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The ”Optical Theorem” connects the cross section and the Green
Function:

R =
σttX
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=
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t

m2
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Z
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Problems at Threshold

Top-quark velocity v is small.

Usual perturbation theory breaks down.

Use of non-relativistic approach
⇒ the expansion has to be done in αS and v .

So: terms of the order
(

αS
v

)k
have to be summed up for all

powers k.

R = v
∑
k

(αS

v

)k
{ 1 (LO);

αS , v (NLO);

α2
S , αSv , v2 (NNLO);

α3
S , α

2
Sv , αSv2, v3 (NNNLO)}
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Higher order calculations

The expansion of v and αs is done systematically in the
framework of effective theories

Hard and soft modes integrated out
(QCD - NRQCD - PNRQCD) [in analogy to PNRQED → Grozin’s talk]

PNRQCD Lagrangian:

Leff = ψ†(x)

(
i∂0 +

∂2

2m

)
ψ(x) + χ†(x)

(
i∂0 − ∂2

2m

)
χ(x)

+

∫
d3r

[
ψ†ψ

]
(x + r ) V (r)

[
χ†χ

]
(x) + Lus
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The potentials in PNRQCD

In PNRQCD the tt̄ interactions are described by potentials.

Ṽ (q) = −CC (αS)
4πCFαS

q2
−C1/m(αS)

2π2CFα
2
S

mt |q|

+[Cδ(αS) + CS(αS)]
πCFαS

m2
t

+Cp(αS)
CFαSp2

m2
t q

2

Coulomb potential

1/r2 potential

Delta potential

Spin dependent part

p2/q2 potential

Kinetic correction



Introduction Calculation Results Outlook

The potentials in PNRQCD

In PNRQCD the tt̄ interactions are described by potentials.
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Perturbation Theory

Calculation of the Green function in perturbation theory:
Perturbative treatment of the potentials:

δV = δV1 + δV2 + δV3 + ...

Ĝ = Ĝ0 − Ĝ0δV1Ĝ0 − Ĝ0δV2Ĝ0 + Ĝ0δV1Ĝ0δV1Ĝ0

− Ĝ0δV3Ĝ0 + 2Ĝ0δV1Ĝ0δV2Ĝ0 − Ĝ0δV1Ĝ0δV1Ĝ0δV1Ĝ0 + ...

Coulomb corrections completed [M.Beneke,Y.Kiyo,K.S. ’05].

Single insertions of 3rd order Non-Coulomb-Potentials.

Double insertions of 2nd order Non-Coulomb-Potentials and
1st order Coulomb-Potential.
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Insertion of the potentials creates divergencies.

Other divergencies coming from hard vertex corrections.

Final result is finite.

We need order ε-correction to the potentials.
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Example: Insertion of 1/r 2-potential

Strategy:

Identify the divergent structure.

Divide the potential insertion into diagrams with the different
divergent structures.

Calculated by Feynman parameters and IBP relations.

Origami diagram has to be expanded in ε, the second one is finite and can be done in

4 dimensions.
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Example: Insertion of 1/r 2-potential (Origami diagram)

=

Z 4Y
i=1

dd−1pi

(2π)d−1
G̃

(1̄)
C (p1, p2)

1

[(p2 − p3)
2]

1
2
+ε

(2π)d−1δ(d−1)(p3 − p4)

p2
4/m − E

=

Z 2Y
i=1

dpi

(2π)
G̃

(1̄)
C (p1, p2)

"
1

ε
+ F 0(p2) + F 1(p2)ε + ...

#

Identify source of singularity.

Calculate divergent subdiagram in DR and expand in ε.

Calculate the remaining parts in 4 dimensions.
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Extracting Energy Levels and Wave Functions

One can get energy levels and wave functions from the
E → E0 poles of the Green function.

Comparison of expanded perturbatively calculated Green
function with

|φn(0)|2(1 + αS f1 + α2
S f2 + α3

S f3)

E0(1 + αSe1 + α2
Se2 + α3

Se3)− (E + iΓt)

expanded around the same pole gives the corrections.
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R =
σttX

σµ+µ−
=

18πe2
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m2
t

(1 + aZ ) Im G (0, 0;E + iΓt).

Coulomb part:
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Corrections to the Toponium Energy Levels

Coulomb corrections for arbitrary quantum number n have
been calculated [M.Beneke,Y.Kiyo,K.S. ’05].

Non-Coulomb corrections have been calculated
[A.Penin,V.A.Smirnov,M.Steinhauser ’05].

Corrections to the toponium 1S mass (ground state):

Mtt̄(1S) = (350+0.85LO+0.05NLO−0.13N2LO+0.01N3LO)GeV

= 350.78GeV
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Status and Outlook

Some order ε corrections to the potential are not yet known.

Potential insertions almost completed.

Calculation of the ultrasoft corrections is in progress.

EW corrections related to top decay [A.Hoang, C.Reisser ’04,’06]

Non-inclusive quantities (cuts, distributions, asymmetries)
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