Nuclear Structure and Astrophysics @ FAIR

- FAIR outline of the facility
- GSI today
 - Superheavy Elements
 - Nuclear structure and Astrophysics at the FRS
- · NUSTAR
 - NUclear STructure, Astrophysics and Reactions

Helmholtz International Summer School "NUCLEAR THEORY AND ASTROPHYSICAL APPLICATIONS" Dieter Ackermann, GSI Darmstadt and University of Mainz

FAIR - outline of the facility

GSI today.....

• plasma physics

supported by a worldwide unique accelerator facility for heavy-ion beams

Creation of six new chemical element

107		109				
Bh	108	Mt		110		
Bohrium	Hs	Meitnerium		Ds		
Hassiu		1		Darmstadtium		
	11	1				
	R	a		112		
	Roentgenium			112		
				-		
T			1. 1.			

Tumor therapy with heavy ions over 200 patients successfully treated

HICAT: a new facility to treat up to 1000 patients / year

The present GSI Accelerators and the GSI RI Facility

Quo vadis GSI?

Address questions connected to strong interactions in many-body systems:

- structure and properties of rare, short lived nuclei. How were the elements created?
- quark-gluon structure of hadronic matter: Where from is the mass coming?
- ultra-strong electromagnetic field in atoms

New requests:

 higher energies and intensities

 diversify the available beam species: RIB's and Antiprotons

The Facility

Key features

- ✓ Highest beam intensities and energies
- ✓ Brilliant beams
- ✓ Cooled beams
- ✓ Fast cycling
- superconducting magnets
- ✓ Parallel operation of up to four different scientific programs

FAIR in numbers....

Primary beams (SIS 100)

- ²³⁸U²⁸⁺ : 10¹²/s; 0.4-2.7 GeV/u;
- Intensity: 100-1000 over the present one
- protons: 2.5x10¹³/ in 5 s at 29 GeV
- $2x10^{9}/s^{238}U^{73+}$ up to 35 GeV/u
- 34 GeV/u U⁹²⁺, 100 s spill
- up to 90 GeV protons

Secondary beams

- broad range of radioactive beams up to 1.5 - 2 GeV/u;
- up to factor 10 000 in intensity over present
- Antiprotons 0.03 30 GeV

SIS 100/300

Two synchrotrons in one tunnel (1080 m circumference)

Booster and compressor (50 ns)

Rf-systems

lon extraction pbar reinjection

Transfer to SIS200

SIS100

Rf-systems

Rf-systems

lon injection pbar ejection Stretcher (slow extraction) and high energy ring (34 GeV/u)

SIS 300

Transfer from SIS100

Rf-systems

R&D program in rapidly cycling superconducting magnets

Nuclotron dipole magnet: B=2T, dB/dt=4T/s

RHIC type dipole magnet: B=4T 6T, dB/dt=1T/s Space charge limit $\sim A/q^2$

• $U^{73+} \rightarrow U^{28+}$ gain of a factor 6.8 in beam in tensity

Ion extraction

- Short cycle ~ 1 s
- $p = 1 \ge 10^{-12}$ mbar

Parallel Operation

2005: Determination of the Legal Structure of FAIR GmbH, draft of FAIR contract

Summer of 2006: Contract on FAIR signed by Member States, followed by FAIR construction Start

2006 to 2010 Technical Design Reports (TDR) for the sub systems

2011 - 2014: Commissioning of FAIR

GSI present

Nuclear Structure and Astrophysics @ GSI

stellar nucleosynthesis

Astrophysics @ GSI

R-process: Path and Abundances

R-process paths

neutronrich nuclei

Abundances in metalpoor stars

ullet peaks at A \sim 90 and 130

(口)(聞)(臣)(臣) 臣

fission? neutrinos?

Karlheinz Langanke (GSI & TU Darmstadt)

Shell Model and Supernova

DOC

Astrophysics @ GSI

Neutrino induced fission for r-process

- Competition between neutron decay and fission.
- Fission relatively enhanced with increasing neutrino energy.

