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Outline of Talk:
e Generalized recurrence relations
e Basics of differential Grobner basis technique
® One-loop examples of DGB technique
e DGB for two-loop propagators

e Dimensional recurrences and nonsingular bases of Feynman integrals

e Solution of dimensional recurrences for two-loop sunrise diagram
(arXiv:hep-ph/0603227)
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Most frequently used technique to calculate Feynman diagrams: Integration By Parts method:

F.V. Tkachov, Phys.Lett. 100B (1981) 65;
K.G. Chetyrkin and F.V. Tkachov, Nucl.Phys.192 (1981) 1509.
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differentiate with respect to momentum £, represent scalar products of momenta in terms of

scalar factors standing in the denominator and external momenta:

b = o ([0 + ) —md) — (K — md] — 2},

——=—> Problem of irreducible numerators

O. Tarasov CALC-2006, Dubna, Russia — July 4, 2006 —



Differential Grobner basis technique and dimensional ...

Another approach is possible. Use relation

k
/ dk;. .. / Ak =2 — Sl
Okjp (k] —m2)n. . (ky — m2,)ww

N

differentiate with respect to momentum k, represent tensor integrals emerging after

differentiation in terms of integrals with shifted dimension

Eiu. . kN
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ki —m?2)” ...(kN—m?V)VN
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T(q,0,d") / dky. .. / Ak —; —
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where d*G@ = G42) and 9; = 5 2 A general formula for 7'(¢, 0, d ") was given by

O.T. ,Phys.Rev. D54 . For any L-loop mult| -leg Feynman integral a relation was derived:
G2 = D(9)GY
where D(0) is differential operator of order L.
Examples:  D(0) = 0y + 0, one — loop self — energy
D(0) = 0105 + 0103 + 0,05 two — loop sunrise
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Derivation of T'(q, @, d ™) for one-loop integrals

o - [ Lo s,

n,r %

md/2 (g —p1)? — my

Introduce auxiliary vector a and write
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Instead of tensor integrals we consider integral
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Perform Gaussian integration

/ d’kexpli(Ak? + 2(pk))] = ¢ ( .
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The final result
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Examples of generalized recurrence relations

The one-loop propagator type diagram with massive particles:
7@ (2 2 m2) — Ak, AR b s
V1V2 (q ’ml’m2) o [Z7Td/2] ki,m1" k1—qmz"

In this case D(a) = a1 + ag, Pim = 1/(k? — m?) and therefore

IIS?V22)(q27m%7m3) — _(81+82)I£il)ug(q27m%7m%)
(d) ( 2 2)

_I/lll/l-l-l Vo q m17m2 ( ) ( i 2)

—valy ", 11(q7, My, ma).

We can get another recurrence relation connecting integrals with different d. From the identity:

0
d 125}
/d b (k1 + Q)P PE g | =0,

we obtain:

ddkl I/1+1
yl/[zﬂ-d/Q] <Qk )Pk1,m1pk1—q ma

d
N (5 N Vl) Iiiil)/z — 2 I(d) 1va+1 Vlml]lsll—l V2 + VQ(q - ml)l(l)VQ—i_l
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The integral with the scalar product (gk1 ) can be written in terms of scalar integrals with shifted d:

d?k
/ [ 1 (Qk )Pyl—i—l P]:f_ _ 1/2q2](d+2)

Z7Td/2] kl,ml q,ma I/1-|—]_ V2—|—]_'

Inserting this expression into previous equation we obtain:

d
VlVQQQIif:::%)W-Fl B (5 Vl) I’S?’)/Q + VQI( : —1v2+1 + Vlml]ilzi-l vy V2 (q2 )I(il)l/z-i-l = 0.

In addition to the above relations two more relations can be obtained from the traditional method of integration by

parts:
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At mq1 = 0, mg = m, the relations connecting integrals I,Sil)w (¢%,0, m?) with different d are:

d
V1V2q2liiii%)ug+l(q27O7m2) o (5 o Vl) IIS?I)/Q(q27O7m )+ V2I( ) -1 1/2+1(q O m )

2[(1)V2+1<q27 07 m2) = O,

Jld= 2)(q Om)+1/1[(lzrly2(q2,0,m)+y I(l)u2+1(q 0,m?) = 0.

vil2

The integral Iﬁil)w (q2, 0, m2) Is proportional to the Gauss hypergeometric function :

2

I(d> (q2707m2) — (_1)V1+V2 )

1240 241 d

() 2 m

There are fifteen relations of Gauss between contiguous functions o F :

F(l/l +I/2 —g

% 29 V1,V1+V2—%, q
(m2)V1+V2 )

)T(
:T(5

oFi(a+1,b+1,c+1,x)
In our case a=vy, b=v1+vy—d/2, c=d/2.

