kinematics Q∓(ϑ = 0) does not
contain I1.

When initial CLs (CAs) have a left-hand circular polarization (LHCP), we obtain for
the AH

A− = A(ζ = −1) =
g2

L − g2
Rh0L

g2
L + g2

Rh0L

(7)
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where h0L = h+L/h−L, h+L = h+(T ′
l+ = T ′

l+L
), h−L = h−(T ′

l− = T ′
l−L

).

When initial CLs (CAs) have a right-hand circular polarization (RHCP)(ζ = +1) , we
obtain for the AH

A+ = A(ζ = +1) =
g2

R − g2
Lh0R

g2
R + g2

Lh0R

(8)

where h0R = h+R/h−R, h+R = h+(T ′
l+ = T ′

l+R
), h−R = h−(T ′

l− = T ′
l−R

) .

4 Numerical estimations

For numerical estimations we consider the NES and the neutrino-positron scattering
(NPS). For the transition n = 1 → n′ = 2 at the densities n0 ∼ 1030cm−3 we ob-
tain µ ' 25.68MeV (n0/1033cm−3)(1015G/H) ' 0.026MeV for the electron (positron)
chemical potential. At characteristic temperatures of magnetars (T ' 1011K) the char-
acteristic energy for electrons (positrons) is E± ' 8.5MeV . So, µ ¿ E± and in the
considered case the contribution of the electron (positron) number densities of the or-
der of n0 ∼ 1030cm−3 can be neglected. However, at the densities n0 ∼ 1033cm−3 and
H ∼ 1015G(e.g., H ' 2.15 × 1015G) we have µ ' E ′

± ' 12MeV and the contribu-
tion of the electron (positron) number densities of this order is essential. If we suppose
T ′

e+
L

' 1.4× 1011K ' 12MeV (for numerical estimations), in the last considered case we

obtain A− ' 0.95 for νee
± - scatterings. If we suppose T ′

e+
R

' 1.4× 1011K ' 12MeV and

consider the same densities and magnetic field strength, we obtain A+ ' −0.42 for νee
±

- scatterings. For νie
± - scatterings (νi = νµ, ντ ) we obtain A− ' 0.70 and A+ ' 0.50.

Analyses show that when electron neutrinos scatter on electrons and positrons hav-
ing a LHCP, NES can contribute to the energy balance of the collapsing stellar core
dσ− = 39dσ+. When muon (tauon) neutrinos scatter on electrons and positrons having
a RHCP, NPS can contribute to the energy balance of he collapsing stellar core more
essentially than NES dσ+ = 2.5dσ−. In case of νie

± - scatterings NES can contribute to
the energy balance of the collapsing stellar core more essentially than NPS. Within the
considered kinematics and conditions and in the limiting case of very high temperature,
T À (eH)1/2, µ, an influence of a medium leads to the constant statistical factors of 1/2
both for CLs and CAs and the AH is determined as A = (Q− −Q+)/(Q− + Q+). When
initial CLs and CAs have a LHCP (RHCP), the AH is

A∓ = ±g2
L − g2

R

g2
L + g2

R

. (9)

In the limiting case of very high temperature we have A− = −A+. It means that the AH is
sensitive to neutrino flavor and spin variables of initial CLs and CAs. For νll

± -scatterings
Aνll(ζ = ∓1) ' ±0.82 and for νil

±-scatterings Aνil(ζ = ∓1) ' ±0.16. Comparison of the
AH for νll

± - and νil
± -scatterings gives Aνll/Aνil ' 5.13. In case of ζ = −1 we obtain

for νll
±-scatterings dσ− ' 10dσ+. It means that when neutrinos scatter on their charged

partners and charged antipartners having a LHCP, NCLS can contribute to the energy
balance of the collapsing stellar core more essentially than NCAS. In case of ζ = +1 we
obtain for νll

± -scatterings dσ+ ' 10dσ−. It means that when neutrinos scatter on their
charged partners and charged antipartners having a RHCP, NCAS can contribute to the
energy balance of the collapsing stellar core more essentially than NCLS. All these effects
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could contribute to the asymmetry of the subsequent explosion of the outer layers of the
collapsing stellar core.

