Charge asymmetry in $\gamma\gamma \rightarrow \mu^{+}\mu^{-} + \nu$'s $\gamma\gamma \rightarrow W^{\pm}\mu^{\mp} + \nu$'s with polarized photons

D. A. Anipko, I. F. Ginzburg, K.A. Kanishev, A. V. Pak Sobolev Inst. of Mathematics, SB RAS and Novosibirsk State University Novosibirsk

> M. Cannoni, O. Panella Istituto Nazionale di Fisica Nucleare, Perugia, Italy

Diagrams for $\gamma\gamma \to \mu^+\mu^-\nu_\mu\bar{\nu}_\mu$ $(\gamma\gamma \to \tau\mu\nu\nu)$

- 19 tree level diagrams fall into 5 classes:
- (1) 3 double-resonant diagrams (DRD)

$$\sigma_d \sim (\alpha^2/M_W^2) Br^2(W \rightarrow \mu\nu)$$

(2) 4 single-resonant diagrams (SRD)

$$\sigma_{sW} \sim (\alpha^3/M_W^2)Br(W \to \mu\nu) \sim \sigma_d\alpha/Br(W \to \mu\nu)$$

- (3) 4 single resonant diagrams with ν exchange in t-channel $\sigma_{s\mu} \sim (\alpha^3/s) Br(W \to \mu \nu)$
- (4) 6 diagrams with radiation of Z boson $\sigma_Z \sim (\alpha^3/s) Br(Z \to \nu \bar{\nu})$
- (5) 2 multi-peripheral non-resonant diagrams $\sigma_n \sim \alpha^4/M_W^2$

Numerically:

- (3),(4) and (5) are negligible in comparison with DRD (1).
- SRD (2) contribution itself is about 5% of DRD (1).
- The interference of SRD with DRD is destructive.
- DRD contribution covers almost entire 98.7 % cross section.

(The $\gamma\gamma \to W^+\mu^-\bar{\nu}$ is described by only first 3 groups of diagrams.)

• Charge asymmetry in processes like

$$\gamma\gamma \to \mu^+\mu^-\nu_\mu \bar{\nu}_\mu$$
, $\gamma\gamma \to W^{\pm}\mu^{\mp}\nu$

with polarized photons, appears due to P nonconservation in the SM (photon polarization is "transformed" into asymmetry between distributions of μ^+ and μ^-).

Difference between distributions of positive and negative muons in $\gamma_{\lambda_1}\gamma_{\lambda_2} \to W\mu\nu$.

Both photons are left polarized: $\gamma_-\gamma_-$.

Negative μ distribution.

Positive μ distribution.

First photon is left polarized, second is right polarized: $\gamma - \gamma_+$.

Negative μ distribution.

Positive μ distribution.

Note: the distributions are mirror-symmetric.

We used CompHEP/CalcHEP for calculations.

For each observed particle:

ullet Cut in escape angle heta

$$\pi - \theta_0 > \theta > \theta_0$$
 with $\theta_0 = 10 \ mrad$,

• Cut in transverse momentum p_{\perp} :

$$p_{\perp} > p_{\perp\mu}^c$$
 with $p_{\perp\mu}^c \ge 10$ GeV.

These simultaneous cuts allow many backgrounds to be eliminated.

The number of generated events = anticipated annual number $\simeq 10^6$ events.

For $\gamma\gamma \to W^{\pm}\mu^{\pm} + \nu$'s processes we considered normalized mean values of longitudinal p_{\parallel}^{\mp} and transverse p_{\perp}^{\mp} momenta of muons:

$$P_L^{\pm} = \frac{\int p_{\parallel}^{\pm} d\sigma}{E_{\gamma max} \int d\sigma}, \quad P_T^{\pm} = \frac{\int p_{\perp}^{\pm} d\sigma}{E_{\gamma max} \int d\sigma},$$

and taken their relative difference as a measure of charge asymmetry:

$$\Delta_L = \frac{P_{L+}^- - P_{L+}^+}{P_{L+}^- + P_{L+}^+}, \quad \Delta_T = \frac{P_{T+}^- - P_{T+}^+}{P_{T+}^- + P_{T+}^+}.$$

- Quantities for $\gamma_+\gamma_+$ and $\gamma_-\gamma_+$ can be obtained with $\mu^+\leftrightarrow\mu^-$ exchange for P_N and with sign change for Δ_N .
- ullet Monte Carlo simulations have statistical uncertainty $\delta P_{L,T}, \delta \Delta_{L,T}$ similar to experimental.

$\gamma_{\lambda_1}\gamma_{\lambda_2}$	N	$\begin{array}{c c} P_N^- \\ \delta P_N^- \end{array}$	$\begin{array}{c c} P_N^+ \\ \delta P_N^+ \end{array}$	$egin{array}{c} \Delta_N \ \delta \Delta_N \end{array}$
	L	0.599	0.170	0.557
		0.35%	0.37%	0.37%
$\gamma - \gamma - \gamma$	Т	0.338	0.150	0.386
		0.96%	0.42%	0.99%
	L	0.209	0.556	-0.454
		0.82%	0.34%	0.52%
$\gamma + \gamma$	T	0.159	0.249	-0.220
		0.72%	0.82%	2.52%

Charge asymmetry quantities and statistical uncertainties for $\gamma_{\lambda_1}\gamma_{\lambda_2} \to W \mu \nu$.