Substituting explicit result into IBP relations we find they reproduce only six relations of Gauss. The reason -
parameter c of o /] in IBP relations does not change, therefore all corresponding relations cannot be reproduced.

Generalized recurrence relations give new relations for Feynman integrals!!!

They extend number of recurrency parameters: {v; } — {v;,d}
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Dimensionality relations can be used for:
e calculating tensor integrals
e fi nding bases of master integrals without kinematical singularities
e evaluating master integrals

Generalized recurrence relations connect integrals with different powers of propagators and
also integrals with different dimensionality d. It is easy to write down a big number of
integration by parts and generalized recurrence relations.

How to use these relations? What is the number of master integrals? Is there
minimal number of relations which is enough to reduce all integrals to master
iIntegrals?

There is mathematical theory answering to these questions. This is

Theory of Grobner bases.

The key element of these theory

Buchberger algorithm.
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Differential Grobner basis technique

1. O.V. Tarasov “Reduction of Feynman graph amplitudes to a minimal set of basic integrals” ,
Acta Physica Polonica, v B29 (1998) 2655

2. 0. V. Tarasov, “Computation of Groebner bases for two-loop propagator type integrals,”
Talk at ACAT-2003
Nucl. Instrum. Meth. A 534 (2004) 293 [arXiv:hep-ph/0403253].

Grobner Basis is a nice set of recurrence relations or differential
relations for Feynman integrals allowing to reduce large (in principle
Infinite) number of integrals in terms of finite number of integrals
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Main steps of the algorithm:

e Tensor integrals express in terms of scalar ones with shifted space-time dimension

]/,w... — T/,w...(ap d+)[

e Scalar integrals with dots on lines represent as derivatives w.r.t. masses

/ dok,y. . .dok;
(R = m) (k= p1)? — m3)»

- 1 o o
(11 = DUz = D! A(mi) 8(m3)»

J
y / k. . .d%;
(R = m)((ky = p1)? =
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e For scalar integrals with different number of lines write down generalized recurrence

relations and transform them into a system of differential equations

e Find differential Grobner basis for this overdetermined system One can use Maple,
Mathematica or other computer systems.

e Use relations from the Grobner basis to reduce all possible integrals (i.e. higher order

derivatives) in terms of fi xed fi nite number of basic integrals (i.e. lower order derivatives)

e To reduce integrals GG (d+27) \with shifted space-time dimension use relation:

G2 = D(9,)GY

A very similar technique can be formulated without transformation to differential representation
and introduction of different masses i.e. for integrals with different powers of propagators and
with particular fi xed masses.

In general case Grobner basis for systems of recurrence relations has more parameters
than differential Grobner basis: additionally to masses, powers of propagators must be
kept as parameters. Also number of terms in recurrence relations from the Grobner
basis is more than in differential Grobner basis. It may be more effective for special
kinematical confi gurations.
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Example of DGB for one-loop integrals
kl kl -

The basis for tadpole integral consists of two relations:

o7 — L= 2@ pla+2) _ _2my 215 ()
e sz ’ d

1 d
05 = 0 and T\% = / 47k

om? o @ | w2

The Grobner basis for propagator type integral consists of three relations:

ONi; (d —2)

8]9@3' 2m2

ONij (d — zz)

8pm 2mj

;LD = (3 — d)(Bihig) ST —

d d
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2,15
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d-+2 d
(d - 1>9ij12(,z'}L = 2)‘73j12(,i)j

+ @) T, + (952i) T,

4

. 2
i X

m? + 2]97;]-mz2 + 2pijm§ + 2m§mj,

)\:—p?j—m

iy = —4pi; = —4(ps — p;)*-
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Application of DGB to an integral
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1 [ 0\ (d—2)
2>\ij (’9pij 2m2
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8j 1 8j [ngj(d) aF TgT-(d)]
B £3)L 7 + f30; T\ + (95m3) 1"
(05 f3) + f3tj]Tj(d> + Ti(d>aj?“3-

33'3@']&% = [0;f1 + f1f2]]§f?j + [fufa + O3] T

+[raf1+ (95 f3) + f3tj]Tj(d)

O. Tarasov CALC-2006, Dubna, Russia — July 4, 2006 —



Differential Grobner basis technique and dimensional ...