5 Conclusions

It is shown that the asymmetry in heating of CLs and CAs by neutrinos in a SMTP is
sensitive to neutrino flavor and spin variables of initial CLs and CAs and it also depends
on the CL (CA) energy and the medium characteristics. Analyses of the AH show that the
dominant contribution to the asymmetry of the subsequent explosion of the outer layers of
the collapsing stellar core is determined with the scattering of neutrinos at their charged
partners having a LHCP and with the scattering of neutrinos at their charged antipartners
having a RHCP. In principle, the formulae describing NCLS and NCAS can formally be
applied to neutrino-quark (antiquark) scattering. The obtained result is evidence for the
AH of a matter and an antimatter by neutrinos in a SMTP.
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Abstract

It was previously shown that the tensor magnetic polarizability of the deuteron
causes the spin rotation with two frequencies and experiences beating for polarized
deuteron beams in storage rings. We confirm an existence of this effect and derive
general formulae describing deuteron spin dynamics. It is found that an initially
tensor polarized deuteron beam can acquire a final horizontal vector polarization of
order of 1%. This effect allows to measure the tensor magnetic polarizability of the
deuteron in storage-ring experiments.

1 Introduction

Tensor electric and magnetic polarizabilities defined by spin interactions of nucleons are
important parameters of deuteron and other nuclei. In particular, measurement of ten-
sor polarizabilities of the deuteron gives an important information about spin-dependent
nuclear forces. For polarized deuteron beams in storage rings, main effects caused by the
tensor polarizabilities have been investigated by Baryshevsky et al. [1,2]. The tensor mag-
netic polarizability, βT , conditions the spin rotation with two frequencies instead of one
and therefore occasions beating with the frequency proportional to βT [1, 2]. We confirm
the existence of this effect and carry out a detailed calculation of deuteron spin dynamics
in storage rings. We use the matrix Hamiltonian obtained in Ref. [3] and derive general
formulae describing an evolution of spin wave function. It is shown that an initially tensor
polarized deuteron beam can acquire a final horizontal vector polarization of order of 1%.
This effect makes it possible to measure the tensor magnetic polarizability of the deuteron
in storage-ring experiments.

The system of units ~ = c = 1 is used.

2 Hamiltonian approach in the method of spin
amplitudes

The method of spin amplitudes uses quantum mechanics formalism to more easily describe
spin dynamics. Vector and tensor polarization of particles/nuclei with spin S ≥ 1 are
specified by the unit polarization vector P and the polarization tensor Pij.

The nontrivial spin dynamics predicted in Refs. [1, 2] and conditioned by the tensor
electric and magnetic polarizabilities of the deuteron is a good example of importance
of spin tensor interactions in the physics of polarized beams in storage rings. To de-
scribe tensor interactions of deuteron with the method of spin amplitudes, one should use
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three-component spinors and 3×3 matrices. The method of spin amplitudes is mathe-
matically advantageous because transporting the three-component spinor is much simpler
than transporting the three-dimensional polarization vector P and five independent com-
ponents of the polarization tensor Pij together.

We follow the traditional quantum mechanical approach [4] and use the matrix Hamil-
ton equation [3]. A determination of spin dynamics can be divided into several stages,
namely, (i) a solution of the Hamilton equation and a determination of eigenvalues and
eigenvectors of the Hamilton matrix H, (ii) a derivation of spin wave function consisting
in a solution of a set of three linear algebraic equations, (iii) a calculation of time evolution
of polarization vector and polarization tensor.

3 Dynamics of deuteron spin in storage rings

Correction to the Hamilton operator for the deuteron polarizabilities contains scalar and
tensor parts. The scalar part is spin-independent and can be disregarded. The general
form of the matrix Hamiltonian H has been found in Ref. [3]. The matrix Hamiltonian
defining the deuteron spin dynamics in a uniform magnetic field takes the form

H =




E0 + ω0 +A+ B 0 A
0 E0 + 2A 0
A 0 E0 − ω0 +A+ B


 , (1)

where [3]
A = −1

2
αT B2

zγβ2, B = −βT B2
zγ, (2)

ω0 is the angular frequency of spin rotation (g−2 frequency), E0 is the zero energy level,
αT is the tensor electric polarizability, β = v/c is the normalized velocity, Bz is the
vertical magnetic field, and γ is the Lorentz factor. The nondiagonal components in Eq.
(1) are nonresonant and can be disregarded because their average effect on the rotating
spin is zero. Eq. (1) shows that not only does the tensor magnetic polarizability affect
the deuteron spin in the horizontal plane but also the tensor electric polarizability.

