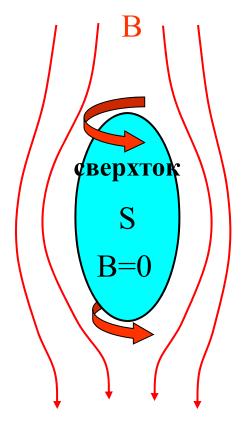
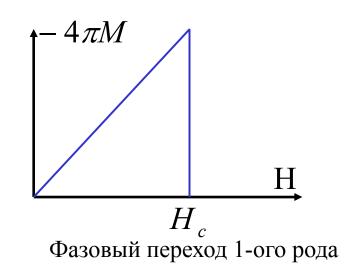
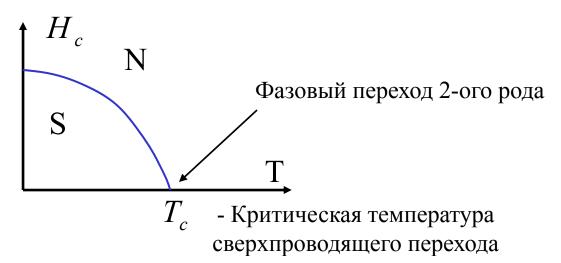
Физика вихревых состояний в сверхпроводниках.

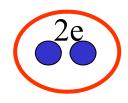

Еще один пример применения уравнений Боголюбова в современной физике сверхпроводимости.

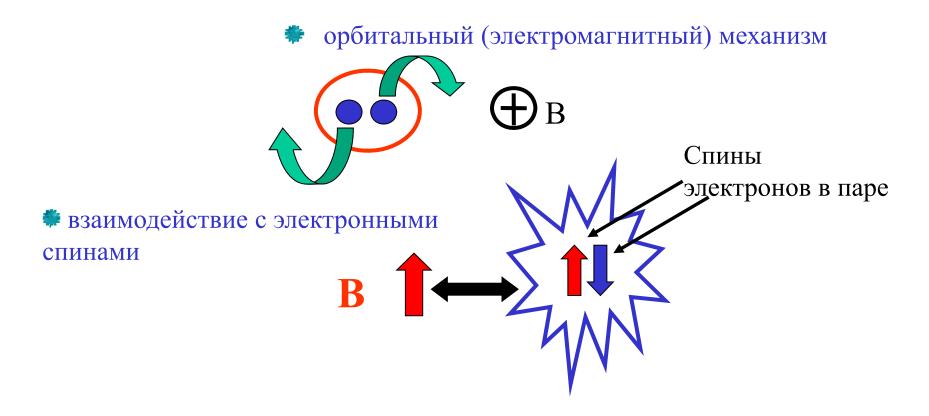

План


- **Сверхпроводники в магнитном поле. Сверхпроводимость I и II рода.**
- **Феноменологическая теория сверхпроводимости** Гинзбурга-Ландау
- Изолированный вихрь.
- Вихревая решетка.
- ◆ Свойства вихревого состояния.
- **№** Микроскопическая теория вихревого состояния. Андреевские уровни в коре вихря.

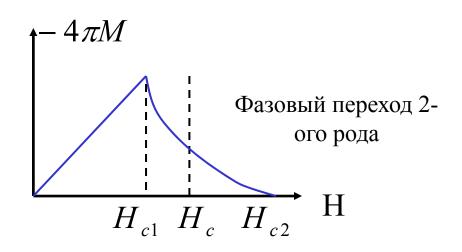
Сверхпроводники в магнитном поле.

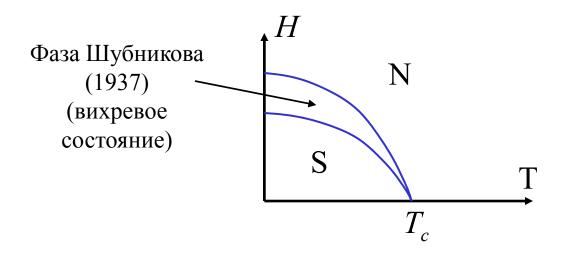
Эффект Мейсснера – Оксенфельда (1933)





Сверхпроводимость І рода.


Почему магнитное поле разрушает сверхпроводимость?