Vertex type integrals

The GB for 1-loop vertex integrals consists of 3 differential relations:

4— d
Wil D = 2= (Birijn) 1Y

Pij ONijk (d
3,i5k — 3,ijk (d_g) [_j—jl()

N Oyir 2

Pik 8>\ka I(d) 2pjk: a)\’bjk I(d)

_|_ +(d—2 [
Zk 8:%] 2,7k )\jk 8y” 2 jk] ( )
1 (&Mik ONijk  9ii; 5’>\z‘jk> 7@ o OrAijr)

4m% Nik  OYij Nij  Oyir

+2 other relations by cyclic permutations
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One dimensional recurrency relation

d-+2 d d
(d—2)gijils 0 =2Xin L3+ (OXig) I+ (95X I+ (Odijn) I8

Aijk 2(pjk + ik — Piz)(Mims + pi;ma)

2(pik + pij — pjr) (Pjrmi +mim3)
2(pjk + pij — Pik) (MEmy + paxms;)

Zmﬁpik — Qp@-jmi — mepjk — 2DijDikPjk;

2p7; — A(psk + Pjk)Psj + 2(pik — Djk)°.
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Differential Grobner bases for propagator integrals

Differential GB for Jéc?jk integrals consists of 8 relations:

e 3relations for 0;0;, 1 # j
e 3 relations for 8?

: d+2) . : . :
e 1- relation for Jé ;k) in terms of d- dimensional integrals.

: d+2) . : : :
e 1- relation for 8j Jé Z.;.rk) in terms of d dimensional integrals.
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Explicit expressions for the Grobner bases are:

2D;60;0; 5%, = 2hijnd; I\, + 2hyin0; I\ D + 4mioi0nJsY)

(d - 2)

4m? m‘7

d d d d

1
+ 5(3d = 8)(d = 3)dui i

2m? D02 050 = m28in0; Iy, + m2Sind; JsY) . + M3 S On Iy,

zgk

+ (d — 4)Dijd; 52, — (3d — 8)(d — 3)pisu s,

(d —2)

d) (d d) - (d d) (d
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and 2 dimensional recurrency relations:

(d+2) (d) (d) (d) (d)
JB,ijk = fwi@ijg’ijk + wj(?jJ&ijk + wk(?kJ&ijk + w0J37ij,€ + t(),

d
gk

d)

y) + w(gl)J?E,z'jk

gk

+ w,(cl)ﬁk(]é

(9p]§d+2) = wfl)c‘?zJéd + wﬁ”@Jé + 11,

ijk ijk

(k)

where 7, ¢ are tadpole contributions and w; ", w; are ratios of polynomials in momentum

and masses.
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Polynomial coeffi cients are

Dk [¢° — (m; +mj +mg)?)[q® — (m; +mj —my)?]

2

[¢° — (ms —my; + m)?][¢® — (ms —m; —my)?],

Dijk —q¢° + 3¢ (m7 + m2- + mji)

—q¢?[3(mf —|—m —|—mk)—|—2(mm +m? mk+m “m3)] + mY +m +ms

2-(m,é +mk) mi(m + m; )+10m QOi,

—fm?(m‘7 —|—777,k)—m‘7

Alq* + 2¢*(m? —m; —my) + (mF —mg)? + mi(2m? + 2mj — 3m])],

—i(d — 3)[Piji + Pjir + 20kij],

1
—§(d — 3)[miPijk + 2midri; — 2piik),

—(d — 3)[midjik + midri; — 4pijul.
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Differential GB provides the most optimal set of relations for calculating Feynman diagrams
with masses!

In future experiments on LHC, ILC certainly 4 masses : My, 7, M;, My and Mgrsy

should be taken into account and therefore differential GB will be useful tool for calculating

electroweak radiative corrections.

Most effective strategy for calculations will be:

e For integrals with 5,6,... lines use recurrence relations (usually easy to derive) taking into

account equal or zero masses
e Integrals with 4 and less lines reduce to bases of integrals by using differential GB

For integrals with 4 and more masses blind solving sets of IBP relations will be problematic: in
2-loop pure QED calculations progress was achieved by using specialized system Fermat!.

For higher order corrections with a few massive parameters recursive Grobner bases
technique will be more effective.