The connection between spin amplitudes and components of polarization vector and
polarization tensor is given by Eq. (44) in Ref. [3]. If the deuteron beam is vector polarized
and the direction of its polarization is characterized by the spherical angles θ and ψ, the
general equation defining the evolution of deuteron polarization has the form

Pρ(t) = sin θ cos (ω0t + ψ) cos (bt)− sin θ cos θ sin (ω0t + ψ) sin (bt),
Pφ(t) = sin θ sin (ω0t + ψ) cos (bt) + sin θ cos θ cos (ω0t + ψ) sin (bt), Pz(t) = Pz(0),

where

b = B −A = −
(

βT − 1

2
αT β2

)
B2

zγ. (3)

Eqs. (3),(3) show the tensor polarizabilities of the deuteron cause the spin rotation
with two frequencies ω0 ± b instead of ω0 and therefore experience beating with the
frequency ∆ω = −2b. Thus, these equations confirm the conclusion given by Baryshevsky
et al. [1, 2]. However, Eq. (3) displays that the spin rotation is also affected by the
tensor electric polarizability. While the effect predicted in Refs. [1,2] is not negligible, its
observation is a very difficult problem. There are three independent theoretical predictions
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for the value of the tensor electric polarizability of deuteron, namely αT = −6.2 × 10−41

cm3 [5], −6.8 × 10−41 cm3 [6], and 3.2 × 10−41 cm3 [7]. Two first values are very close
to each other but they do not agree with the last result. The theoretical estimate for
the tensor magnetic polarizability of deuteron is βT = 1.95 × 10−40 cm3 [5, 6]. Duration
of measurement t is restricted by the spin coherence time τ . If we base our estimate on
the values corresponding to the planned deuteron electric-dipole-moment experiment in
storage rings [8] (γ = 1.28, β = 0.625, τ ∼ 1000 s, and Bz = 3 T), b ∼ 10−5 s−1 and
bt . 10−2. In this case, systematical errors caused by betatron oscillations, field defects
and misalignments of magnets can appreciably exceed small perturbations of spin rotation
conditioned by the deuteron tensor polarizabilities.

We propose the significant improvement of precision of a possible experiment. Mea-
surement of the effect can be strongly simplified with the use of a tensor-polarized deuteron
beam. If the initial vector polarization of such a beam in zero, any interactions of the
magnetic moment of deuteron with external fields cannot lead to the appearance of vector
polarization. Therefore, nonzero vector polarization of the beam can be conditioned by
nothing but the tensor interactions. The initial tensor polarization can correspond to a
zero projection of the deuteron spin onto the preferential direction. When this direction
is defined by the spherical angles θ and ψ, the time dependence of the polarization vector
has the form

Pρ(t) = 2 sin θ cos θ sin (ω0t + ψ) sin (bt),
Pφ(t) = −2 sin θ cos θ cos (ω0t + ψ) sin (bt), Pz(t) = 0.

The final vector polarization is horizontal. Spin dynamics can be easily calculated for any
other initial tensor polarization of the deuteron beam.

Eq. (4) shows the possibility of measurement of the quantity b in storage ring experi-
ments. The final vector polarization of the beam is of order of 1%.

4 Discussion and summary

The presented analysis confirms the results obtained by Baryshevsky at al. [1, 2]. It is
shown that the predicted rotation of the deuteron spin with two frequencies and beating
in a uniform magnetic field are conditioned not only by the tensor magnetic polarizability
but also by the tensor electric polarizability. Nevertheless, the latter quantity gives a
minor contribution to the effect. If experimental conditions correspond to the planned
deuteron electric-dipole-moment experiment in storage rings [8] (β2 = 0.4) and theoretical
estimates for the tensor polarizabilities of the deuteron given in Refs. [5–7] are used, the
expected relative importance of βT is one order of magnitude greater.