Механизмы взаимодействия магнитного поля с куперовской парой

Сверхпроводимость ІІ рода.

Феноменологическая теория сверхпроводимости Гинзбурга-Ландау

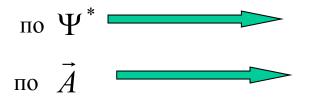
Параметр порядка
$$\Psi = \sqrt{\frac{n_s}{2}} e^{i\varphi}$$
 Плотность сверхпроводящих электронов

Для медленных изменений параметра порядка в пространстве:

Свободная энергия
$$F = F_n + \int \left(\frac{\hbar^2}{4m} |\nabla \Psi|^2 + a |\Psi|^2 + \frac{b}{2} |\Psi|^4\right) dV$$
 Свободная энергия
$$a = \alpha (T - T_c)$$
 нормального состояния

Равновесный параметр порядка в однородном сверхпроводнике

$$\left|\Psi\right|^2 = \frac{\alpha (T_c - T)}{h}$$


Включаем магнитное поле:

Требование калибровочной инвариантности

$$\nabla \Psi \to \nabla \Psi - \frac{2ie}{\hbar c} \vec{A} \Psi$$

$$\widetilde{F} = F_n + \int \left(\frac{\hbar^2}{4m} \left| \left(\nabla - \frac{2ie}{\hbar c} \vec{A}\right) \Psi \right|^2 + a \left| \Psi \right|^2 + \frac{b}{2} \left| \Psi \right|^4 + \underbrace{\frac{\vec{B}^2}{8\pi} - \frac{\vec{B}\vec{H}}{4\pi}}_{\text{При магнитного поля поле } \vec{H}} \right) dV$$

Вариация функционала

Уравнение Гинзбурга-Ландау

Уравнение Максвелла

$$-\frac{\hbar^2}{4m}\left(\nabla - \frac{2ie}{\hbar c}\vec{A}\right)^2 \Psi + a\Psi + b|\Psi|^2 \Psi = 0$$

$$rot\vec{B} = \frac{4\pi}{c}\vec{j}$$

$$\vec{j} = -\frac{ie\hbar}{2m} \left(\Psi^* \nabla \Psi - \Psi \nabla \Psi^* \right) - \frac{2e^2}{mc} |\Psi|^2 \vec{A}$$

$$\vec{j} = \frac{e\hbar}{m} |\Psi|^2 \left(-\frac{2e}{\hbar c} \vec{A} + \nabla \varphi \right)$$

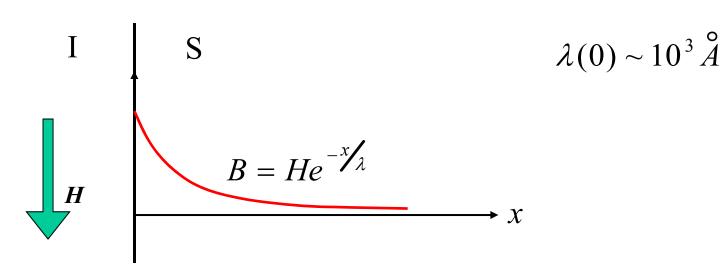
$$\vec{j} = -\frac{e^2 n_s}{mc} \vec{A} \qquad \mathbf{ypass}$$