Differential GB technique and recursive GB technique can be complimentary.
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Grobner basis for two-loop vertex integrals with arbitrary external momenta and masses
was constructed. Huge polynomial expressions were calculated once and forever. In
real calculations one don’t need to manipulate with these polynomials. Only at the fi nal
stage particular values of masses and external momenta should be substituted in

polynomials and their derivatives.
Two — loop vertex type integrals

TAVAY
N
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For particular external kinematics differential Grobner bases essentailly

simplifies.

This is the case at ¢; = ¢35 = 0, q% #+ 0 (needed for [/ — 2 process) and

q% = q% = m?, q?, = 4Am? (needed in on-threshold calculations in
ete” — tt).

Computer implementation of differential Grobner bases technigue for these
processes with arbitray masses inside loop is in progress.
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Bypassing kinematical singularities via other dimensions

Let's consider the diagram:

qi1

qs

By using differential GB Péd) can be expressed in terms of other diagrams:

(4—d) 4 1 d d
B = 5 @ -3E0  a B)L (6)
3
d d d
—R\(, 3, 83) + R\ (a3, 3, ¢3) + RS (B, &, 4D
(4—d)

d d
+— (PY¢2, 2, 62) + PiV (g2, 42, ¢3))

If we take the limit q% — 0 we discover kinematical singularity
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Two — loop vertex type integrals
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Key idea to solve the problem : choose another bases of master integrals: Transform d
dimensional integrals to d — 2n or d + 2n dimensional integrals depending on the type of
singularity
A(d — 4)%(d — 5)(3d — 14) P\ =
—<3d— 14)(d — 6)g3 (@i Ps 2 (¢, 43, 43) + a4 Ps 2 (&3, 43, ¢
—4)](2(d - 5)a3R" (@, 43, a3) + (3d — 14) IS (3
(d—5)+ (g — q§>< 0](2(d - 5)GRY (3, i3, 6}) + (3d — 14) IS (¢}
+2¢3(d — 6)g3¢3 [R5 )(q2,q§,q3) + Ré (3, 63) + RS, 63 &
+((5d — 24)(q3 + ¢3) — 2(d — 5)g})[2(d — 5)B R\ P (a3, i3, i3) + (3d — 14)J{" 2 (¢}
—(3d — 14)(d - 5)q 21“ ) 231"V (ed) + 2631 (¢
+(q —|—q —93)I(d_ )(93) —2q1q§V( N )(917%7 )]

)
)
)
)
)

)
)
)
)
)
)

where A = ¢ + ¢5 + ¢35 — 2¢395 — 243745 — 24343

Singular denominator disappear, now we can set q§ = 0
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Atg: =0, Péd_Q) terms drops out. By using relations

3A(3d — 8)(3d — 4)(d — VR (4}, 43, ¢3) = 2Q3[4(d — 3)A

E;l ;3 R(d) (Q1 Q2= (13)

d
+(3d — 8)23( — 2)? — B (s + P — Pdd — 43¢ +5¢1)) 1SV (63)
+(3d — 8)[2¢2(¢2 — ) — (gt — 43¢ + 5% — B % + 3¢ IS (¢2)

d
+(d - DEBRY (2, 3, 3) + 23R E (A + G qd)

3(3d — 8)(d — 2)AR (2,42, ¢2) = (A + Q) (3d — 8)J5(¢2)

+(A + ¢3Q1)(3d — 8)J3(¢3) — 262[(d — 3)A + (d — H)F BB\ (¢, 42, ¢2)
d

— B33 (d—4)Qs/(d— 3R (2,63, ¢3),

with Q1 = ¢35 + ¢3 — ¢3, Q2 = ¢ + ¢5 — ¢35, Q3 = ¢% + ¢5 — g we obtain:

(d—5)(¢ — )P, 3,0) = 3RV (¢3,0,¢2) — 3RSV (43,0, ¢2).

We assumed that dimensional regularization regularize IR and UV singularities,

dPky...dPky
D;...Dyn

= finite, D=d,d—2,d—14,...

q;=0

IR singularities show up as additional polesin ¢ = (4 — d)/2,i.e. 1/e%,...
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The algorithm was used to fi nd on-shell value of different three point Green functions in QCD.
The general structure of the result for diagram was

Q43 43,43)
(g1)*(a3)°(q3)cAc

In all cases after transforming to the new basis all qu disappeared from denominators.