Unfortunately, the expected spin coherence time (about 1000 s [8]) is too short to reg-
ister beating. In this case, systematical errors can prevent observation of small perturba-
tions of spin rotation conditioned by the tensor polarizabilities of the deuteron. Possibly,
the effect predicted in Refs. [1,2] may be discovered with the use of a Penning trap being
a mini-cyclotron. The Penning trap provides much longer duration of measurement.

The precision of a possible storage-ring experiment can be significantly improved, if
the deuteron beam is tensor polarized. If the initial vector polarization of such a beam
in zero, any interactions linear in the spin cannot lead to the appearance of vector po-
larization. The final vector polarization cannot also result from the betatron oscillations,
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field defects, misalignments of magnets and other potential sources of systematical er-
rors. Therefore, the tensor interaction of spin with the magnetic field defined by Eqs.
(1),(2), and (3) is the only reason of nonzero vector polarization of the beam. Eq. (4)
shows the beam can acquire the final horizontal vector polarization of order of 1%. The
known experimental methods [9] permit safe measuring such a polarization and therefore
determining the tensor magnetic polarizability of the deuteron. In addition, the observa-
tion of the predicted effect would prove an importance of taking into account spin-tensor
interactions in storage ring physics. Since Eq. (3) contains both tensor polarizabilities,
the tensor electric polarizability of the deuteron can also be measured in the proposed
experiment. For this purpose, the obtained precision of polarization measurements should
be significantly improved. The experiment should be performed with different values of
the beam momentum (and the vertical magnetic field) on the same ring. In this case,
both tensor polarizabilities of the deuteron can be determined. Another method of de-
termination of the deuteron’s tensor electric polarizability has been proposed in Ref. [3].
The use of the Penning trap in experiments with tensor-polarized deuterons can also be
helpful for measuring the tensor polarizabilities.
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Abstract

During the five days of this workshop we had forty five hours of lectures, so
a tremendous amount of new information was delivered. I will be able only to
highlight some aspects of the numerous interesting topics, which were discussed,
leaving out many of them.

5 Introduction

Let me first begin to say that, given the high density of the scientific program, I had to
make a drastic selection and I apologize to the speakers, not or badly, mentioned in this
summary. This is partly due to the lack of time and partly to my unability to ”‘digest”’
quickly enough, all this new information. I will not touch technical talks because it is not
my field. Fortunately, missing material can be found in these proceedings, collecting all
the write-ups of the presentations.

From what we heard, it is amazing to realize that spin has some relevance all over the
places, in a vast energy range from 100 MeV up to several TeV and in very many different
collision processes, namely e+e−, e±p, µ±p, νp, pp, etc...It is involved in numerous exper-
iment facilities like, for example, RARF, CLAS, HERMES, HERA, COMPASS, BELLE,
RHIC, etc....One notices also that significant advances have been achieved recently in
polarized beams and targets, allowing to reach higher precision in the new measurements.
New projects are under way, which I will just mention: in FAIR at GSI, the PANDA
detector has a broad physics program to study QCD with antiprotons, at Protvino, U70
is preparing a new polarization program, as well as here in Dubna with the Nuclotron-M.
On the theory side, the terminology used is also very rich since one has currently to de-
code the following sets of initials, PDF, GPD, TMD, DVCS, DIS, SIDIS, DGLAP, BFKL,
NLO, NNLO, HT, SSA, etc...

Once more, it was clear at this meeting that substantial progress emerge whenever
experiment and theory are ”‘talking to each other”’. I will try to find the right balence
between new experimental results and recent theoretical developments, which have most
impressed me, but it was a rather difficult exercise.

