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Superfluidity in 1D Bose gas

Properties of superfluid system

Hess-Fairbank effect (analog of Meissner

effect)

Quantized circulation (vortices)

Frictionless flow through capillaries

Metastable currents 

Second sound

Josephson effect

…
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Hess-Fairbank effect and metastable currents
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Predictions for superfluidity in 1D

1D Bose gas with the short-range repulsive

interaction at zero temperature:

ACh, J.-S. Caux, and J. Brand, PRA 80, 043604 (2009);

J. Sibirean Fed. Univ. Math. & Phys. 3, 289 (2010)

Hess-Fairbank effect

Quantized circulation

Metastability of currens 
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If the Bose condensate exists          macroscopic  
occupation of the single-state with wave function 

Bose-Einstein condensation and 
superfluidity
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Superfluid velocity

For weakly interacting gas with BEC 

one can explain the properties of 
superfuid system Bogoliubov (1947)

But in 1D there is no BEC even at T=0!

Order parameter obeying Gross-

Pitaevskii equation

Quantized circulation of superfluid current
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Tonks-gas – Experiments

MPQ Garching

other experiments:

T. Esslinger (Zürich)

W. Phillips (NIST)

D. Weiss (PSU),

M. Köhl (Cambridge), 

effup to 200 

5.5 

7 
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1D Bosons with repulsive d interactions

Ground- and excited-state wavefunctions of 
homogeneous system (Vext=0) are exactly known 
from Bethe ansatz [Lieb, Liniger 1963]

Interaction parameter

Quasicondensate, 

For            , problem is mapped exactly to free Fermi 
gas (Tonks-Girardeau gas) [Girardeau 1960]

1D Bose Gas – Lieb-Liniger model

1D/c n 

GP+Bogoliubov for    1
 
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Bose-Fermi mapping

Fermions Bosons

Cheon and Shigehara PRL 1999

Strong repulsive interactions for bosons have the same effect 
as the Pauli exlusion principle for fermions.

Bosons with strong but finite 
interactions map to spinless 

(spin-polarized) fermions 
with weak short-range 
interactions

“In 1D, there is no distinction between Bosons and Fermions“
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Particle-hole excitations in LL model
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Excitation spectrum for the Lieb-Liniger model

momentum q/kF
momentum q/kF
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umklapp excitation
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Schematic of the excitation spectrum of the 1D Bose gas in a perfectly isotropic

ring. The supercurrent states I lie on the parabola (dotted line). Excitations occur
in the shaded area; the discrete structure of the spectrum is not shown for

simplicity. The blue area represents particle-hole excitations. Motion of the impurity

with respect to the gas causes transitions from the ground state to the states lying
on the straight red line.

Multiparticle excitations in LL model 
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Low-lying excitations in the Lieb-
Liniger model
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Hess-Fairbank effect
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Driving velocity, v
D
/v

C

Quantization of current velocity for 1D repulsive bosons under influence of a moving trap. Shown

are the low-energy excitations of the 1D Bose gas in the moving frame
calculated from the Bethe-ansatz equations for different values of the coupling strength. Inset: 

The velocity of the gas at equilibrium changes abruptly at integer values of driving velocity, since

the gas occupies the state with lowest energy. In particular, the system is at rest when the
driving velocity is less than (Hess-Fairbank effect). Here, and .

min ( ) Dk v ke  
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Dinamic Structure Factor (DSF) 
definition

DSF is defined as the Fourier transform of

the density-density correlations 

Dynamic structure factor contains information

about excitation probabilities
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Dynamic Structure Factor for the 
Tonk„s gas                       
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Drag Force

vF


v


Consider a heavy impurity, moving with constant velocity in the 1D medium of 

particles. By definition

Drag Force as a generalization of the Landau criterion for 

superfluidity: it should be zero to prevent the energy dissipation!