G —

Sometimes several shifts were needed.

No asymptotic expansions with complicated strategy of regions were needed!
The results were in complete agreement with the known calculations by A. Davydychev and P.
Osland.

Since there are no factors qu in denominators

One can expect numerical stability in the vicinity qjg- = 0.

Similar effect one can fi nd at the one-loop level in the algorithm by Ansgar Denner and Stefan
Dittmaier. Special choice of basis integrals prevent appearance spurious singular Gram
determinants.
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By using the limiting procedure for arbitrary d and one zero momentum we obtained diagram

by diagram agreement in calculation of two-loop vertex < V'V A > correlator with results by
D.R.T. Jones, J.P.Leveille, Nucl. Phys. B206 (1982) 473.
For the case when q% — q% = ( we obtained diagram by diagram agreement for two-loop

ghost-gluon and three-gluon vertices with the € expanded result by A.Davydychev and
P.Osland, Phys.Rev. D61 (1998) 1397.
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Dimensional recurrences can be used to avoid kinematical singularities directly in the
: : d) .
differential GB. In case of Jé%k integrals:

1ﬂd—n2§U$ﬁ*=—%&y%+nﬁwm?+&d—ﬂf—4ﬁ»@é2k
—|—16mk(q — mk)ak 3 Z]k + 167771?((]2 — m?)ajJS(ffii?y'k
—2((7d — 17)¢* + (d — 3)(m} — 5m3 — 5m32))Jy, — 2(d — 2)T, T,

+(d—2)(1 — 3 TOTD | (g — 2)(1 — 32T,

mz mz

+2m§(q2 — 3m?2 — m? + Smi)ﬁj,]éi)jk — 4m3 (g — mi)akjécgk
+2((d = 2)¢” + (d = 8)(m} + m — 2m)) Ty,
9 — 2T — (= E T T,

J
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e There is no Gram determinant in the denominators at the r.h.s !l

e The number of terms at the right hand sides of the above relations decreased: - 24 in the
fi rst case and - 40 in the second case.

e Reduction to the generic dimension d can be done by using relations between d — 2 and d

dimensional integrals given at the fi rst transparencies.

e Differential GB transforming d dimensional into d — 2 dimensional integrals can be derived

for any type of integrals!
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Difference and differential equations for the sunrise integral

N

The generic two-loop self-energy type diagram in d dimensional Minkowski space with three
equal mass propagators is given by the integral:

ICIo / / ddklddkg 1

3 y V2, 3 ’L7Td/2 m2)y1<<k.1 _ k2)2 _ m2)1/2<<k2 _ q)2 . m2)’/3 J
For integer values of v; the integrals (35) can be expressed in terms of only three basis
integrals J.” (1,1, 1), J\?(2,1,1) and J?(0,1,1) = (T\” (m?))? where

d
@2y [ &k 1 AT
T <m)_/[m§]k2—m2__r<1_§>m .
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The relation connecting d — 2 and d dimensional integrals Jéd)(yl, Vo, U3):

B (v, va,v8) = iy + 1,15 + 1, 1)

+ V1V3J§d)(V1 + 1,0, v34+ 1) + V2V3J3(d)(ul, o+ 1,v3+1).
Aty =15 =13 = land 1, = 2, v, = 3 = 1 we obtain two equations. Use the
recurrence relations to simplify their r.h.s. Shifting d — d + 2 give two more relations.
They are used to exclude Jéd) (2,1, 1) from one of the relations, so that we obtain a difference
equation for the master integral J?Ed)(l, 1,1) = J?Ed):
12:*(d+1)(d — 1)(3d + 4)(3d +2)  J{*Y
—4m*(1 — 32)(1 — 422 + 92%)z(d — 1)d
—4mP(1 — 2)*(1 — 92)?

= 32[(2 + 1)(272% + 182 — 1)d® — 42(1 + 92)d — 482%|m>**?

where
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The integral Jg(d) satisfi es also a second order differential equation. Taking the second

derivative of Jéd) with respect to mass gives
d2
dm? dm?