6 COMPASS Festival

The COMPASS experiment at the CERN SPS has undertaken a vast experimental pro-
gram focused on the nucleon spin structure via deep-inelastic scattering (DIS) of 160 GeV
polarized muons on polarized nucleons. They have obtained very precise results in two
kinematic ranges, Q2 < 1 GeV2 and 0.0005 < x < 0.02, as well as 1 < Q2 < 100 GeV2 and
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0.004 < x < 0.7, for the spin-dependent structure function gd
1 , by measuring the longitu-

dinal photon-deuteron asymmetry Ad
1, with a polarized deuteron target. This asymmetry,

shown in Fig. 1 (Left), is compatible with zero over the small x range and this indicates
a strong cancellation between the polarization of the different sea quarks. For large x the
asymmetry is large and positive, in agreement with earlier data from SMC and HERMES.
They have also discussed the results of a global QCD fit at next-to-leading order (NLO),
to the world data on g1, which, unfortunately, does not lead to a unique determination of
the gluon polarization ∆G.

Another interesting subject is the evaluation of the polarized valence quark distri-
butions ∆uv(x) + ∆dv(x). The analysis is based on the asymmetry difference A(h+−h−),
for hadrons of opposite charges and it gives direct access to the valence quark helicity
distributions, as the fragmentation functions do cancel out. The results, shown in Fig. 1
(Right), provide information on the contribution of the sea quarks to the nucleon spin.
They favour an asymmetric scenario for the sea polarization, ∆u = −∆d, at a confi-
dence level of two standard deviations, in contrast to the usual symmetric assumption,
∆u = ∆d = ∆s = ∆s. However, the statistical errors are still large and do not allow yet
a definite conclusion.
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Figure 1: On the left the asymmetry Ad
1(x) for quasi-real photons (Q2 < 1 GeV2), as a function

of x. On the right the integral of ∆uv(x)+∆dv(x) over the range 0.006 < x < 0.7, as the function
of x minimum, evaluated at Q2 = 10 GeV2. (Taken from Santos’s talk.)

The last relevant topic is the gluon polarization ∆G/G, which is essential to clarify
the spin structure of the nucleon. Since it is impossible to rely on an extraction based on
the QCD evolution of the polarized structure functions, COMPASS has chosen to get a
direct determination of this quantity, from the measurement of double spin asymmetries
in the scattering of polarized muons off a polarized deuteron target.

Three different channels sensitive to the gluon distribution are being explored: open
charm production and high transverse momentum (high-pT ) production, in either the
quasi-real (virtuality Q2 < 1 GeV2) photoproduction or the DIS (Q2 > 1 GeV2) regimes.
The first method was described by Y. Bedfer and a preliminary analysis, bearing 2002-
2004 data, gives:

∆G/G = −0.57± 0.41(stat.)± 0.17(syst.) at xg = 0.15± 0.08 and µ2 = 13 GeV 2.
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In his presentation K. Klimaszewski discussed the high-pT events and reported that the
analysis of combined data from years 2002-2004 leads to a more precise preliminary result:
∆G/G = 0.016 ± 0.058(stat.) ± 0.055(syst.). The results of COMPASS and from other
experiments are shown on Fig. 2 and they definitely favor a low value of ∆G/G.
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Figure 2: Comparison of the ∆G/G measurements from various experiments. (Taken from
Bedfer’s talk.)

7 HERMES Festival

The HERMES experiment at DESY has obtained new results in different area, which were
introduced in the talk of S. Belostotski. From the analysis of high-pT hadron production,
they got the following estimate ∆G/G = 0.078 ± 0.034(stat.) ± 0.011(syst.), with a
theoretical uncertainty of ∼ 0.1. Polarized inclusive DIS is also used to determine ∆Σ,
the quark contribution to the nucleon spin, and under some reasonable assumptions, they
reported ∆Σ = 0.330 ± 0.025(exp.) ± 0.011(theor.) ± 0.028(evol.). Flavor separation for
the quark helicity distributions has been achieved from semi-inclusive DIS data and, in
particular, one gets (∆s + ∆s̄) = −0.085± 0.013(theor.)± 0.008(exp.), by means of K±

production, which is a preliminary result.
Azimuthal asymmetries were measured in the semi-inclusive production of pions and