< 🗆 🕨

-

-

DOC

Astrophysics @ GSI

R-process fission fragment distributions.

Fission fragment distribution

Fission fragment distribution

< 口 > < 🗇

-12

590

In-flight Separation at low Energies and Identification with SHIP

SHE - Cross Section Systematics

Experiment at SHIP April 6 – June 9, 2005

Dieter-Ackermann_GSI/Uni._Mainz_-_Dubna_2005_-_July_26th_2005

Energy versus time-of-flight plots

${}^{48}Ca + {}^{238}U \rightarrow {}^{286-x}112 + xn at$ DGFRS and SHIP

E*/MeV	dose/10 ¹⁹	events	T _{1/2} (parent)	X	σ/pb (1 ev. limits)
31.4	0.58	1 (ER−[α]−sf)	* (3.4 s)	3	0.5 +1.2 -0.4
32.0	0.7	0			< 0.8
35.0	0.71 {	2 (ER-[α]-sf) 3 (ER-α-sf) 1 (ER-4α-sf)	(1.4 s) 2.7 s 6.1 s	3	2.5 +1.8 -1.1
34.5	1.0	1 (ER – sf)	5.2 s	?	0.7 +1.6 -0.6
39.8	0.52	1 (ER – sf)	0.14 ms	4	0.6 +1.6 -0.5
37.0	1.2	0			< 0.6

* Dubna work: T_{1/2}(²⁷⁹Ds) = 0.18 s, b_{sf} = 0.9

Dieter-Ackermann_GSI/Uni._Mainz_-_Dubna_2005_-_July_26th_2005

ER-α-γ Spectroscopy after Separtion

Reactions to be studied, overview

Radioactive Beams from Fission of relativistic ²³⁸U

Separation and Identification of Radioactive Beams in-Flight

Preservation of reaction kinematicsFastSeparation time 100 nsSensitiveSingle-atoms

> Access to the limits of the Nuclear landscape

Coulomb barrier energies:

super heavy elements Identification by decay-spectroscopy

Relativistic energies

drip line nuclei

A, Z identification in-flight with:

magnetic spectrometer, time-of-flight, and energy loss

Reaction kinematics is

used for separation

In-flight Separation at relativistic Energies with the FRS

Transmutation of the projectile beam by
Fragmentation
Fission in flight
> n-rich nuclides

Preservation of projectile velocity and beam quality

✓ Injection into separators and beam lines

with high efficiency ✓ Separation time << µs

H. Geissel et al., Nucl. Instr. Meth. 161(1979) 65

Discovery of the Doubly Magic Nucleus ¹⁰⁰Sn

FRS Midplane Photo with Fish-Eye Lens

In-Beam y-Spectroscopy with **RISING** J.Jolie

170 MeV/u 55Ni beam from FRS on secondary target

RISING setup behind FRS Collaboration of 38 institutes)

Major program 2005-2009

Dieter-Ackermann GSI/Uni. Mainz - Dubna 2005 - July 26th 2005

-

-

446.2 Underforer 2.58head-4

and Market

Inverse Kinematics

Reactions with in-flight separated **energetic** beams of **radioactive nuclei**

Nucleus of interest is the Projectile complete kinematics ==> look into the nucleus

 \succ reaction studies with 1 - 10000 projectiles s⁻¹

Nuclear response

➔ giant resonances

LAND-ALADIN Setup for Reaction Studies in reversed Kinematics

Dipole Strength in Neutron-rich Sn isotopes

Storage and Cooling: The Experimental Storage Ring ESR

Storage of

- exotic atoms (bare, H, He-like)
- radioactive nuclei
 conditions like in space

Electron cooling

- small velocity spread (10⁶)
- > precision experiments

Improving Beam Quality

Beam cooling in a Storage Ring

Van der Meer 72

Stellar Processes observed in ESR Bound-State Beta Decay of ²⁰⁷TI⁸¹⁺

Pecularities:

- New decay mode
- Mono-isotopic separation of bare ²⁰⁷Tl⁸¹⁺
- Stochastic cooling and electron cooling

Masses: Comparison of ESR and ISOLTRAP J. Aysto

Direct Mass Measurements in the Storage Ring

Preliminary Results of Isochronouos Mass Spectroscopy of Fission Fragments

NUSTAR @ FAIR

NUSTAR at the FAIR Facility for Antiproton and Ion Research

New basic Instrumental Developments

Beam production by fission of relativistic projectiles

- Separation in-flight
- Reactions with radioactive beams in reversed kinematics
- Storage and cooling of radioactive nuclei

These techniques use single atoms, ideally suited for nuclei at the limits of stability (low production rates)

NUSTAR: NUclear **ST**ructure Astrophysics and Reactions

- Decay studies
- Reactions in reversed kinematics
- Precision experiments in a storage-ring

- Proton-neutron asymmetric matter
- Loosely bound nucleons
- Correlations
- Large proton numbers

New phenomena:

- New decay modes
- New shells
- Neutron skins and halos
- Super heavy elements

➤ Medium dependence of Nucleon-nucleon interaction

GSI Proposal 2002

c = î

שופופו-הטאפווו)ann_GSI/Uni._Mainz_-_Dubna_2005_-_Juiy_בטוו_בטעט

The NUSTAR Rare-Isotope Facility with SuperFRS

High-Power Production Target (Concept for a Rotating Target Wheel)

Facility	Beam	Total Beam Power <i>P</i> [kW]	Graphite Target Thickness [g cm ⁻²]	Deposited Power ⊿P [kW]	Specific Power ⊿P/M [kW/g]
Super-FRS	all ions	< 38	4 - 8	< 12	< 0.15
PSI	Р	1000	10.8	54	0.18
RIKEN/BigRIPS	all ions	< 100	1	< 20	0.81
SPIRAL-II	D	200	~ 0.8	200	~ 0.25

Target E at PSI

Key parameters:

- radiation cooled
- continuous reliable operation (≈ 1 year)
- safe handling concepts needed (plug system, vertical access)

Milestones:

• M6-1: Concept for rotating target wheel, 12/2006*

Comparison of FRS with Super-FRS

					gain factor	
	$B\rho_{max}$	∆p/p	$\Delta \Phi_{x}, \Delta \Phi_{y}$	power	¹⁹ C	¹³² Sn
FRS	18 Tm	1.0 %	±13, ±13 mrad	1500	1	1
Super-FRS	20 Tm	2.5 %	±40, ±20 mrad	1500	5	10
				including primary rate	250	20 000

Layout and Separation Properties

Dieter-Ackermann_GSI/Uni._Mainz_-_Dubna_2005_-_July_26th_2005

Pre-Separator Optical Design

Radiation – Resistent Large - Aperture Quadrupole Magnet

Geometry at target area

Energy deposition distribution (calculated with PHITS)

Milestones:

 $<\Delta E > /M = 0.46 mJ/g$ (quench limit: 2-3 mJ/g)

- M7-1: Decision on insulating material, 10/2005*
- M7-2: Delivery of model coil, 9/2006*
- M7-3: Design and test for Surveying and alignment system ready, 4/2007*
- M7-4: Prototype Magnet delivered, 12/2007*

Energy buncher: Principle and Ion-optical Layout

Experimental Opportunities and Instrumentation

Experimental opportunities and instrumentation

The Low-Energy Branch

Experimental Area at the Low-Energy Branch of the Super-FRS

Physics with Radioactive Ion Beams

The high-energy branch

Reactions with high-energy radioactive beams:

- Knockout reaction: shell structure, valence-nucleon wave function in light nuclei
- Quasi-free scattering
- Total absorption measurement: nuclear radii, for heavy nuclei (one ion/s)
- Spallation reactions: neutron sources, production of radioactive beams, astrophysics
- Projectile fragmentation

Kinematically complete measurements using a large variety of γ and particle detectors and a high resolution magnetic spectrometer