By using recurrence relations integrals on the r.h.s can be reduced to the same three basis

J9(1,1,1) = 6J89(2,2,1) + 6J59(3,1,1).

integrals. Using

J57(2,1,1) = Ji0(1,1,1)

d
dm?
we obtain:
dJsY

dz

d
N

2(1 — 2)(1 —92)z T3

— 2[92°(d — 4) + 10z(d — 2) + 8 — 3d]

d
F(d=3)[(d+4) + d— 4JD = 12:m =0T (2 - 5) |

The differential equation were used to fi nd the momentum dependence of arbitrary periodic
constants in the solution of the difference equation.
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Solution of the dimensional recurrency

Difference equation is a second order inhomogeneous equation with polynomial coeffi cients in
d. The full solution of this equation is given by:

I = B9+ @ (d) 5D + @y(d) TSy,

3p

where Jéz) is a particular solution of the equation, J?EZ), Jég) is a fundamental system of

solutions of the associated homogeneous equation and w,(d), wy(d) are arbitrary periodic
functions of d satisfying relations:

Wo(d + 2) = We(d), wy(d + 2) = wy(d).

The order of the polynomials in d of the associated homogeneous difference equation can be
reduced by making the substitution

%) j(d)

&)
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—(d
The homogeneous equation for J; ) takes the simpler form

162° F(d+4)
2Tm8(1 — 2)2(1 — 92)2 ~*?
2(1 —32)(1 — 422 + 92*)2d —(442y (3d —2)(3d — 4) =)

O 2TmA(1 — 2)2(1 — 92)2 Ts 36 /3

Putting

d=2k—2, y®=p* 7é2k_25),

we transform equation to a standard form

Ap* Y™ 1 (B + C k)py™™ — (a + k)(8 + k)y™ = 0.

1623 B 4e (1 —32)(1 — 422 + 92%)z
27Tm8(1 — 2)2(1 — 92)2’ 27 mA(l—2)2(1 —92)2
1

A

C

and p is for the time being, an arbitrary constant.
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In order to get homogeneous equation into a more convenient form, we will defi ne three
parameters p, x and 7y by the equations

Ap* =z(1—2x), Bp=v—(a+B+ 1)z, Cp=1-2z.

These have the solution

1-2Cp (1—92)° q*(q° — 9m?)?
T e e p—
2 (1+32)3 (g% 4+ 3m?2)3

1 2Tmf(1-2)%(1-92)°  27m*(¢® — m?)%(¢® — 9m?)?
VIA+CZ 4 (14323 4 (¢ + 3m?)? |

v Bp+(a+8+1)z=—¢,
and the equation can accordingly be written in the form

2(1 = 2)y® + [(1 = 20)k + 7 — (a + B+ Daly®™ — (a + k)(B+ k)y™ = 0.
it can be transformed to the equation with linear in k coeffi cients by rescaling Qk)

y® =T(a+k)F®  or y® =T1(3+ k)",
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The fundamental system of solutions of homogeneous equation consist of two functions. In the
case when |1 — x| < 1 (large q*) the solutions are

(—1)* l(a+ k)3 + k)
MNa+B8—-—v+k+1)

I = k
(&J(Zﬁ_a:)vk+ )zFM—Oz,v—ﬁﬁ—@—ﬁ“_’“51_5’3)'

oFila+k,B+kat+B-—v+k+1;1—2x),

Once we know the solutions of the homogeneous equation a particular solution Jéz) can be

obtained by using Lagrange’s method of variation of parameters.

The argument of the Gauss’ hypergeometric function is related to the maximum of the Kibble
cubic form:

d(s,t,u) = stu — (s +t +uw)m?*(m? + ¢*) + 2m*(m* + 3¢?),

provided that s + ¢ + u = ¢* 4+ 3m?. The maximal value ®,ax = 5= ¢*(¢* — 9Im?)? occurs
ats =1t =u= % (¢* + 3m?) and we see that the kinematical variable (1 ) can be written as

O(s,t,u)

‘CE: :::l 2 2y -
- s=t=u=3 (¢*+3m?)

This observation may be useful in fi nding the characteristic variable in the general mass case.
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Explicit analytic expression for J?Ed)

To fi nd the full solution we assume that q2 is large. The solution of the associated
homogeneous difference equation will be of the form

L= DT (E-2)r ()

2 3 2 3 2

2

GOy

2

The arbitrary periodic functions w1 (z) and ws(2) can be determined either from the d — o
asymptotics or using the differential equation. From differential equation we obtain two simple
equations

dwi(2)
dz

2(1432)(1 — 92) + 3(1 — 2)ws(z) = 0.