kaons and HERMES has collected data with a transversely polarized hydrogen target from
2002 to 2005. The polarized part of the semi-inclusive cross section, for unpolarized beam
(U) and a transversely polarized target (T), has contributions from both the Collins
and Sivers mechanisms. These asymmetries provide information on the quark Collins
fragmentation and Sivers distribution functions. These mechanisms produce a different
dependence of the azimuthal asymmetry on the two angles φ and φS, so one can use the
variation of φ and φS to disentangle the two contributions experimentally. The extracted
Collins and Sivers asymmetries for charged pions and kaons, are presented in Fig. 3, as a
function of x, z, and Ph⊥. The average Collins amplitude is positive for π+ and negative
for π−. This is expected if the transversity distribution hu

1 is positive and hd
1 is negative,

like for the helicity distributions. However, the magnitude of the π− asymmetry appears
to be as large as the π+ one, which was unexpected. The average Sivers asymmetry are
significantly positive for π+ and K+ and consistent with zero for π− and K−. Note that
the Sivers asymmetry for K+ is in the region of x ≈ 0.1, by a factor 2.3± 0.3, higher in
magnitude than the asymmetry for π+.
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Figure 3: Collins (left) and Sivers (right) asymmetries for charged pions and kaons, (as labelled)
as a function of x, z, and Ph⊥. (Taken from Korotkov’s talk.)

Figure 4: Transverse polarization PΛ
n and P Λ̄

n as function of pT for the region ζ < 0.25 (left)
and ζ > 0.25 (right). (Taken from Veretennikov’s talk.)

Transverse Λ and Λ̄ polarization and spin transfer from longitudinally polarized target
have been measured in the HERMES experiment. The kinematic variables are pT and
ζ ≡ (EΛ + pΛ

z )/(Ee + pe), where pT is the transverse momentum with respect to the
(lepton) beam, EΛ and pΛ

z are the energy and z-component of the Λ momentum (the
z-axis is along the lepton beam direction) and Ee, pe are the energy and momentum of
the positron beam. In Fig. 4, the transverse Λ and Λ̄ polarizations are shown versus pT

for two kinematical domains ζ < 0.25 and ζ > 0.25. The Λ polarization rises linearly with
pT with higher slope for ζ < 0.25 and the Λ̄ polarization is consistent with zero.
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8 Belle, BNL and JLab Festival

We had a very instructive talk by M. Grosse Perdekamp on the analysis of hadronic
events in e+e− annihilation at KEK by the Belle Collaboration. He presented the data
on the azimuthal asymmetries between two hadrons produced in the fragmentation of
a quark-antiquark pair, e+e− → qq̄ → h1h2 + X. The analyses demonstrated that the
results on the Collins fragmentation functions from HERMES and Belle experiments are
perfectly compatible. Using these Collins functions the first extraction of the transversity
distributions hu

1(x) and hd
1(x) was achieved.

The RHIC spin program at BNL, underway since 2001, has been presented by G.
Bunce. It consists of colliding polarized protons to study the spin structure of the proton.
For 2006 they have achieved high luminosity collisions at

√
s=200 GeV, with 55 to 60%

polarization and performed sensitive measurements on the gluon polarization. Lower pT

production of π0 or jets is dominated by the gluon-gluon graph, and the double helicity
asymmetry ALL at mid-rapidity is essentially quadratic in the gluon polarization. At
higher pT , the quark-gluon graph dominates, and ALL is linear in the gluon polarization.
The data for ALL for jet production, obtained by the STAR collaboration, was presented
by J. Dunlop. It is displayed in Fig. 5 and indicates little or no gluon polarization in the
measured region, which corresponds to a gluon momentum fraction of xgluon from about
0.02 to 0.3. Fig. 5 shows also preliminary results from the BRAHMS experiment for
charged pion transverse spin asymmetries, at