Уравнение Лондонов

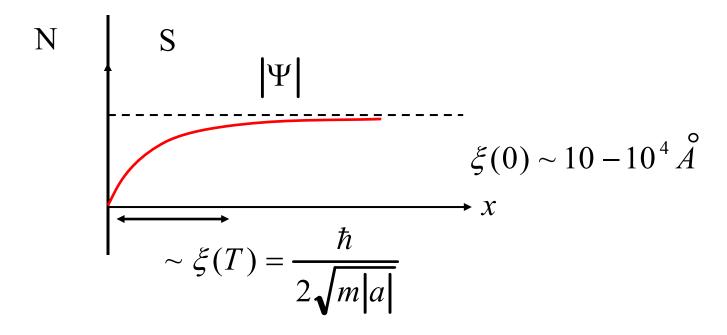
Граничные условия

I-S

$$\vec{n} \left(\nabla \Psi - \frac{2ie}{\hbar c} \vec{A} \Psi \right) = 0$$

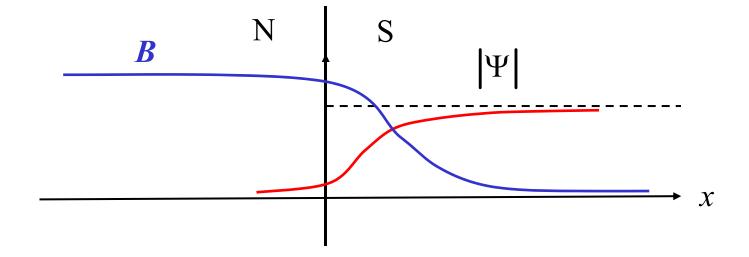

N-S

$$\Psi = 0$$


Характерные длины в теории Гинзбурга - Ландау

Глубина проникновения магнитного поля в сверхпроводник = Лондоновская глубина проникновения

$$\lambda(T) = \sqrt{\frac{mc^2b}{8\pi e^2|a|}} = \sqrt{\frac{mc^2}{4\pi e^2 n_s}}$$



Корреляционная длина = характерный масштаб изменения параметра порядка

Параметр Гинзбурга-Ландау =
$$\kappa = \frac{\lambda(T)}{\xi(T)}$$

Энергия границы раздела N-S

$$\kappa < \frac{1}{\sqrt{2}}$$

Коэффициент поверхностного натяжения > 0

$$\kappa > \frac{1}{\sqrt{2}}$$

Коэффициент поверхностного натяжения < 0

$$\kappa > \frac{1}{\sqrt{2}}$$

SN границы энергетически выгодны

Что такое вихри и зачем они нужны?

Частичное проникновение магнитного поля в сверхпроводник (неполная экранировка)

Линейно растущий с координатой член в токе

Уравнение Лондонов

$$\vec{j} = -\frac{e^2 n_s}{mc} \vec{A}$$

Противоречие?

Ответ: необходимо учесть особенности фазы параметра порядка чтобы устранить расходимость сверхтока

$$\vec{j} = \frac{e\hbar}{m} |\Psi|^2 \left(-\frac{2e}{\hbar c} \vec{A} + \nabla \varphi \right)$$

$$\int \nabla \varphi dl = 2\pi n$$

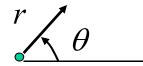
$$|\Pi poc me \tilde{u} u u \tilde{u} \text{ вариант} \quad n = 1$$

$$\vec{A} = \vec{y}_0 \vec{B}_z x + \tilde{\vec{A}}$$

$$\frac{2e}{\hbar c} \vec{B}_z b = \frac{2\pi}{a} - \text{компенсация}$$

$$\vec{B}_z S = \int B_z ds = \frac{\pi \hbar c}{e} = \phi_0$$

$$K6 \text{ вант}$$

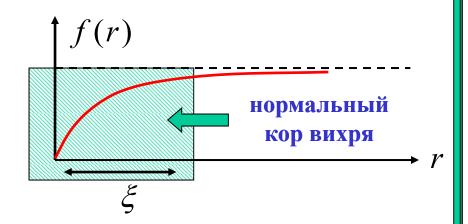

$$Machine Harmon for more for the proof of the$$

Изолированный вихрь. Слабые магнитные поля.

$$rot \nabla \varphi = 2\pi \delta(\vec{r}) \vec{z}_0$$

Структура параметра порядка

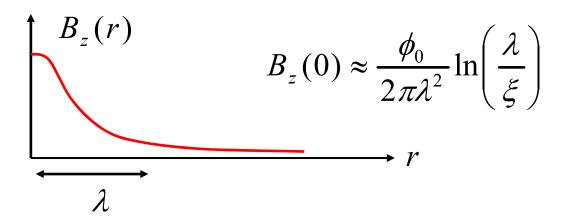
$$\Psi = f(r)e^{i\theta}$$



Структура магнитного поля

$$\kappa >> 1$$
 $r >> \xi$

$$-\Delta \vec{B} + \vec{B} = \phi_0 \delta(\vec{r}) \vec{z}_0$$


$$f(0) = 0$$
 однозначность Ψ

$$\vec{B} = \frac{\phi_0}{2\pi\lambda^2} K_0(r/\lambda) \vec{z}_0$$
 Ф.Макдональда $r >> \lambda$ $\vec{B} \approx \frac{\phi_0 \vec{z}_0}{\sqrt{8\pi r \lambda^3}} e^{-r/\lambda}$