Physics with Radioactive Ion Beams: The SFRS high-energy branch

- identification and beam "cooling" (tracking and momentum measurement, Dp/p ~10-4)
 exclusive measurement of the final state:
 - identification and momentum analysis of fragments
 - (large acceptance mode: Dp/p~10-3, high-resolution mode: Dp/p~10-4)
 - coincident measurement of neutrons, protons, gamma-rays, light recoil particles
- applicable to a wide class of reactions

Dieter-Ackermann_GSI/Uni._Mainz_-_Dubna_2005_-_July_26th_2005

New Methods and Concepts

Physics with Radioactive Ion Beams

Precision Experiments in Storage and Collider Rings

Example: Elastic scattering of bare ¹³²Sn nuclei

Hadron scattering with thin targets at high resolution

Electron Scattering

- Pointlike particle
- Pure electromagnetic probe
 ⇒ formfactors F(q)
 ⇒ elastic scattering
- F(q) transition formfactors
 ⇒ high selectivity to certain multipolarities
 - \Rightarrow inelastic scattering
- Large recoil velocities
 ⇒ full identification (Z,A) complete kinematics
- Bare ions (no atomic bg.)

Physics goals

 Charge distribution of exotic nuclei (radius, diffuseness, higher moments...) req. luminosity: > 10²⁴ cm⁻² s⁻¹

RESR

NESR

- Selective electromagnetic excitation plus spectroscopy, fission, ... studies.
 Full identification of electric & magnetic multipolarities and of the final state (*new* collective *soft* modes) req. luminosity: about 10²⁸ cm⁻² s⁻¹
- Quasi-free scattering (single-particle structure) req. luminosity: about 10²⁹ cm⁻² s⁻¹

The Electron-Ion (eA) Collider

Electrons, a new probe for structure investigations of unstable nuclei

NUSTAR - Organisation

In Summary

• FAIR -

 versatile facility for nuclear structure, astrophysics (hadron-, atomic, plasma phsyics ...)

• GSI today - a few examples

- Superheavy Elements
- Nuclear structure and Astrophysics at the FRS

· NUSTAR @ FAIR

• NUclear STructure, Astrophysics and Reactions

 will provide new oprtunities and insights exploiting new concepts and methods

Helmholtz International Summer School "NUCLEAR THEORY AND ASTROPHYSICAL APPLICATIONS" Dieter Ackermann, GSI Darmstadt and University of Mainz

Letters of Intent for NUSTAR

Low Energy Branch		C. Scheidenberger (GSI)	
HISPEC DESPEC MATS	High-resolution in-flight gamma-ray spectroscopy Decay spectroscopy with Implanted Ion Beams Precision measurements of very short-lived nuclei using an advanced trapping system for highly-charged ions	Z. Podolyak B. Rubio K. Blaum	(U.Surrey) (CSIC Valencia) (U.Mainz)
LASPEC NCAP Exo+pbar	LASER spectroscopy for the study of nuclear properties Neutron capture measurements Antiprotonic radioactive nuclides	P. Campbell M. Heil M. Wada	(U.Manchester) (FZ Karlsruhe) (RIKEN)
High-Ene R³B	Frgy Branch A universal setup for kinematically complete measurement of reactions with relativistic radioactive beams	nts T. Aumann	(GSI)
Ring Branch			
ILIMĂ EXL	Study of isomeric beams, lifetimes and masses Exotic nuclei studied in light-ion induced reactions	Y. Novikov	(NPI St.Petersburg)
ELISE	at the NESR storage ring Electron-ion scattering in a storage ring (e-A collider) Antiproton-ion collider: measurement of neutron and	M. Chartier H. Simon	(U.Liverpool) (GSI)
PIONIC	proton rms radii of stable and radioactive nuclei Spectroscopy of pionic atoms with unstable nuclei	P. Kienle K. Itahashi	(TU Munich) (RIKEN)
			040

Dieter-Ackermann_GSI/Uni._Mainz_-_Dubna_2005_-_July_26th_2005