√
s=62 GeV. The asymmetries at 62 GeV

are very large, and significantly larger than the asymmetries at 200 GeV. At this energy,
STAR has also measured a remarkable asymmetry for π0 production, which increases with
xF , for positive xF and is consistent with zero for negative xF . A very exciting direction for
the transverse spin program is connecting semi-inclusive DIS and RHIC results. G. Bunce
recalled that the final state interaction needed to generate the asymmetry of DIS and
the corresponding initial state interaction of Drell-Yan, have different color interactions,
giving in general an attractive force for DIS and a negative force for Drell-Yan, resulting
in opposite sign transverse spin asymmetries. This unique prediction of gauge theory
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Figure 5: Left: Double helicity asymmetry ALL for inclusive jet production at
√

s = 200 GeV
versus pT of the jet from the STAR experiment. (Taken from Dunlop’s talk.) Right: AN versus
xF for inclusive production of charged pions, at

√
s=62 GeV, preliminary data from 2006, from

the BRAHMS experiment. (Taken from Bunce’s talk.)
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must be checked and this will be done at RHIC.

Figure 6: CLAS data for xg1 in several bins
of Q2 for the proton (left) and deuteron, per
nucleon (right). (Taken from Dodge’s talk.)

The CLAS collaboration at Jefferson Lab
is pursuing a wide program of measurements
with polarized electrons incident on polarized
proton and deuteron targets, which was par-
tially covered in the talk of G. Dodge. It in-
volves inclusive, semi-inclusive and exclusive
inelastic scattering over a wide kinematical
range in momentum transfer Q2. The data
are consistent with the expectation that the
A1 asymmetry should approach 1 as x → 1
and they find that ∆d/d remains negative up
to x = 0.6, consistent with results from Hall
A using a 3He target. They also studied the
onset of quark-hadron duality in spin struc-
ture functions. Quark-hadron duality refers
to the observation that the unpolarized struc-
ture function F2, in the resonance region, av-
erages to the smooth scaling curve for F2 at
high Q2. In Fig. 6 one displays xg1 for the
proton and deuteron as a function of x for
various Q2 bins. The high Q2 “scaling” curve
is shown by the hatched area and indicates
the range of xg1 given by PDF fits. At low Q2 one can see that the data are negative in
the region of the ∆(1232) resonance, as expected for a spin 3/2 excitation. However, as
Q2 increases and the ∆(1232) loses strength, the resonances do indeed appear to oscillate
about the scaling curve.

9 GPD Festival

Generalized Parton Distributions (GPD), introduced 10 years ago, is a powerful tool
which offers a way to unify two pictures of the nucleon, disconnected so far, on the one
hand the PDF’s f(x,Q2), obtained from DIS, and on the other hand the nucleon form
factors F (t), obtained from ep elastic scattering. The GPD’s provide a three-dimensional
picture of the nucleon and therefore a more detailed information on its partonic structure,
designated ”‘nucleon tomography”’ by N. d’Hose. One hopes to gain some insight on the
localization of partons inside the nucleon and to access to their orbital angular momentum
Lq, as first suggested by X. D. Ji. GPD’s can be extracted experimentally through the
measurement of hard exclusive reactions, the cleanest one is the Deeply Virtual Compton
Scattering (DVCS)(or meson production), shown on the left of Fig. 7. In the reaction
ep → e′γp, the Bethe-Heitler (BH) process on the right of Fig. 7, dominates over DVCS
in most of the kinematic region. However, measurable asymmetries in beam spin and
beam charge arise from the interference of both processes. The beam spin asymmetry
is proportional to the imaginary part of the DVCS amplitude, while the beam charge
asymmetry is proportional to the real part of the DVCS amplitude and both asymmetries
can be expressed in terms of GPD’s. Several models are emerging and predictions made
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Figure 7: Feynman graphs of DVCS (left) and Bethe-Heitler (right) processes. Both processes
lead to the same final state, therefore their amplitudes can interfere. (Taken from Vilardi’s talk.)

from lattice QCD for the first moments of the nucleon GPD’s confirm that the transverse
size of the nucleon depends significantly on the momentum fraction x. The kinematical
domain accessible in COMPASS and its availability of positive and negative polarized
muons gives it a major opportunity to measure the different configurations of charge and
spin of the beam, as explained by N. d’Hose.