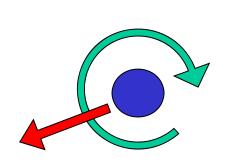
$$r >> \lambda$$
 $\vec{B} \approx \frac{\phi_0 \vec{z}_0}{\sqrt{8\pi r \lambda^3}} e^{-r/\lambda}$

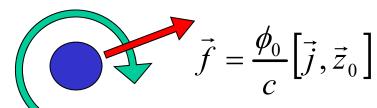
$$\xi << r << \lambda$$
 $\vec{B} \approx \frac{\phi_0 \vec{z}_0}{2\pi \lambda^2} \ln\left(\frac{\lambda}{r}\right)$

Свободная энергия вихревой нити (на ед. длины)

$$\varepsilon \approx \left(\frac{\phi_0}{4\pi\lambda}\right)^2 \left(\ln\left(\frac{\lambda}{\xi}\right) + \gamma\right)$$

Нижнее критическое поле


$$H_{c1} = \frac{4\pi\varepsilon}{\phi_0}$$


Вихри энергетически выгодны при

$$H > H_{c1}$$

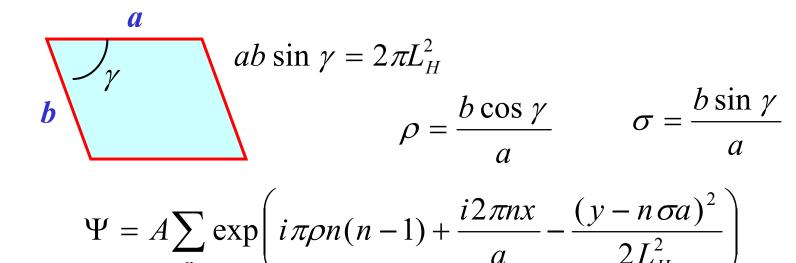
(в бесконечном цилиндре в продольном поле)

Взаимодействие вихрей.

Сила, действующая на вихрь при обтекании его сторонним током \vec{j} (сила Лоренца)

Энергия взаимодействия вихрей

$$F_{12} = \frac{\phi_0^2}{8\pi\lambda^2} K_0 (r_{12}/\lambda) \vec{z}_0$$


Сильные магнитные поля. Задача о верхнем критическом поле.

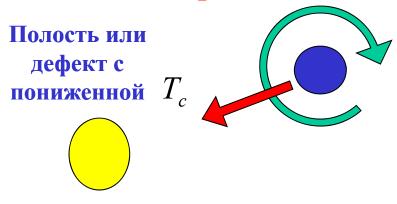
$$-\frac{\hbar^2}{4m}\bigg(\nabla-\frac{2ie}{\hbar c}\,\vec{A}\bigg)^2\Psi=-a\Psi$$
 Энергия E Міп E Мах критической T (H)
$$E_0=\frac{e\hbar H}{2mc}\qquad H_{c2}=\frac{\phi_0}{2\pi\xi^2}$$

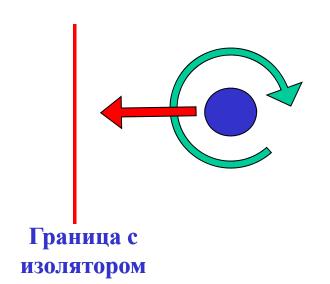
Сверхпроводящий зародыш
$$\Psi = A \exp \left(ikx - \frac{(y - kL_H^2)^2}{2L_H^2}\right)$$
 Магнитная длина $L_H = \sqrt{\frac{\hbar c}{2eH}}$

Вихревая решетка. Задача Абрикосова (1957)

Элементарная ячейка:

$$\rho = 0$$
 $\sigma = 1$


$$\min_{\rho,\sigma} \frac{\left\langle \left| \Psi \right|^4 \right\rangle}{\left\langle \left| \Psi \right|^2 \right\rangle^2} = ?$$