We also studied inaccuracy of DRD approximation for various asymmetries.

• Inaccuracy of DRD approximation in $\gamma\gamma \to W\mu\nu$ for $P_{L,T}$ and $\Delta_{L,T}$ quantities \lesssim 5%.

Cascade process

Two muons (or $W+\mu$) with missing transverse momentum can appear via processes

$$\gamma\gamma \to \tau^+\mu^-\nu_{\tau}\bar{\nu}_{\mu} (\gamma\gamma \to W\tau\nu)$$

followed by $au o \mu \nu_\mu \nu_\tau$.

Total event rate enhancement:

- for $\gamma \gamma \to W \mu + \nu' s$: $B \equiv Br(\tau \to \mu \nu \nu) = 17\%$
- for $\gamma \gamma \to \mu^+ \mu^- + \nu' s$: $2B + B^2 \approx 37 \%$.

Calculation of such processes (6 or more final particles) is a computationally challenging task. Reasonable approximations provide high enough accuracy for our purposes.

- Inaccuracy of DRD for $\gamma\gamma \to W\tau\nu \to W\mu\nu\nu\nu \lesssim 0.17 \cdot 5\% = 0.85\%$.
- ullet In the frame of DRD each au is produced from W decay.
- Therefore τ polarisation is known and we are allowed to *convolute* generated distribution of τ in $\gamma\gamma \to W\tau\nu$ with distribution of μ in τ decay:

$$f = \frac{4}{\pi E_{\tau} m_{\tau}^{4}} \left[(3m_{\tau}^{2} - 4pk)pk + ks \cdot m_{\tau} (4pk - 3m_{\tau}^{2}) \right] d\Gamma$$

Here k and p are 4-momenta of μ and τ .

Spin of
$$\tau$$
: $\pm s/2$, $s = \frac{1}{\sqrt{2}} \left(\frac{p_{\nu} m_{\tau}}{(p p_{\nu})} - \frac{p}{m_{\tau}} \right)' \left\{ \begin{array}{l} + & \text{for } \tau^{+}, \\ - & \text{for } \tau^{-}. \end{array} \right.$

Essential feature

Decay $\tau \to \mu \nu_{\tau} \nu_{\mu}$ involves 3 particles, the effective mass of the $\nu \bar{\nu}$ system $m_{\nu\nu}$ varies from 0 to m_{τ} . Hence, the μ distribution is contracted in comparison with τ distribution: $E_{\mu} \leq E_{\tau} (1 - m_{\nu\nu}^2/m_{\tau}^2)$.

Distributions of μ in cascade process

Entire distributions of μ

- ullet Cascade process changes μ distribution only at small momenta.
- Asymmetry parameters decrease by $\lesssim 3\%$

	$\gamma_{\lambda_1}\gamma_{\lambda_2}$	N	P_N^-	P_N^+	Δ_N
	$\gamma\gamma$	L	0.548	0.164	0.539
		T	0.311	0.142	0.374
Ī	$\gamma_+\gamma$	L	0.199	0.513	-0.440
	·	T	0.152	0.232	-0.207

Total charge asymmetry quantities.

• Applied cuts reduce the contribution of cascade process stronger than the main contribution \Rightarrow reduce inaccuracy of DRD approximation in the description of charge asymmetry with growth of $p^c_{\parallel u}$.

Dependence on cut $p_{\perp\mu}^c$

New Physics is expected to be switched on at large transverse momenta. We study the dependence of asymmetry on the cut $p_{\perp u}^c$.

blue –
$$\gamma_-\gamma_-$$
, green – $\gamma_-\gamma_+$ and $\gamma_+\gamma_-$, red – $\gamma_+\gamma_+$

Correlative asymmetry

- Most results are presented for *global asymmetry* difference between μ^+ and μ^- distributions in $\gamma\gamma \to W^\pm\mu^\pm + \nu$'s processes. It shows main features of studied effect demanding less CPU time.
- The correlative asymmetry in μ^+ and μ^- momenta in each $\gamma\gamma \to \mu^+\mu^- + \nu$'s event can be more informative in the hunt for New Physics but with lower counting rate.

Some other variables can be more useful:

$$v = \frac{4(p_{\perp +}^2 - p_{\perp -}^2)}{M_W^2}, \quad u = \frac{4(p_{\parallel +}^2 - p_{\parallel -}^2)}{M_W^2}, \quad vvn = \frac{4(p_{\parallel +}\epsilon_+ - p_{\parallel -}\epsilon_-)}{M_W^2}.$$

Distribution in u (left) and v (center) for $\gamma_-\gamma_-$ collision. Right: Distribution in vvn for $\gamma_-\gamma_+$ collision.

CONCLUSIONS AND PLANS

- Huge and easily observable effect.
- Cascade process weakly affect the asymmetry.
- Introduced quantities (especially Δ_L) large even with large $p^c_{\perp\mu}$ cuts.
- Taking into account same effects for e^+e^- , $e^+\mu^-$, μ^+e^- enchance statistics by 4 times.
- Real photons will not be monochromatic.
 Early estimates: non-monochromaticity decreases the considered asymmetries only weakly.
- Consider charge asymmetry for discovery of New Physics effects (e.g. MSSM).