Finally, let us mention the results presented by A. Borissov on exclusive diffractive
production of light vector mesons (ρ0 and φ) on Hydrogen and Deuterium targets, mea-
sured by HERMES in the kinematic region 0.5 < Q2 < 7 GeV2 and 3.0 < W < 6.3 GeV.
Data for the Q2 and W dependences of longitudinal cross sections and spin density matrix
elements are in fair agreement with GPD calculations based on the ‘handbag factoriza-
tion’. This model was presented by S. Goloskokov and it seems to work well up to HERA
energies.

10 Theory Festival

Several talks were devoted to single spin asymmetries and their connection to the Sivers
and Collins effects, which generate the most sizeable single spin asymmetries (SSA) in
semi-inclusive deep-inelastic scattering (SIDIS) with transverse target polarization, as
already mentioned above. In his talk A. Efremov gave our present understanding of these
phenomena. Within some uncertainties it was found that the SIDIS data from HERMES
and COMPASS, on the Sivers and Collins SSA from different targets, are in agreement
with each other and with Belle data on azimuthal correlations in e+e−-annihilations. At
the present stage of the art, large-Nc predictions for the flavour dependence of the Sivers
function are compatible with data, and provide useful constraints.

The global analysis of HERMES, COMPASS and Belle data reported by A. Prokudin
is leading to the extraction of favoured and unfavoured Collins fragmentation functions
and the unknown transversity distributions for u and d quarks, hu

1(x) and hd
1(x). They

turn out to be opposite in sign, with |hd
1(x)| smaller than |hu

1(x)|, and both are smaller
than their corresponding Soffer bound. This is just a first step for extracting transversities,
as noticed by M. Wakamatsu, who carried out a comparative analysis of the transversities
and the longitudinally polarized PDF’s. He concluded that a complete understanding
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of the spin dependent fragmentation mechanism is mandatory for getting more definite
knowledge of the transversities and that some independent determination of transversities
is highly desirable, for example, through double transverse spin asymmetry in Drell-Yan
processes.

O. Teryaev recalled that twist-three quark-gluon correlators were proposed long ago to
explain non-zero SSA and he presented some arguments to establish a relation between the
Sivers function and these twist-three matrix elements. As a result, the Sivers mechanism
may be applied at large momentum transfer. It is also possible to find some connection
between Sivers function and GPD.

D. Sivers discussed chiral dynamics and introduced the concept of spin-directed mo-
mentum transfer from the measurement of a parity-conserving SSA.

In his talk, A. Sidorov studied the impact of the CLAS and latest COMPASS data on
the polarized parton densities and higher twist (HT) contributions. It was demonstrated
that the inclusion of the low Q2 CLAS data in the NLO QCD analysis of the world DIS
data improves essentially our knowledge of HT corrections to g1 and does not affect the
central values of PDF’s. However the large Q2 COMPASS data influence mainly the
strange quark and gluon polarizations, but practically do not change the HT corrections.
The uncertainties in the determination of polarized parton densities is significantly re-
duced due to both data sets and he concluded that it is impossible to describe the very
precise CLAS data, if the HT corrections are not taken into account.

B. Ermolaev presented a description of spin structure function g1 at arbitrary x and
Q2. It is known that the extrapolation of DGLAP to the very small-x involves necessarily
the singular fits for the initial parton densities without any theoretical basis. On the
contrary, according to B. Ermolaev, the resummation of the leading logarithms of x is
the straightforward and most natural way to describe g1 at small x. Combining this
resummation with the DGLAP results leads to the expressions for g1 which can be used
at large Q2 and arbitrary x, leaving the initial parton densities non-singular.

The talk presented by X. Artru contains two parts. In the first one, he recalls that
positivity restrains the allowed domains for pairs or triples of spin observables in polarized
reactions, some of which having non-trivial shapes. Various domain shapes in reactions
of the type 1/2 + 1/2 → 1/2 + 1/2 are displayed and some methods to determine these
domains are mentioned. The second part deals with classical and quantum constraints in
spin physics, from both discrete symmetries and positivity.

Finally, A. A. Pankov considered the e+e− International Linear Collider (ILC) to study
four-fermion contact interactions in fermion pair production process e+e− → f̄f and he
stressed the role played by the initial state polarization, to increase the potentiality of
this future machine to discover new phenomena.
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