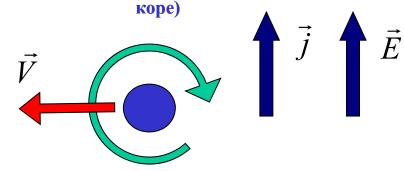

Правильная треугольная

Квадратная решетка:

$$\rho = 0$$
 $\sigma = 1$
 $\rho = 0$
 $\rho = 0$

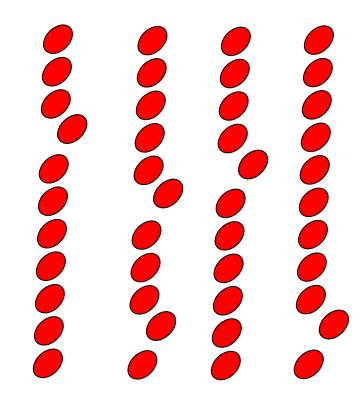
Транспортные свойства вихревого состояния. Vortex matter.

Пиннинг вихрей.



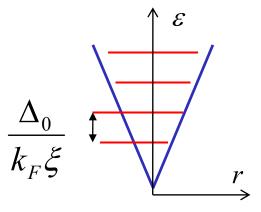
Вязкое течение потока.

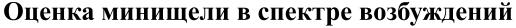
$$\eta \vec{V} = \frac{\phi_0}{c} [\vec{j}, \vec{z}_0] + \vec{F}$$
Вязкость


(диссипация – за счет нормальных токов в

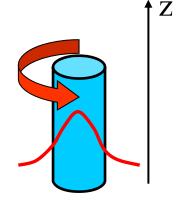
$$\rho = \rho_n \frac{H}{H_{c2}}$$

Крип вихрей.

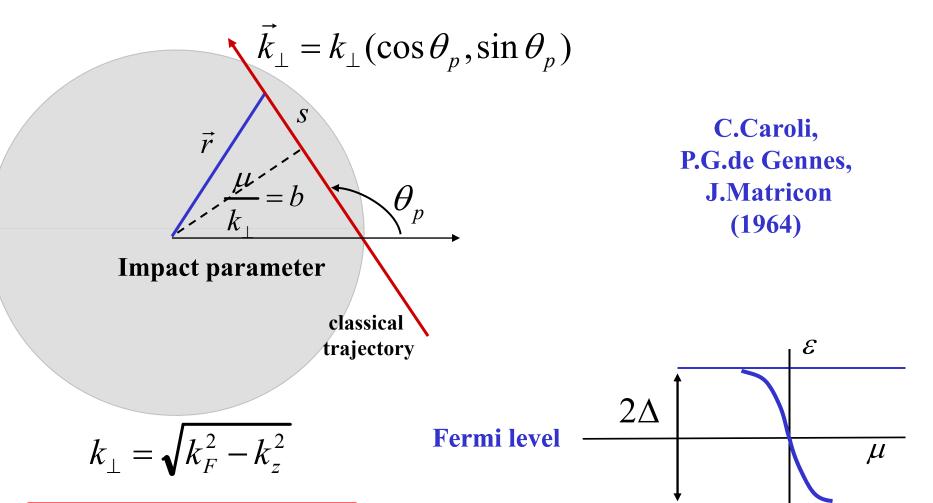

Плавление решетки вихрей.


Электронная структура вихревого состояния

Связанные состояния фермионных возбуждений в коре вихря


Профиль сверхпроводящей щели: потенциальная яма для электронов

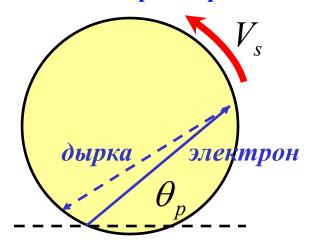
$$\varepsilon_{\min} \sim \frac{\hbar^2}{m\xi^2} \sim \frac{\hbar^2 \Delta_0}{m\hbar v_F \xi} \sim \frac{\Delta_0}{k_F \xi}$$



C.Caroli, P.G.de Gennes, J.Matricon (1964)

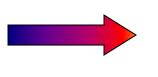
$$\varepsilon_{\mu}(k_r) \approx \frac{\mu \Delta}{k_r \xi}$$

$$k_r = \sqrt{k_F^2 - k_z^2}$$

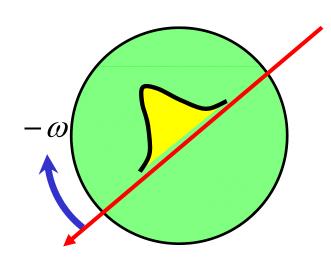

Андреевские уровни квазичастиц в вихрях

$$\varepsilon_{\mu}(k_{\perp}) = -\omega\mu \approx -\frac{\mu\Delta_{0}}{k_{\perp}\xi}$$