0vF



Superfluidity in 1D Bose gas

2
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Drag Force

The linear response theory yields for the resulting drag force:


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momentum q/kF
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Example:TG gas

Impurity and particles interaction i ( )V x creates the perturbation i ( )V x vt
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Dynamic Structure Factor in RPA

J. Brand and ACh, PRA 72, 033619 (2005); 

ACh and J. Brand, PRA 73 023612 (2006)



Superfluidity in 1D Bose gas

First-order expansion of DSF

J. Brand and ACh, PRA 72, 033619 (2005); 

ACh and J. Brand, PRA 73 023612 (2006)
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Link to the Luttinger Liquid Theory

The Luttiger liquid theory yields for the DSF of spinless repulsive 

bosons in vicinity of the umklapp excitation               and 

Castro Neto et al. (1994); Astrakharchik and Pitaevskii (2004)

0Fkq 2

for and  0 otherwise

1 K  

TG BogoliubovModel-dependent

prefactor A(K)
( ) / 4A K 

1 2 2 2( ) 8 exp( 2 ) / ( )K

cA K K K   
First order

expansion
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DSF with ABACUS
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Caux and Calabrese, 

PRA 74, 031605 (2006)

DSF of the 1D Bose gas for N = 100. Dimensionless values of are shown in 

shades of gray between 0 (white) and 0.7 (black). The full (blue) lines represent the limiting
dispersion relations and the straight (red) line is the line of integration in equation for the 

drag force.

( ,  ) /FS k N e



Superfluidity in 1D Bose gas

The edge exponents
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Imambekov and Glazman, PRL 100, 206805 (2008);
Science 323, 228 (2009)

Within the Lieb-Liniger model the DSF exhibits the following powerlaw

behavior near the borders of the spectrum
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Interpolation formula for DSF

ACh and J. Brand, PRA 79, 043607 (2009)
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Interpolation formula for DSF and ABACUS
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The proposed approximation (blue line) is compared to numerical data from Caux and 

Calabrese (open dots). The dashed red line shows the data convoluted in frequency with a 
Gaussian of width  in order to simulate smearing that was used in

generating the numerical results by Caux and Calabrese.
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Interpolation formula for DSF 
and ABACUS
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Dimensionless drag force
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The dimensionless drag force versus the velocity (relative to ) of the

impurity at various values of the coupling parameter. The solid (blue) lines represent the
force obtained with the approximation formula (open circles) are the numerical data

obtained using ABACUS.
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Dimensionless drag force
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Current decay

1) Consider a ring of 1D Bose gas 
moving with initial velocity        . 
Under the influence of an obstacle 
(“impurity”) with the effective 
strength      , the gas slows down as

2) By observing damped oscillations 

of the Bose gas
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Current decay

Velocity damping of the 1D ring of rotating bosons for 
various values of the coupling parameter 
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1D Bosons in moving shallow lattice

An external potential, created by the optical methods laser beams, 

has only one Fourier componet

The filling factor of the lattice:

- reciprocal lattice vector

Fk n

The lattice potential as a perturbation

(a shallow lattice)!

2

v i
0

( ) | ( ) | ( , ) /dF v k k V k S k kv L


 



Superfluidity in 1D Bose gas

Phase diagrams for shallow lattices

Zero temperature phase diagram for superfluid-

isolator transition of the Bose gas in a moving
shallow lattice: dimensionless drag force

versus the lattice velocity (in units ) and the

interaction strength. The dimensionless values
are represented in shades of gray between zero

(white) and 1.0 (black). The solid (blue) lines

correspond to the DSF borders
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Phase diagrams for shallow lattices

The same diagram, but here the drag force is represented as a
function of velocity and inverse filling factor.
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Predictions for superfluidity in 1D

1D Bose gas with the short-range repulsive

interaction at zero temperature:

ACh, J.-S. Caux, and J. Brand, PRA 80, 043604 (2009)

Hess-Fairbank effect

Quantized circulation

Metastability of currens 





The last statement means that we have no qualitative

criterion of metastability in 1D and have to use

the quantitative criterion (drag force)