2(1 — 2)(1 4+ 32)(1 — 92) —2(1+ 62 — 392%)w;(2) = 0,
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Solutions of equations
k12%(1 + 32)? KoZ
T— 02— ¥ T Trsya—one
Integ([;ltion constants k1, ko we fi x from the fi rst two terms of the large momentum expansion
of J5

wy(z) = (

I'(—=1+2)P(1 —¢) 5.  OI%(—¢) _
2I2(1 4+ &)T'(3 — 3¢) (=27 + (3 — 2) (=2) ] +OE),

The application of Lagrange’s method of fi nding a particular solution gives

J?Ed) — m2—45F2(1 4+ E:‘) [

2d=6 d 1 d—1 d
J?E;l): SZm >2F2 (1__) F2 (17_ —7§7d_17\/2R7R)7

(1++/2 2 2" 2
R = vz

(1+v2)?*

and F5 is the Appell function:

(0. @)

by e (@en(B)k(8)i 2t Y
F2<&7ﬁ7677777x7y)_k’lz:0 <7)k(7/)l Ll )

x| + |y| < 1.
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Collecting all contributions, setting d = 4 — 2¢, applying Euler transformation for the fi rst o F}
function we obtain

g _ 612 (—e)[?(1 +¢e)(—2)%(1 — 2)*~% nl 25 27(1 — 2)?%2
3 mA—2T(3 — 2¢)(1 + 3z) o (1+32)3

F@4+2@Wu—fx—@%u—9@%%_F 3,25 27(1 — 2)22
m4=2T(3 — 3e)z(1 + 32) e (1+32)8

32m2—4€

1 3
+ QFQ(—1—|—€)FQ(17575—572—573—25;\/2R,R>.

(1+v/2)

The use of dimensional recurrences was essential to obtain this result!
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Integral representation convenient for the € expansion of 5F] :

F : % ; 27(1 — z)Qz]

2—g; (1+32)°

(1432 TI'(2-¢) Y du
S TG b Vo

Integral representation for Appell’s F5 function

(1 — w)(1 — wu)(1 — zu)]2

3 1
F, (1,——5,—,3—25,2—57}%,\/2}%)

2 2
21°(3 —25) Lode[t(1 =)z e l,e; 4tz+1—2—1L
Se >2F1[

(——5) dzt+1—2+ L 2—¢: Mz+1—2z+1L

L=+/(42t — 1 —2)2 — 4z.

This integral representation can be used for the € expansion of the F5 function.
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)

: : d :
The imaginary part of J?S on the cut comes from the two o F} functions:

1 . 2
29 29 1-9
ImJéd) — : ( Z)

—4z w2\/3mm?2 % [(1 — 92)2] e =
T(2—e)T(2—¢)(1+32) | 10822 o

5 2—¢; (1+32)°

At d = 4 for the imaginary part we verify the known result.

Using explicit formula we fi nd the on-threshold value of the integral:

T +¢e2—¢; 3

) B T2 (e) 1,-14+2,2—¢; 1
SR (1—e)(1—2e)°?

"1 +¢) { 3+5’+%_8”+0U}.

1—-e)(1—2) | 22 4 8 /3

The analytic expression was not known. The fi rst several terms in the € expansion are in
agreement with the result of Davydychev and Smirnov.
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Several remarks about solution of dimensional recurrency
e For the first time analytic expression for the sunrise diagram was found

e The differential equation is Heun equation with four regular singular points,

located at q2 = 0, m2, 9m2, 00. In general reduction of the Heun equation

to the hypergeometric equation is a complicated mathematical problem

7@

e The associated homogeneous difference equation for J5 * is simple, and
admits reduction to a hypergeometric type of equation with linear

coefficients.

e This is a general situation. Kinematical singularities of Feynman integrals
are located on complicated manifolds. In the case when the differential
equations are of the first order there are no problems to solve them.
However, to solve a second or higher order differential equations in general

will be a problem because of complicated structure of the kinematical
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singularities.

e Singularities of Feynman integrals are poles in 1/(d — p) with rational p.

This has been used for an evident rescaling of the integral by ratios of I
functions which allowed us to reduce the order of the polynomial coefficients

In the difference equation.
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Summary and perspectives

e The Grobner basis technique together with dimensional recurrences
provides selfcontained mathematical approach for calculating Feynman

diagrams.

® The proposed technique can be used for evaluating in the Standard Model

vertex and box diagrams with 4-5 mass scales.

e Dimensional recurrences can be used for analytical as well as nhumerical

evaluation of master integrals.
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