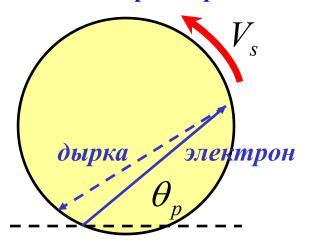
Прецессия классической траектории


Отклонение от точного рассеяния назад при андреевском отражении в коре вихря

$$\delta heta_p \sim rac{V_s}{V_\perp}$$
 $\delta t \sim rac{\xi}{V_E}$

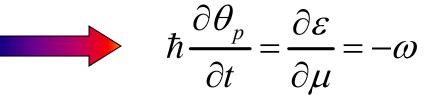

$$\delta t \sim \frac{\xi}{V_F}$$

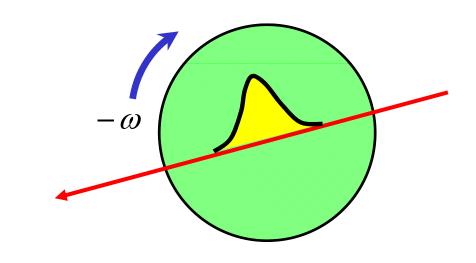
$$rac{\delta heta_p}{\delta t}\simrac{V_sV_F}{\xi V_\perp}\simrac{V_sk_F}{\xi k_\perp}\simrac{\Delta_0}{k_\perp \xi \hbar}\simrac{\omega}{\hbar}$$


$$\hbar \frac{\partial \theta_p}{\partial t} = \frac{\partial \varepsilon}{\partial \mu} = -\omega$$

Частота прецессии

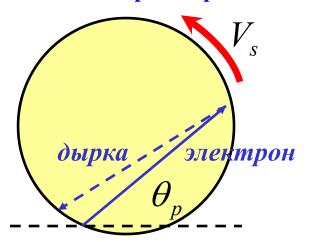
Прецессия классической траектории


Отклонение от точного рассеяния назад при андреевском отражении в коре вихря


$$\delta\theta_p \sim \frac{V_s}{V_\perp}$$
 $\delta t \sim \frac{\xi}{V_E}$

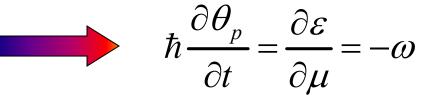
$$\delta t \sim \frac{\xi}{V_F}$$

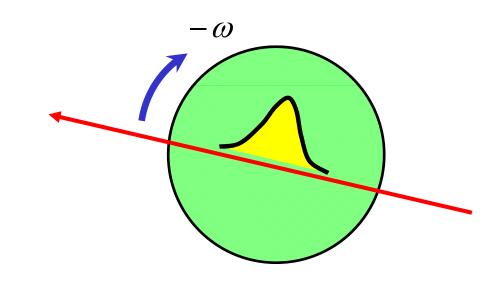
$$rac{\delta heta_p}{\delta t} \sim rac{V_s V_F}{\xi V_\perp} \sim rac{V_s k_F}{\xi k_\perp} \sim rac{\Delta_0}{k_\perp \xi \hbar} \sim rac{\omega}{\hbar}$$



Частота прецессии

Прецессия классической траектории


Отклонение от точного рассеяния назад при андреевском отражении в коре вихря

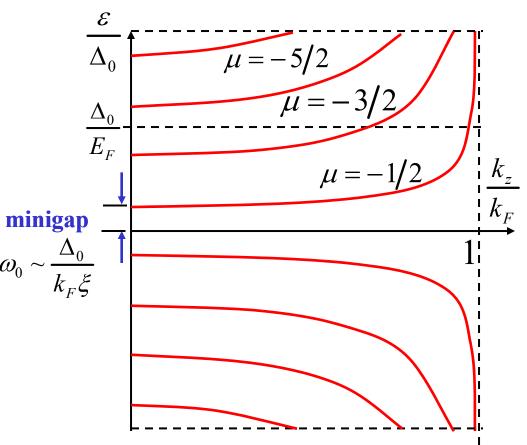

$$\delta\theta_p \sim \frac{V_s}{V_\perp}$$
 $\delta t \sim \frac{\xi}{V_E}$

$$\delta t \sim \frac{\xi}{V_F}$$

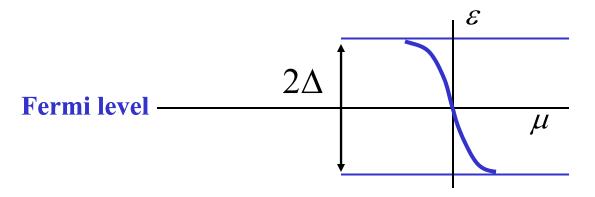
$$rac{\delta heta_p}{\delta t} \sim rac{V_s V_F}{\xi V_\perp} \sim rac{V_s k_F}{\xi k_\perp} \sim rac{\Delta_0}{k_\perp \xi \hbar} \sim rac{\omega}{\hbar}$$

Частота прецессии

Квантовая механика прецессирующих траекторий


$$[\theta_p, \hat{\mu}] = i$$

Спектр квазичастиц в вихре: правило квантования Бора-Зоммерфельда


$$\int_{0}^{2\pi} \mu(\theta_p) d\theta_p = 2\pi (n+\beta)$$

$$\varepsilon_n(k_z) \approx \frac{\Delta_0}{\xi} \left(\frac{n+\beta}{k_\perp} + b \right)$$

Spectrum as a function of the momentum component along the vortex axis

Аномальная спектральная ветвь. Почему она важна?

Strong dependence on the mean free path.

Difference between clean and dirty systems

Local DOS

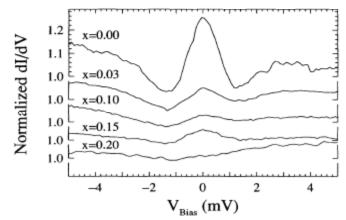
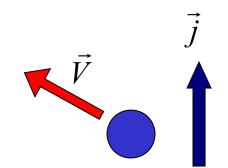
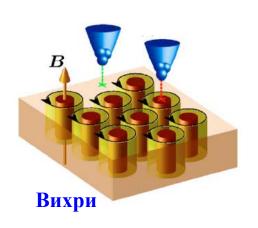



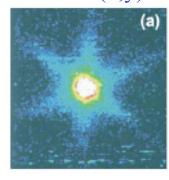
FIG. 3. Spectra taken at the center of a vortex core for various Ta substitutions at 1.3 K and 0.3 T. The spectra are normalized to the differential conductance at high bias.

Ch.Renner et al (1991)

Vortex dynamics


Thermal transport

Thermal conductivity along magnetic field:


$$\kappa(B) = n\kappa_v \propto \kappa_n B/H_{c2}$$
Experiment:

$$\kappa(B) \ll \kappa_n B / H_{c2}$$

Сканирующая туннельная микроскопия/спектроскопия. Эффективный метод исследования природы сверхпроводящего спаривания.

dI/dV(x,y)

Пик плотности состояний в центре вихря

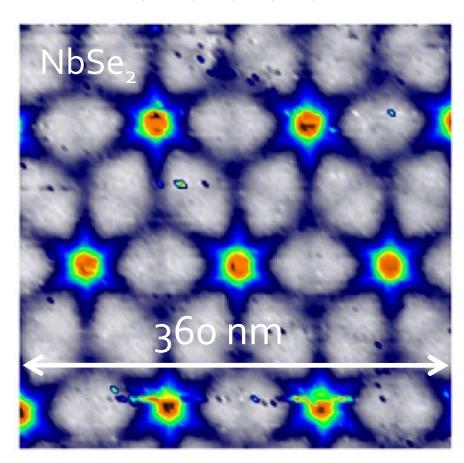
STM наблюдения вихрей. DOS

 $LDOS = \sum_{\lambda} |u_{\lambda}(\vec{r})|^{2} \delta(\varepsilon - \varepsilon_{\lambda})$

PRL 101, 166407 (2008)

PHYSICAL REVIEW LETTERS

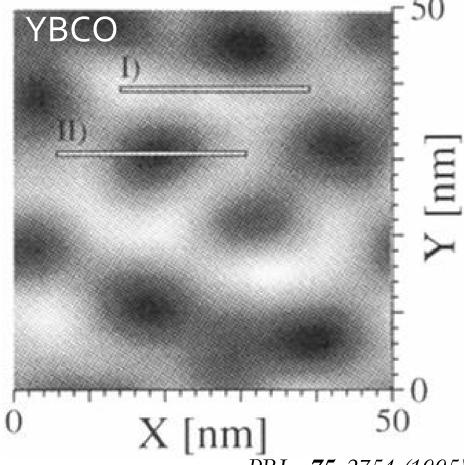
week ending 17 OCTOBER 2008


VOLUME 75, NUMBER 14

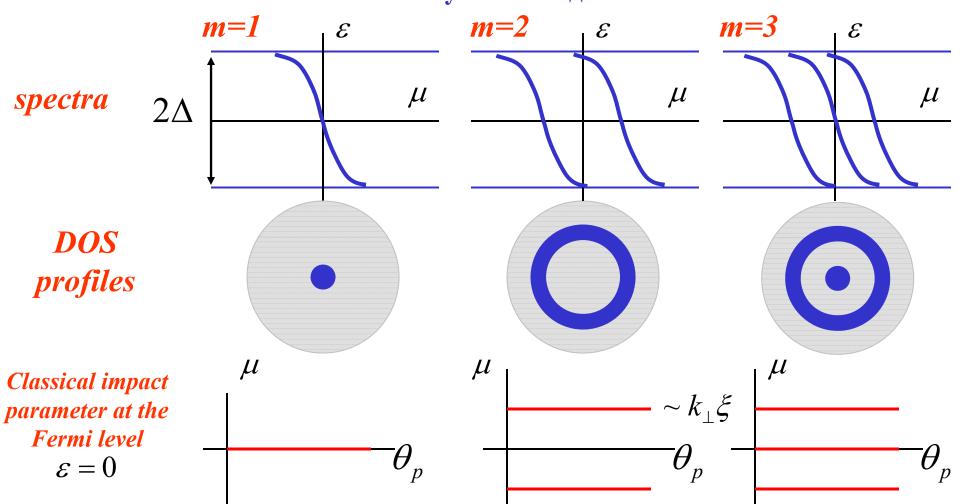
PHYSICAL REVIEW LETTERS

2 OCTOBER 1995

Superconducting Density of States and Vortex Cores of 2H-NbS₂


I. Guillamón, H. Suderow, S. Vieira, L. Cario, P. Diener, and P. Rodière

PRL, **101**, 166407 (2008)


Direct Vortex Lattice Imaging and Tunneling Spectroscopy of Flux Lines on YBa₂Cu₃O_{7-δ}

I. Maggio-Aprile, Ch. Renner, A. Erb, E. Walker, and Ø. Fischer

PRL, 75, 2754 (1995)

Аномальные ветви спектра в многоквантовых вихрях. Теорема о числе нулевых мод.

G.E. Volovik (1993)

D.Rainer, J.A.Sauls, and D.Waxman (1996); Y.Tanaka et al. (1993,1995); S.M.M.Virtanen and M.M.Salomaa (1999); ASM and V.Vinokur (2002); K.Tanaka, I.Robel, B.Janko (2002)

- 1. Найти нижнее критическое поле в сверхпроводнике 2ого рода
 - 2. Найти верхнее критическое поле в сверхпроводнике 2ого рода
 - 3. Найти барьер на вход вихря в сверхпроводник
 - 4. Найти нижнее критическое поле в сверхпроводнике 2ого рода с анизотропным тензором эффективных масс
 - 5. Найти верхнее критическое поле в сверхпроводнике 2ого рода с анизотропным тензором эффективных масс
 - 6. Найти коэффициент вязкости вихря
 - 7. Найти распределение магнитного поля вокруг вихря в тонкой пленке толщиной < лондоновской длины
- 8. Показать что вихрям энергетически выгодно образовать правильную треугольную решетку.
 - 9. Найти энергию границы раздела NS
 - 10. Найти верхнее критическое поле для тонкой пленки при разных ориентациях поля
 - 11. Найти спектр квазичастиц в вихре